### **CSMEP Hydro Subgroup Report**

**Charlie Petrosky, Earl Weber, Frank Young, Dave Marmorek** 

Nampa ID April 12-14, 2005

1

## Outline

- Questions
- Conceptual Framework & Performance Measures (PMs)
- Monitoring Designs to Answer Questions
  - Evaluation
  - Sampling, Response: see handout
- Need from Other Subgroups (see handout, last pg)

## **Questions We Examined**

- 1. Is SAR sufficient for 1) NPCC goal & 2) recovery goals?
- 2. Has hydrosystem complied with performance standards set out in 2000 FCRPS BiOp?
- 3. Is transportation more effective than in-river passage?
- 4. What's the incremental mortality of Snake R fish populations (passing 8 dams) as compared to lower Columbia stocks (passing 1-3 dams)?
- 5. What is the relative survival of transported fish post-BONN, compared to in-river fish?

## **Questions We Examined cont'd**

- 6. What's the inferred delayed mortality of both in-river and transported fish?
- 7. What's the effect of different within-season transportation management actions on SARs and post-BONN survival of transported fish?
- 8. What is the effect of different flow/spill management actions in the hydrosystem on a) SAR and Sp/Sp ratios and b) in-river survival?
- 9. Have freshwater habitat restoration actions been sufficient to compensate for hydrosystem direct and delayed mortality, as measured on the Snake R aggregate sp/sum chinook stock? *<Hydro/Habitat Subgroup>*

## **Other Questions We Didn't Get To**

• What are effects of changes at individual dams on project survival through bypass, spill and turbine routes?











## **Most PMs Provided by Current Monitoring**

- CSS initiated in 1996 by states, tribes, Fish Passage Center, USFWS to estimate survival rates at various life stages
  - Compare survival rates for chinook from 3 major areas (Snake, Upper Columbia, Lower Columbia)
  - Develop more representative control for transport evaluations
  - information derived from PIT tags of wild, natural and hatchery juveniles
  - confidence intervals estimated by bootstrapping
  - results reviewed by ISAB, ISRP, FPAC, NMFS
- Other project / reach survival data from NOAA, Corps
- Run reconstructions (IDFG, ODFW, WDFW)

### **Types of Data / Analyses Provided by CSS**

- Long term consistent indices:
  - Travel Times
  - In-river Survival Rates
  - In-river SARs by route of passage
  - Transport SARs
- Comparisons of SARs
  - Transport to In-River
  - By geographic location
  - By hatchery group
  - Hatchery to Wild
  - Chinook to Steelhead
- Recent CSS Workshop (Feb 2004) examined patterns of survival differences across different stock groups

#### **CSS Tagging Locations**



- 1. Winthrop Hatchery
- 2. Wells Hatchery
- 3. East Bank Hatchery
- 4. Leavenworth Hatchery
- 5. Dworshak Hatchery

- 6. Rapid River Hatchery
- McCall Hatchery
- Pahsimeroi Hatchery
- 9. Imnaha Acclim.
- 10. Catherine Creek Acclim.
- 11. Carson Hatchery
- 12. Warm Springs Hatchery
- A. Salmon River Trap
- B. Grande Ronde River Trap
- C. Snake River Trap

D. Clearwater River Trap E. John Day River Trap

## **Species Coverage in CSS and NOAA studies**

- SAR, T/C, in-river survival, D
  - good estimates for hatchery sp/sum chinook; hatchery SHD could be monitored in CSS but aren't at present; some work by NOAA on SHD
  - opportunistic sampling of wild aggregate sp/sum chinook and wild SHD (low sample sizes)
  - fall chinook not currently monitored; hatchery fall chinook could be PIT-tagged, but env. impact on wild (too small)
- In-river survival rates (reach specific and overall):
  - sp/sum chinook, SHD; fall chinook?

### **1. Is SAR sufficient for NPCC goal & recovery goals?**

## Smolt to Adult Survival Rate (SAR) NWPCC Interim objective = 2-6%



## CSS confidence intervals 'good enough' to answer this question (for sp/sum chinook)



### What's appropriate SAR for stock persistence & recovery?



# 2. Has hydrosystem complied with performance standards set out in 2000 FCRPS BiOp?

- NOAA and Action Agency Hydrosystem RME Plan (2003) provide methods for assessing compliance and progress with 2000 FCRPS BiOp:
  - physical performance standards (flow targets, spill)
  - juvenile in-river survival in FCRPS (per project, system) and combined (including D for transported fish)
  - adult upstream survival, adjusting for fallback, harvest, straying and passage through navigation locks
  - multidimensional decision rule for assessing compliance:
    - slope of SURV trend line > 0; SURV<sub>post-2000</sub> > SURV<sub>pre-2000</sub>; # of SURV values > target; SURV<sub>2006-2010</sub> > SURV<sub>2001-2005</sub>

### **3. Is transportation more effective than in-river passage?**



### 5. What is the relative survival of transported fish post-BONN, compared to in-river fish?



4. What's the incremental mortality of Snake R fish populations (passing 8 dams) as compared to lower Columbia stocks (passing 1-3 dams)?

Can compare R/S (Schaller et al. 2001)

or

SARs

for different stock groups



#### Common Year Effect for Snake River and John Day stocks $(\delta_t)$ ln(R/S)<sub>i,t</sub>= $a_i - b_i S_{i,t} - (X^*n + \mu_t) + \delta_t + \varepsilon_{i,t}$



### Incremental mortality of Snake R over John Day stocks ( $\mu$ ) $ln(R/S)_{i,t} = a_i - b_i S_{i,t} - (X*n + \mu_t) + \delta_t + \varepsilon_{i,t}$



# 6. What's the inferred delayed mortality of both in-river and transported fish?



7. What's the effect of different within-season transportation management actions on **SARs and post-BONN** survival of transported fish?



Passage index at Lower Granite Dam

8. What is the effect of different flow/spill management actions in the hydrosystem on a) SAR and Sp/Sp ratios and b) in-river survival?

> Influence of Water Travel Time and Climate Effect on Spring/Summer Chinook SAR (predicted)



## **Questions???**

## **Example of Spatial Comparisons**



### Compare Snake R. to L. Columbia stocks:

- 1-4 dams vs. 8 dams
- Same species (similar genetically)
- Similar life history and run timing
- Share common estuary and early ocean environment

## Graphical Comparisons: SAR vs. Smolts/Spawner (at LGR; Petrosky et al. 2001)

SAR vs. Smolts/Spawner



## **Log-linear models**

Ln (survival rate index) = F(stock productivity, stock size, 'treatment' index, covariates)

- need contrasts over space and time in the treatment (habitat, hatchery, and/or hydrosystem actions); BACItype 'design'
- need covariates to explain away variation that adds noise to the treatment signals (e.g. climate / ocean conditions)
  Example (Deriso et al. 2001):

 $\ln(R/S)_{i,t} = a_i - b_i S_{i,t} - (X^*n + \mu_t) + \delta_t + \varepsilon_{i,t}$ 

## Conclusions

- PIT-tag data, other survival indices permit inferences on relative effects of different actions at different life stages
- Such data are not available for all sub-basins; sample sizes may be constraining for certain hypotheses
- Combining multiple treatments and locations may offer insights provided that treatments are not confounded
- Plan ahead...
  - explore what kinds of inferences are possible now;
  - what would be of interest in the future;
  - what ancillary data need to be collected