Hatchery Group DQO Step 6 Contributors:

Chris Beasley – Quantitative Consultants

Rich Carmichael – ODFW

Marc Porter – ESSA

Craig Rabe – Nez Perce Tribe

Jay Hesse – Nez Perce Tribe

Kathryn Kostow – ODFW

Dave Fast – Yakama Nation

Bill Bosch – Yakama Nation

Background – Basis for Step 6 Approach

- Three categories of hatcheries
 - harvest augmentation 11 questions
 - supplementation 25 questions
 - conservation 5 questions
 - 65 performance measures
- No "decision rules" developed:
 - no standards to justify statistical requirements
 - few "if-then" relationships

Background – Basis for Step 6 Approach

Questions and multiple scales:

- Small scale all facilities?
 - productivity

- Large scale expandable?
 - relative reproductive success

- Effect of supplementation on productivity of the targeted natural population?
- Productivity juveniles per adult
- Many possible approaches:
 - interchangeable data types
 - data types drive, in part, evaluation/sampling designs
- "Buffet" approach

Productivity – Juveniles per adult

		Adult Escapement		
		Weir	Video	Redd Count
Juvenile Abundance	Screw Trap			
	Electrofishing			
	Seining			
	Snorkeling			

Productivity – Juveniles per adult - CV

		Adult Escapement		
		Weir	Video	Redd Count
9 9	Screw Trap	0.2-0.3	0.15-0.3	0.25-1.1
enil	Electrofishing			
Juvenile Abundance	Seining			
⋖	Snorkeling			

Productivity – Juveniles per adult - Bias

		Adult Escapement		
		Weir	Video	Redd Count
e Ce	Screw Trap	-2/-1	-2/-1	-2/0
enil	Electrofishing			
Juvenile Abundance	Seining			
<	Snorkeling			

Productivity – Juveniles per adult - Bias

		Adult Escapement		
		Weir	Video	Redd Count
မ	Screw Trap	\$500,000	\$400,000	\$250,000
enil	Electrofishing			
Juvenile Abundance	Seining			
<	Snorkeling			

- Issues with the "buffet"
 - large range of variances
 - differentcombinations =different designs
 - difficult to find efficiencies

- Benefits of the "buffet"
 - "High" design = lowest variance
 - "Low" design = ICA cost vs. precision
 - combinations for every appetite

Questions at a larger scale:

Relative reproductive success

Straying

- Definition
- Why are we interested?
- Sample everywhere or stratify and expand:
 - proportion NOR in broodstock
 - composition of escapement
 - AHA

- High design:
 - genetic parentage analysis
 - sample adults and progeny
 - assign juveniles/adults to parents
 - test effectiveness hypotheses and random mating
 - \blacksquare 3 strata x 2 replications = 6 sites
 - duration = dependent on contrast and age of program

- Low design:
 - inference via treatment/reference and/or before/after
 - progeny/adults
 - change in productivity
 - 3 strata x 2 replications + reference = 12 sites
 - duration minimum two-three generations

- Tradeoffs:
 - assumptions regarding local variation
 - ability to test random mating
 - parent/offspring regression

■ number of sites/site selection

Cost:

- identical sampling infrastructure
- identical tagging
- average annual cost:
 - genetic parentage analysis =
 - infrastructure operation 250k
 - assay and analysis \$57,000
 - \blacksquare \$307,000 x 6 = \$1,842,000
 - BACI = $$250,000 \times 12 = $3,000,000$

- Cost:
 - Duration:
 - **□** contrast
 - ■opportunistic vs. continuous

- Result:
 - High
 - relative reproductive success
 - fewer assumptions
 - random versus assortative mating
 - relatively less additional value
 - Low
 - change in productivity
 - more assumptions
 - relatively large additional value

Next Steps:

- Populate matrices with representative data.
- High-Low designs for other questions.
- Assess ongoing projects populate strata; assess quality relative to high versus low design criteria.
- Find synergies:
 - within designs
 - between groups

- Definition
- Why are we interested?
- Number/Location/Composition
- Sample everywhere or stratify and expand:
 - distance
 - stream order
 - habitat quality
 - hatchery influence
 - species composition

High design:

- multiple categories per strata = 231 sites
- replication via EMAP = 20 additional
- multiple pass carcass surveys (chinook)
- high tag rates (rotating)
- cost dependent on existing effort within/among strata
- duration dependent on contrast

Moderate design:

- fewer categories per strata = 176 sites
- replication via EMAP = 10 additional
- multiple pass carcass surveys (chinook)
- high tag rates (rotating)
- cost dependent on existing effort within/among strata
- duration dependent on contrast

Low design:

- \blacksquare fewer strata = 84 sites
- replication via EMAP = 10 additional
- multiple pass carcass surveys (chinook)
- high tag rates (rotating)
- cost dependent on existing effort within/among strata
- duration dependent on contrast

Tradeoffs:

- fewer categories/strata = less representation
- lower replication = longer duration

Cost:

- survey (annual) existing cost +:
 - \blacksquare high design (97@25k) = \$2,425,000
 - \blacksquare moderate design (69@30k) = \$2,070,000
 - \blacksquare low design (38@35k) = \$1,330,000
- duration decreases as a function of effort:
 - annual
 - opportunistic

Result:

- stray rates (within CRB) via expansion
- location of strays
- factors correlated with straying
- composition of populations
- other?