Status and Trends Monitoring Design Templates

Darcy Pickard, SFU; Claire McGrath and Sam Sharr, IDFG

With backup provided by the Status and Trends Workgroup

<u>IDFG</u>	
Charlie	Petrosky

ODFW Tom Rien Eric Tinus <u>USFWS</u> Paul Wilson CRITFC Earl Weber ESSA Marc Porter

CBFWA Frank Young

IDEC

WDFW
Pete Hahn
Annette Hoffman

NPT
Paul Kucera
Jay Hesse
Chris Beasley

UMATILLA
Jesse Schwartz

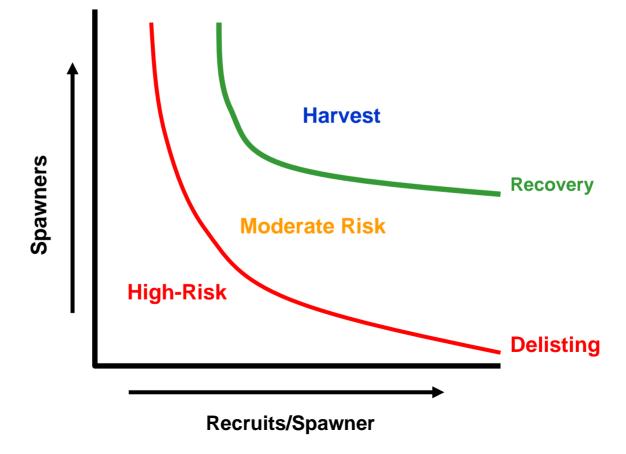
NMFS Chris Jordan

Primary management question

The Problem: Delisting of Snake River Sp/Sum Chinook ESU

The Decision: SRSS Chinook ESU "is no longer at risk of extinction" (5% in 100 yrs)

Inputs to the Decision – must define:


- Performance measures
- Uncertainty in data
 - Natural variability spatial and temporal
 - Sampling & measurement

Evaluate sensitivity of decision to inputs:

Test scenarios (= monitoring designs)

Decision Rules - A/P

•A/P viability curve: Risk < 5% of decreasing to below critical number of spawners/year for a generation in a 100 years

Decision Rules – SS/D

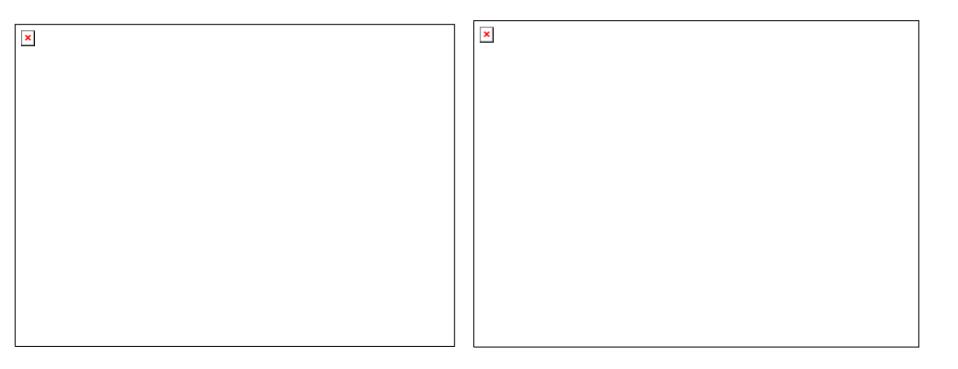
- •SS/D: Categorical, weight of evidence approach
- •Uncertainty → increased risk ratings

Goal	Mechanism	Factor	Metrics		Assessed Risk Level			
Goai					Metric	Factor	Mechanism	Goal
rates and levels of	Maintain natural distribution of spawning aggregates.	a. number and spatial arangement of spawning areas.	A.1.a	Number of MSAs, distribution of MSAs, and quantity of habitat outside MSAs.				
		b. Spatial extent or range of population	A.1.b	Proportion of historical range occupied and presence/absence of spawners in MSA				
B. Maintaining natural levels of variation.	Maintain natural patterns of phenotypic and genotypic expression.	a. Major life history strategies.	B.1.a	Distribution of major life history expression within a population				
		b. Phenotypic variation.	B.1.b	Reduction in variability of traits, shift in mean value of trait, loss of traits.				
		c. Genetic variation.	B.1.c	Genetic analysis encompassing within and between population variation				
	2. Maintain natural patterns of gene flow.	a. Spawner composition.	B.2.a(1)	Proportion of natural spawners that are hatchery fish, life history similarity, proportion of broodstock that is of natural origin, degree of selectivity in broodstock collection.				
			B.2.a(2)	Proportion of natural spawners that are hatchery strays.				
			B.2.a(3)	TBD (Exogenous strays)				i
		b. Increase or decrease gaps or continuities between spawning aggregates.	B.2.b	Change in gap distances and spawner distribution.				
	3. Maintain occupancy in a natural variety of available habitat types.	a. Distribution of population across habitat types.	B.3.a	Habitat diversity index and occupancy.				
	4.Maintain integrity of natural systems.	a. Change in natural processes or impacts.	B.4.a	Cumulative selectivity score across all relevant impacts				


Decision Rules A/P x SS/D Viability Matrix

SS/D risk

	Very Low (VL)	Low (L)	Moderate (M)	High (H)
Very Low (VL) <1%	V	V	V	
Low (L) 1- 5%	V	V	V	
Moderate (M) 6- 25%				
High (H) >25%				


A/P risk

Aggregating population metrics to ESU metric

- Generate data = simulated time series by population. Reflect reality for a) high, b) low, and c) moderate risk. Use realistic spatial and temporal variance structure.
- 2. Take input data and generate "monitoring data" using alternate monitoring programs.
- 3. Take monitoring data, put into decision rules. Resample iteratively.
- 4. Conduct sensitivity analysis, to investigate influence of model components.

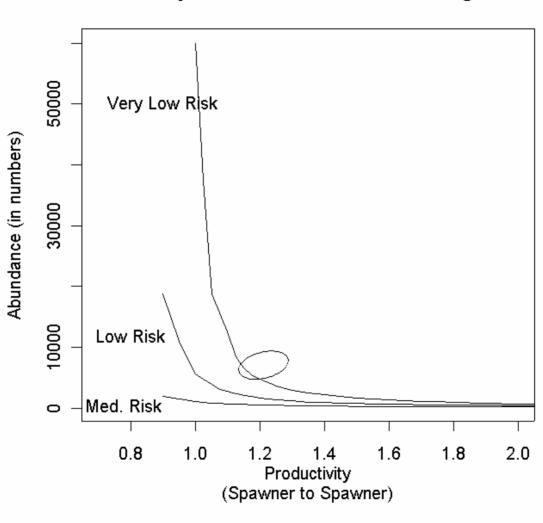
Example Abundance and Productivity Data

- Generate data = simulated time series by population. Reflect reality for a) high, b) low, and c) moderate risk. Use realistic spatial and temporal variance structure.
- 2. Take input data and generate "monitoring data" using alternate monitoring programs.
- 3. Take monitoring data, put into decision rules. Resample iteratively.
- 4. Conduct sensitivity analysis, to investigate influence of model components.

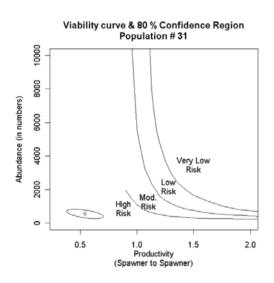
Monitoring methods to evaluate PMs

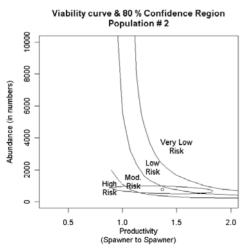
Analytical method	Abundance	Productivity	Spatial structure	Diversity
Count of adult fish	\square	$\overline{\Delta}$	\checkmark	
Count of redds	\square	$\overline{\Delta}$	\square	\mathbf{Z}
% spawners natural-origin	\square	☑		
Age-structure of spawners	\square	\mathbf{Z}		
Sex ratio of spawners	\square	\mathbf{Z}		
Count of smolts			\square	
Rate of smolt survival to LGD				Ø

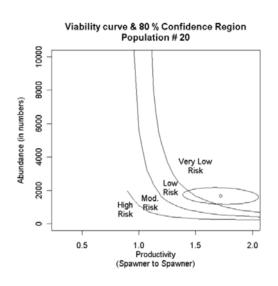
Current Monitoring Efforts for SRSS Chinook

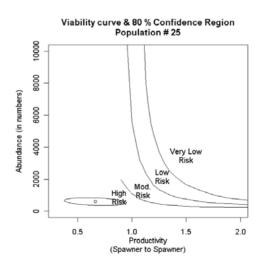


Hypothetical "Medium" Monitoring Efforts for SRSS Chinook

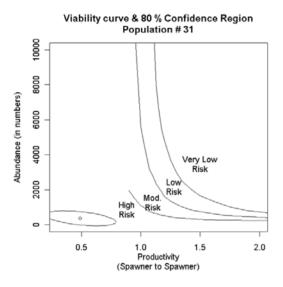


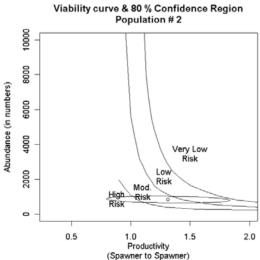

- Generate data = simulated time series by population. Reflect reality for a) high, b) low, and c) moderate risk. Use realistic spatial and temporal variance structure.
- 2. Take input data and generate "monitoring data" using alternate monitoring programs.
- 3. Take monitoring data, put into decision rules. Resample iteratively.
- 4. Conduct sensitivity analysis, to investigate influence of model components.

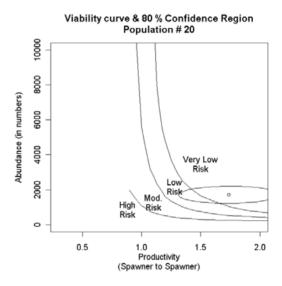

Viability curve & 80 % Confidence Region

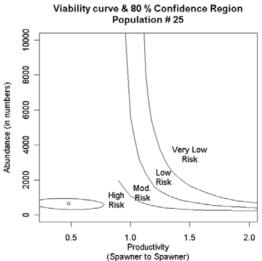


Example Abundance/Productivity Assessment of Snake River Sp/Su Chinook populations









Example Abundance/Productivity Assessment of Snake River Sp/Su Chinook populations with measurement uncertainty (CV = 20%)

- Generate data = simulated time series by population. Reflect reality for a) high, b) low, and c) moderate risk. Use realistic spatial and temporal variance structure.
- 2. Take input data and generate "monitoring data" using alternate monitoring programs.
- 3. Take monitoring data, put into decision rules. Resample iteratively.
- 4. Conduct sensitivity analysis, to investigate influence of model components.