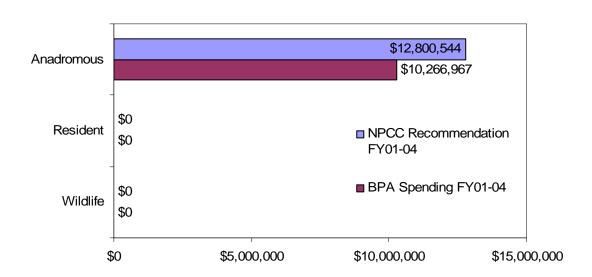
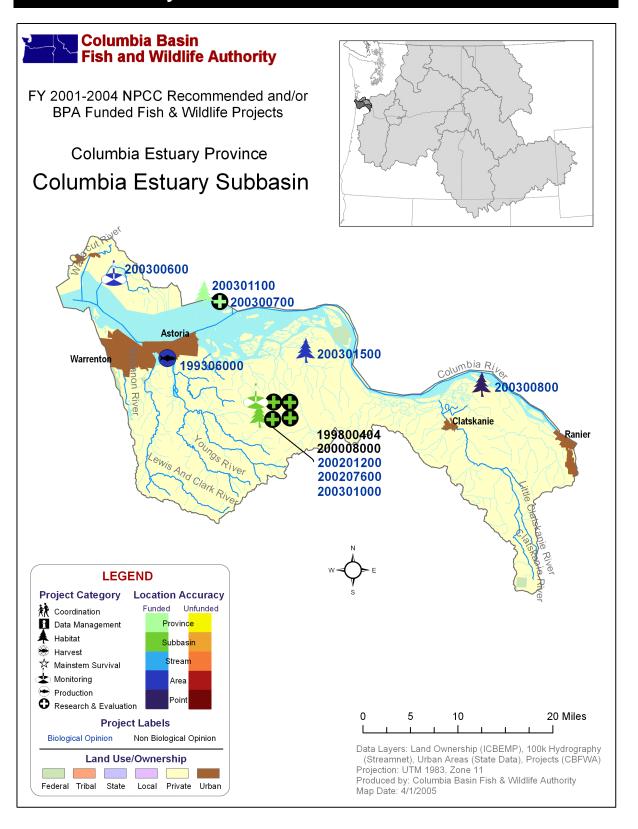

Columbia Estuary Province



Columbia Estuary Province FY 2001-2004 Spending Summaries


NPCC Recommendations and BPA Spending by Project Category, FY01-04

NPCC Recommendations and BPA Spending by Project Type, FY01-04

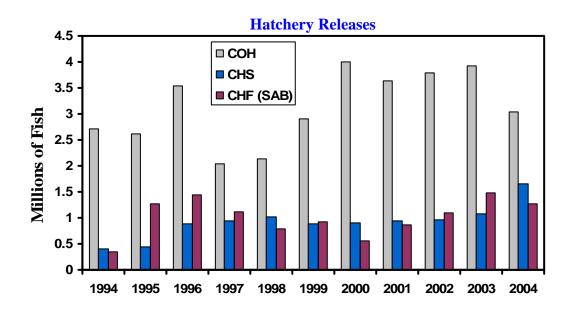
Columbia Estuary Subbasin

Projects in the Columbia Estuary Subbasin

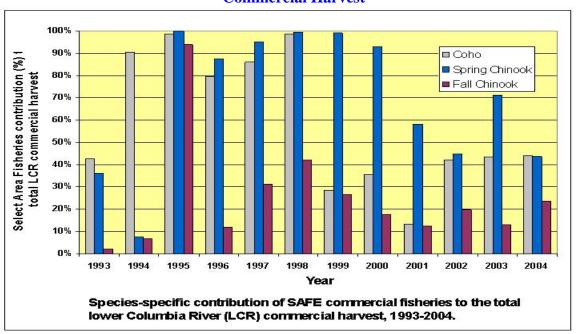
F	roject ID	Project Tit	le			Review Cycl	e	BiOp?
1	99306000	Select Area l	Fishery Evalua	ntion Project		Lower Co	olumbia	yes
	FY	2001	2002	2003	2004	Type	Category	Accuracy
	NPCC Rec	\$1,499,842	\$1,550,836	\$1,679,564	\$1,673,567	A	D., J.,	
	BPA Spent	\$1,624,582	\$2,015,524	\$1,737,604	\$1,573,249	Anadromous	Production	area
1	99800404	Assess Hydro	Impacts on Es	tuary		Not Rev	iewed	no
	FY	2001	2002	2003	2004	Type	Category	Accuracy
	NPCC Rec	\$ 0	\$ 0	\$ 0	\$ 0	Anadromous	Research & Evalua-	subbasin
	BPA Spent	\$21,746	\$2,773	\$ 0	\$ 0	Anadromous	& Evalua- tion	subbasin
2	0008000	Pacific Ocean	n Salmon Track	ting		FY 2001 Ir	nnovative	no
	FY	2001	2002	2003	2004	Type	Category	Accuracy
	NPCC Rec	\$228,600	\$ 0	\$ 0	\$ 0	Anadromous	Research & Evalua-	subbasin
	BPA Spent	\$144,680	\$133,920	\$ 0	\$ 0	Anadromous	& Evalua- tion	subbasin
2	00201200	Lower Colun and Mapping	nbia River and I Project	Estuary Habitat	Assessment	FY 2001 Hi	gh Priority	yes
	FY	2001	2002	2003	2004	Type	Category	Accuracy
	NPCC Rec	\$ 0	\$ 0	\$ 0	\$4,000	Anadromous	Research & Evalua-	au bha ain
	BPA Spent	\$ 0	\$108,320	\$13,280	\$ 0	Anadromous	tion	subbasin
2	00207600	Protect Lowe	r Columbia Est	uary		Not Rev	riewed	yes
	FY	2001	2002	2003	2004	Type	Category	Accuracy
	NPCC Rec	\$ 0	\$ 0	\$ 0	\$ 0	Anadromous	Habitat	au bha ain
	BPA Spent	\$ 0	\$ 0	\$207,227	(\$11,452)	Anadromous	павна	subbasin
2	00300600	Effectiveness ary restorati	s monitoring o on project	f the Chinook	River estu-	Columbia	Estuary	yes
	FY	2001	2002	2003	2004	Type	Category	Accuracy
	NPCC Rec	\$ 0	\$ 0	\$124,804	\$80,000	A 1	M '. '	
	BPA Spent	\$ 0	\$ 0	\$80,134	\$82,787	Anadromous	Monitoring	area
2	00300700		nbia River and (lonitoring and I			Columbia	Estuary	yes
	FY	2001	2002	2003	2004	Туре	Category	Accuracy
	NPCC Rec	\$ 0	\$ 0	\$260,000	\$260,000	Anadromous	Monitorina	nrovinos
	BPA Spent	\$ 0	\$ 0	\$ 0	\$275,325	Anauromous	Monitoring	province

Projects in **bold** have preliminary results data included in this report.

Projects in the Columbia Estuary Subbasin, continued...


I	Project ID	Project Tit	le			Review Cycl	e	BiOp?
2	00300800	lands to Enh		mbia River Es Salmonid and		Columbia	yes	
	FY	2001	2002	2003	2004	Type	Category	Accuracy
	NPCC Rec	\$ 0	\$ 0	\$585,473	\$222,250	A madmamaya	Habitat	noint
	BPA Spent	\$ 0	\$ 0	\$ 0	\$79,948	Anadromous	Habitat	point
2	00301000	juvenile salm		s and food-web nbia River estu d restoration		Columbia	yes	
	FY	2001	2002	2003	2004	Type	Category	Accuracy
	NPCC Rec	\$ 0	\$ 0	\$597,559	\$617,876	Anadromous	Research & Evalua-	11
	BPA Spent	\$ 0	\$ 0	\$285,000	\$409,609	Anadromous	tion	subbasin
2	BPA Spent 200301100			oration Program Columbia River		Columbia	yes	
	FY	2001	2002	2003	2004	Type	Category	Accuracy
	NPCC Rec	\$ 0	\$ 0	\$1,000,000	\$1,000,000	A 1	II.1.'	
	BPA Spent	\$ 0	\$ 0	\$ 0	\$518,325	Anadromous	Habitat	province
2	00301500	Blind Slough	Restoration Pr	oject - Browns	mead, Oregon	Columbia	Estuary	yes
	FY	2001	2002	2003	2004	Type	Category	Accuracy
	NPCC Rec	\$ 0	\$ 0	\$173,550	\$96,000	Anadromous	Habitat	0,000
	BPA Spent	\$ 0	\$ 0	\$ 0	\$65,900	Allauromous	חמטונמנ	area

Project 199306000 — Select Area Fishery Evaluation Project (SAFE)


2002-2003 Project Objectives

• Maximize production in appropriate select area sites

Commercial Fisheries—Preliminary Results

Commercial Harvest

Coded Wire Tag Analyses—Preliminary Results

Coho

- Average survival almost nearly double traditional rearing strategies
- Limited ESA impacts allows for expanded harvest opportunity (SAFE = 98% and Columbia River hatcheries = 20.4%)

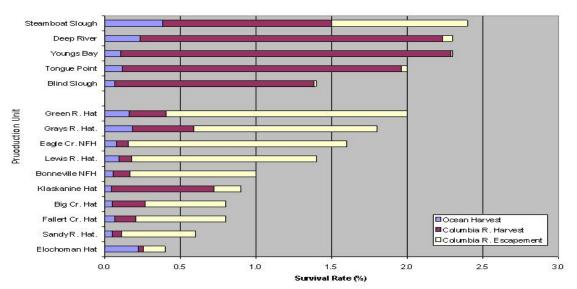
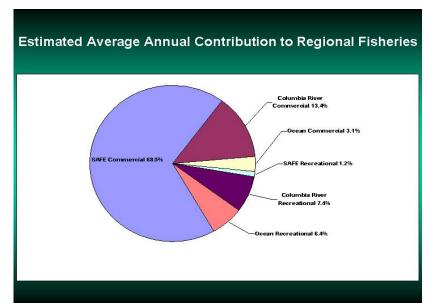
Spring Chinook

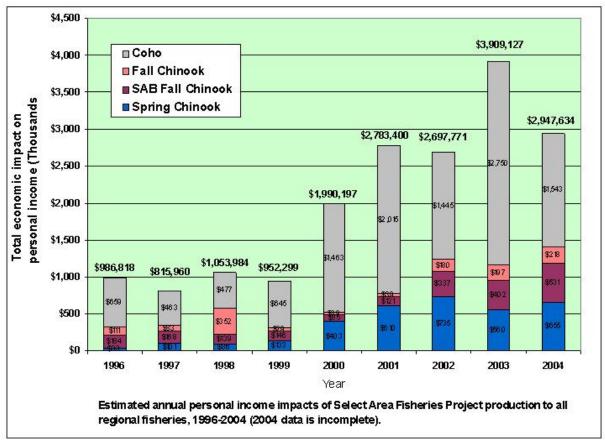
- Average survival approximately 15% higher than Willamette Basin hatcheries
- Harvest

89% - Commercial

3% - Sport

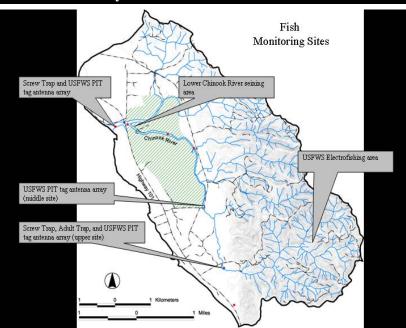
8% - Escapement

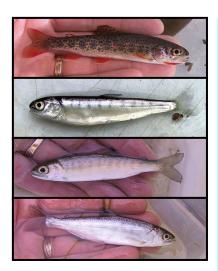

Figure 2. A comparison of survival rates and fishery contributions of 1993-1997 brood year early run coho released from SAFE net pen releases and representative hatcheries.

Contribution to Other Fisheries—Preliminary Results

- 15% of all SAFE returns are harvested in recreational fisheries
- 16.5% of SAFE returns are harvested in ocean and mainstem Columbia River commercial fisheries



Project 200300600 — Effectiveness Monitoring of the Chinook River Estuary Restoration Project


2002-2003 Project Objectives

• Determine relative abundance and length of residence of hatchery and natural salmonids in the Chinook River estuary prior to and after restoration

Length of Residence—Preliminary Results

Locations hatchery and natural salmonid abundance and length of residency was monitored in the Chinook River Estuary.

Juvenile cutthroat trout (top), chum salmon (second), coho salmon (third), and Chinook salmon (bottom) were collected throughout the Chinook River Estuary. (Photographs: Courtesy of Sea Resources)

			(5)	Between t Capture		d		ge in Fork th (mm)	Mean Growth Rate (mm/day)
Species	Rearing	n	Mean	S.D.	S.E	Min/Max	n	Mean	3 7/
Otto and and and	Hatchery	35	2.31	3.72	0.63	1 / 19	35	1.15	0.50
Chinook salmon	Natural	74	6.49	11.30	1.31	1 / 63	34	5.65	0.42
Coho salmon	Hatchery	53	2.23	2.67	0.37	1 / 16	53	0.91	0.41
(spring migrants)	Natural	295	4.74	11.16	0.65	1 / 87	145	3.92	0.54
Coho salmon (fall migrants)	Natural	8	160.75	7.19	2.54	146 / 168	8	43.25	0.27

Columbia Estuary

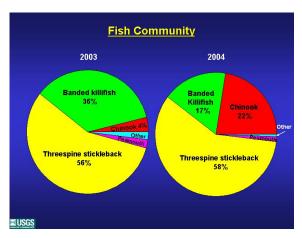
PIT Tagging Summary for 2001 - 2004* Chinook River, Washington

Year hatchesy natural hatchesy natural natural natural natural natural 129 2 10 144 14			Chinook	nook	ರ	Coho	Steelhead	Chum	Cuthroat		
2002 129 2 10 141 2003 4 4444**** 448 2003 5 57 133 23 154 448 2004 36 5 57 133 23 154 468 650 2002 1 18 252 34 346 660 1530 104 1	Location	Year	hatchery	natural	hatchery	natural	natural	natural	natural	Total Etal	Total
2002 4 4444*** 448 2003 5 57 133 23 154 408 2004 3 5 57 133 23 154 408 2002 1 18 252 34 346 650 1590 2003 1 1 21 83 1,087 42 296 1,590 2004 2 3 5,72 69 3 2,89 1,094 2004 2 3 4,2 1 2,89 1,094 1 2,89 2004 3 4,2 3 4,2 3 2,89 1,094 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 <t< td=""><td></td><td>2001</td><td></td><td></td><td></td><td>129</td><td>2</td><td></td><td>01</td><td>141</td><td></td></t<>		2001				129	2		01	141	
2003 363 5 54 201 363**** 1,148 2001 36 5 57 133 23 154 408 2002 18 252 34 346 650 2003 1 18 1,087 42 296 1,530 2004 2,879*** 1 1,67 42 296 1,530 2004 2,879*** 1 2,990** 1 2,990 1 2,890 2004 2,879*** 1 2,990** 1 2,990 1 2,890 1,990 1 2,890 1,990 1 1,990 1 2,890 1,990 1 1,990 1 2,890 1,990 1 1,990 1 1,990 1 1,990 1 1,990 1 1,990 1 1,990 1 1,990 1 1,990 1 1,990 1 1,990 1 1,990 1 1,990 1	Upper	2002					7		444444	87	
2001 36 5 57 133 23 154 408 2002 18 252 34 346 650 2003 1 18 252 34 346 650 2004 1 18 1,087 42 296 1,530 2004 2 3 572 69 36 1,094 2001 2 10 1 1 2,890 1,094 2002 2 384 1 1 1 2,890 2004 1 2 1 1 1 384 384 2004 1 2 1 1 1 1 384 <	River	2003				584	201		363***	1,148	1,737
2001 36 5 57 133 23 164 408 2002 18 252 34 346 650 2003 1 252 34 366 1,530 2004* 2 3 572 69 385 1,094 2001 2,873*** 1 1 1 2,890*** 1,094 2002 2,897*** 1 1 1 2,890 1,094 2003 2,987*** 2 2,990*** 1 1 2,890 1,094 2004** 4 3 4 4,2 1 1 2,897 1 2,897 2004** 4 2 4 2 1 4 2 1 3 4 2 1 3 1 4 1 4 1 3 1 4 3 1 3 1 3 1 3 1 3 1 3		2004*									
2002 1 18 252 34 346 650 2003 1 83 1,087 42 296 1,530 2004 3 572 69 385 1,094 2004 3 572 69 385 1,094 2004 3 572 69 385 1,094 2004 3 4 4 4 5,977 2004 4 2,990*** 4 4 5,977 2004 4 4 4 4 4 4 2004 4 4 4 4 4 4 2004 4 4 4 4 4 4 2004 4 4 4 4 4 4 2004 4 4 4 4 4 1/35 2004 4 4 4 1/43 4 1/43 4 2004		2001	36	40	57	133	23		154	807	
2003 1 21 83 1,087 42 296 1,530 2004* 65 3 572 69 385 1,094 2001 2,987** 10 1 1 2,890 2002 2,987** 1 2,990** 1 2,890 2004* 1 2,990** 1 1 2,890 2004* 1 2,1 1 2,890 1 1 2,890 2004* 1 2,9 1 1 1 4,2 1 4,2 1 4,2 1 4,2 1 4,2 1 4,2 1 1 2,2 1 2,2 1 2,2 1 2,2 1 2,2 1 2,2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1<	Hatchery	2002			18	252	34		346	099	0 000
2004* 65 3 572 69 385 1,094 2001 2,873** 10 1 2,990*** 2,990*** 2,990*** 2,990*** 2,990*** 2,990*** 2,990*** 384 2,990 384	Trans.	2003	-	11	83	1,087	42		296	1,530	720'5
2002 2,987** 10 1 2,890 2003 384 384 384 384 2001 1 21 1 42 2003 42 1 42 42 2004* 4 42 1 57 2004* 4 24 1 57 2004 4 24 1 57 2004 5 24 1 3 32 2004 6 29 1 3 42 2004 6 1 3 42 1 2004 6 29 1 3 42 2004 6 29 1 3 42 2004 6 29 1 3 42 2004 6 29 43 1 4 4 14 562 2004 6 20 20 43 1 4 4		2004*		99	e	572	69		385	1,094	
2002 2,987*** 2,990*** 5,977 2003 384 384 384 2004* 42 42 42 2004* 42 1 10 42 2004* 42 1 11 57 2004* 6 1 11 57 2004* 6 1 3 15 2004* 6 1 3 15 2004* 6 1 3 15 2004* 6 1 3 15 2004* 6 29 1 3 15 2004* 6 29 4 3 13 2004* 6 29 4 3 13 2004* 6 226 89 4 4 4 4 2004* 6 210 4 4 4 14 502		2001	2,879**		01		-			2,890	
2003 384 <td>Sea</td> <td>2002</td> <td>2,987**</td> <td></td> <td>2,990**</td> <td></td> <td></td> <td></td> <td></td> <td>5,977</td> <td>130.0</td>	Sea	2002	2,987**		2,990**					5,977	130.0
2004* 1 21 1 16 39 2002 42 42 42 42 2003* 1 10 42 42 2004* 2004* 1 6 1 57 2004* 4 24 1 3 15 2004* 6 29 1 3 42 2004* 6 29 3 1 3 42 2004* 6 29 43 1 3 136 2005 5 281 8 1,348 28 67 1,737 2004* 6 226 226 89 431 1 4 4 14 562 2004* 6,022 1,012 3,661 4,916 413 4 2,143	Hatchery	2003			384					384	107'6
2001 1 21 1 16 39 2002 42 1 42 42 2004* 6 1 1 57 2004* 6 1 2 15 2002 4 24 1 3 15 2004* 6 29 1 3 3 4 2004 5 281 8 1,348 28 67 1,737 2004* 6 226 89 431 1 26 89 2004* 6 319 1 24 4 4 4 14 562 2004* 6 319 1 214 4 4 2143 562		2004*									
2002 42 1 42 42 2004* 1 1 57 2004* 4 1 6 1 2 15 2002 4 24 1 3 3 32 2004* 6 29 1 3 32 4 2004 5 26 2 64 3 136 42 2002 5 26 8 1,348 28 67 1,737 2004* 6 226 89 431 1 4 4 14 562 2004* 6 319 1 214 4 14 562 89 2004* 6 319 1 214 4 14 5143 89 89		2001		-		21	-		91	39	
2003 16 29 1 11 57 2004 2004 6 1 2 15 2001 4 24 1 3 15 2004* 6 29 1 3 42 2004* 6 29 1 3 42 2004 5 281 8 1,348 28 67 1,737 2004 6 226 89 431 1 4 4 4 4 14 562 2004* 6 319 1 214 4 4 14 562 839 2004* 6 319 1 214 4 14 562 839 2004* 6 319 1 214 4 14 2143 839	Maddle	2002				42				42	9
2004* 6 1 2 15 2002 1 3 32 32 2003 4 24 1 3 32 2004* 6 29 3 1 3 42 2001 32 35 2 64 3 136 3 136 2002 5 281 8 1,348 28 67 1,737 2003 66 226 89 431 1 26 839 2004* 6,022 1,012 3,661 4,916 413 4 4 14 562	River	2003			16	29	1		п	52	130
2001 6 1 2 15 2002 1 3 32 2003 4 24 3 1 3 32 2004** 6 29 3 1 3 42 2001 32 35 2 64 3 136 136 2002 5 281 8 1,348 28 67 1,737 2003 66 226 89 431 1 26 839 2004** 6,022 1,012 3,661 4,916 413 4 2,143		2004*									
2002 1 3 32 2004* 6 29 3 1 3 42 2004* 6 29 3 1 3 42 2001 32 35 2 64 3 136 2002 5 281 8 1,348 28 67 1,737 2003 66 226 89 431 1 26 839 2004* 6,022 1,012 3,661 4,916 413 4 4 14 562		2001		•		۰	1		2	15	
2003 4 24 1 3 32 2004* 6 29 1 3 42 2001 32 35 2 64 3 136 2002 5 281 8 1,348 28 67 1,737 2003 66 226 89 431 1 26 839 2004* 6 319 1 214 4 4 14 562 6,022 1,012 3,661 4,916 413 4 2,143 7,143	Lower	2002									8
2004* 6 29 3 1 3 42 2001 32 35 2 64 3 136 2002 5 281 8 1,348 28 67 1,737 2003 66 226 89 431 1 26 839 2004* 6,022 1,012 3,661 4,916 413 4 2,143	River	2003	4	24		-			m	32	ô
2001 32 35 2 64 3 136 2002 5 281 8 1,348 28 67 1,737 2003 66 226 89 431 1 26 839 2004* 6 319 1 214 4 4 14 562 6,022 1,012 3,661 4,916 413 4 2,143		2004*	9	29		e	П		m	42	
2002 5 281 8 1,348 28 67 1,737 2003 66 226 89 431 1 26 839 2004* 6 319 1 214 4 4 14 562 6,022 1,012 3,661 4,916 413 4 2,143		2001	32	35	2	64			m	136	
2003 66 226 89 431 1 26 839 2004* 6,022 1,012 3,661 4,916 413 4 2,143	Mouth	2002	40	281	~	1,348	28		67	1,737	
2004* 6 319 1 214 4 4 14 562 6,022 1,012 3,661 4,916 413 4 2,143	Trans.	2003	99	226	68	431	Ħ		26	839	\$ (7)
1,012 3,661 4,916 413 4 2,143		2004*	9	319	1	214	4	4	14	562	
			6,022	1,012	3,661	4,916	413	7	2,143		18,17

^{*2004} only includes tagging through July. ** Tagging led by NOAA Fisheries *** Tagging led by USFWS

Project 200300800 — Preserve and Restore Columbia River Estuary Islands to Enhance Juvenile Salmonid and Columbian White-tailed Deer Habitat

2002-2003 Project Objectives

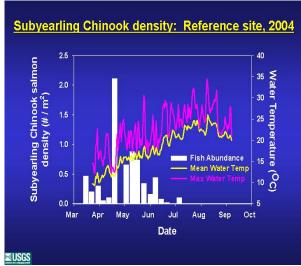

- Purchase 426 acres on Crims Island
- Restore 175 acres to functional emergent tidal wetland and riparian forest
- Describe seasonal fish use
- Determine available food prey and food preferences
- Compare productive capacity

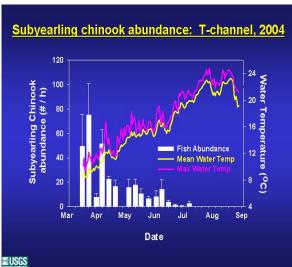
Columbian White-tailed Deer Habitat—Preliminary Results

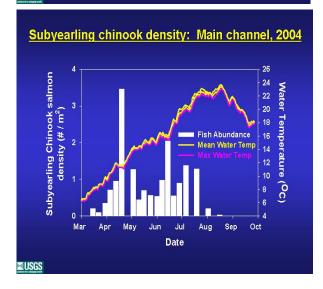
- 473 acres acquired on Crimes Island
- Efforts initiated to restore 94 acres of tidal marsh and 115 acres of riparian forest on Crims Island
- Biological (10 sites) and mechanical (5.5 miles) control of purple loosestrife implemented in 2004
- Japanese knotweed—59 sites mapped and treatment plan developed

Salmonids— Preliminary Results

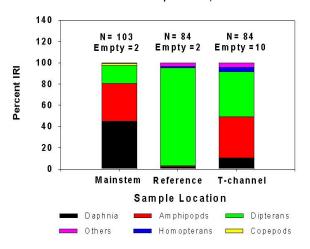
Sampling locations at Crims Island included the T-channel (1) and reference tidal marsh (2). (Photograph: Courtesy of the U.S. Geological Survey)

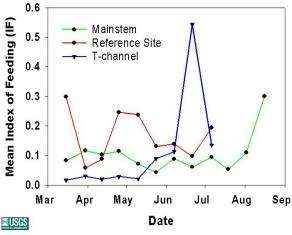


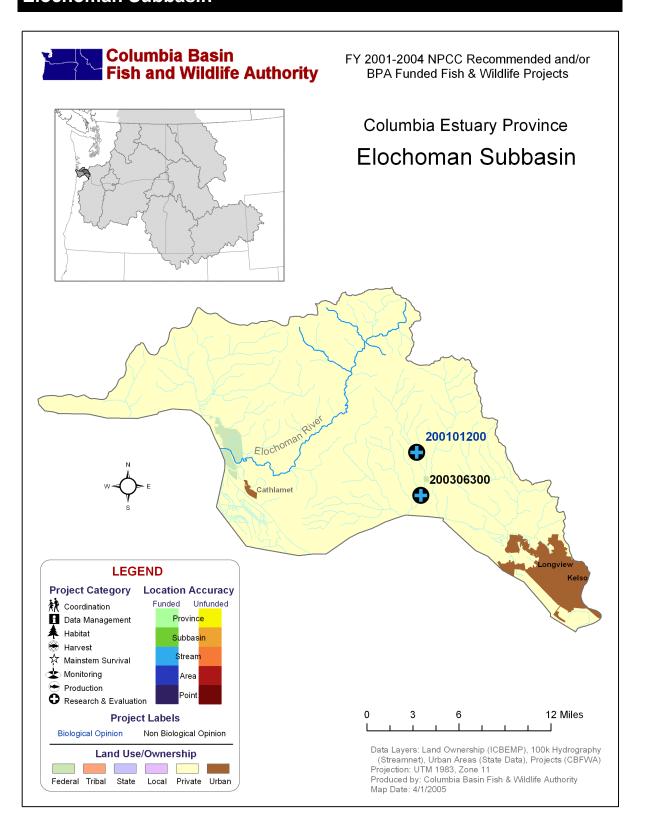



Examples of habitat sampled at Crims Island. Samples were collected from the T-channel (left) and marsh (right). (Photograph: Courtesy of the U.S. Geological Service)

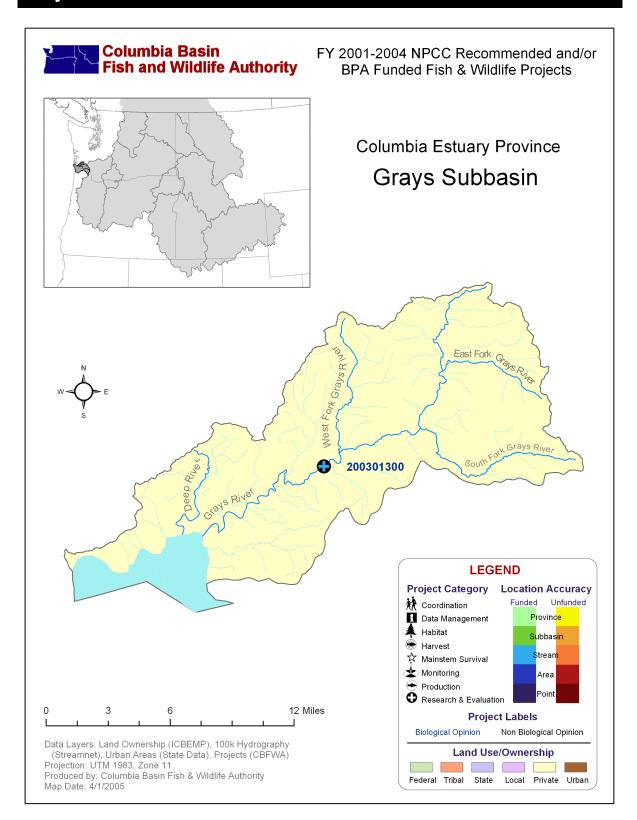
- Subyearling Chinook salmon, threespine stickleback, and banded killifish are the dominant fish species at Crims Island
- Juvenile salmonids are present from early spring through late-June, after which temperature become too warm
- Fish residence time in Crims Island habitats is low, but may increase in restored habitat which will maintain habitat at low tides
- Productivity was greatest at the reference marsh site and fish consumed more prey; however, food habits were most similar between the reference and the T-channel


Salmonids—Preliminary Results




Subyearling Chinook Food Habits March- September, 2004

Subyearling Chinook Index of Feeding, 2004


Elochoman Subbasin

Projects in the Elochoman Subbasin

ŀ	Project ID	Project Tit	le			Review Cycle	e	BiOp?
2	00101200	Salmon and S	v Methodologie Steelhead: Meth f Restoration ar	ods for Evalua	ting the Ef-	FY 2001 Ir	nnovative	no
	FY	2001	2002	2003	2004	Type	Category	Accuracy
	NPCC Rec	\$197,155	\$ 0	\$ 0	\$ 0	Anadromous	Research & Evalua-	atuaam
	BPA Spent	\$ 0	\$268,087	\$12,299	\$ 0	Anadromous	tion	stream
2	00306300	•	oductive Succe Origin Steelhea		^	FY 2003	3 RFS	yes
	FY	2001	2002	2003	2004	Туре	Category	Accuracy
	NPCC Rec	\$ 0	\$ 0	\$ 0	\$ 0	Anadromous	Research & Evalua-	straam
	BPA Spent	\$ 0	\$ 0	\$ 0	\$241,541	Anadromous	tion	stream

Grays Subbasin

Projects in the Grays Subbasin

1	Project ID	Project Tit	le			Review Cycl	e	BiOp?
2	00301300	Grays River	Watershed an	nd Biological A	ssessment	Columbia	Estuary	yes
	FY	2001	2002	2003	2004	Type	Category	Accuracy
	NPCC Rec	\$ 0	\$ 0	\$474,734	\$474,734	A I	Research	-4
	BPA Spent	\$ 0	\$ 0	\$ 0	\$376,561	Anadromous	& Evalua- tion	stream

Project 200301300 — *Grays River Watershed and Biological Assessment*

2002-2003 Project Objectives

Conduct a watershed and biological assessment

Mass Wasting and Surface Erosion Assessment—Preliminary Results

- Current sediment production levels are at least 4 times greater than estimated background levels
- Landslides and sediment production from forest roads are the two largest sources of sediment in the basin
- Preliminary results indicate that approximately 500 tonnes km⁻¹ year⁻¹ of sediment are produced from landslides; approximately 50 tonnes km⁻¹ year⁻¹ of sediment are produced from forest roads
- Approximately 80% of observed landslides are associated with forest roads

Landslides throughout the Grays River watershed have led to conditions such as those pictured above. (Photographs: Courtesy of the Lower Columbia River Fish Recovery Board)

Geomorphic Characterization of Alluvial Channel Network—Preliminary Results

Mainstem Grays River

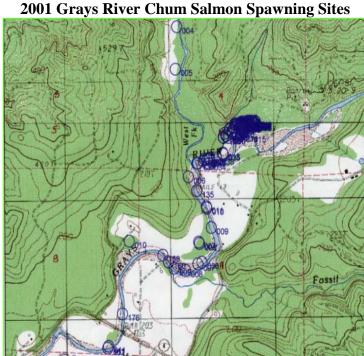
- Mainstemdownstream of Bedrock Canyon is the first major response reach sensitive to changes in sediment supply
- Avulsions at two locations occurred on the mainstem Grays River in the upper basin during the December 2000 high flow event
- Up to 3 feet of aggradations occurred over much of the floodplain in the Gorely reach during the avulsions associated with the December 200 high flow event

West Fork Grays River

 Very high sediment loads have resulted in significant instream storage and have caused later channel instability

South Fork Grays River

- Areas where LWD loading remains high the South Fork Grays River exhibit complex multiple-thread forced pool-riffle morphology
- Low recruitment potential in adjacent riparian forests indicate existing morphology may nt endure as functional pieces of LWD decay


Headwater Reaches

 Many reaches exhibit significant sediment storage suggesting that sediment supply to downstream alluvial reaches will continue

Biological Assessment—Preliminary Results

Chum salmon during spawning in the Grays River (top) and chum salmon carcasses following spawning. (Photographs: Courtesy of the Lower Columbia River Fish Recovery Board)

Columbia Basin Fish & Wildlife Authority

This page intentionally left blank.