Okanogan/Similkameen Subbasin Summary

May 17, 2002

Prepared for the Northwest Power Planning Council

Editor

Nina Talayco, Golder Associates

Subbasin Team Leader

Chris Fisher, Confederated Tribes of the Colville Reservation

Contributors (in alphabetical order):

Carmen Andonaegui, WSCC Bill Baer, USFS Heather Bartlett, WDFW Clayton Belmont, WSDOT Kelly Cooper, USFS Julie Dagnon, Okanogan County Jeff P. Fisher, ENTRIX William Gray, USBOR Constance Iten, WDFW Deborah J. Knaub, ACCOE Ramon Latham, CTCR Hilary Lyman, CTCR Craig Nelson, WSCC N. John Olyslager, Golder Associates, Canada Christine Ramsey, NMFS Dawn Machin, Okanogan Nation Alliance, Canada Don Robison, USEPA Tom Scott, OTID John Stormon, WSDOE Tom Sullivan, OID Woody Trihey, ENTRIX Paul Wagner, Golder Associates Nancy Wells, USFS Keith Wolf, Golder Associates Howie Wright, Okanogan Nation Alliance

This document has not yet been reviewed or approved by the Northwest Power Planning Council

Okanogan/Similkameen Subbasin Summary

Table of Contents

Execu	utive Summary	1
U.S. (Okanogan/Silmilkammen Subbasin Description	5
C	General Description	5
Fish a	and Wildlife Resources	
F	Fish and Wildlife Status	
V	Wildlife	60
V	Watershed Assessment	
L	Limiting Factors	69
A	Artificial Production	69
E	Existing and Past Efforts	
Р	Proposed Actions by Management Agencies	76
Subba	asin Habitat Reports (Limiting Factors Analysis)	77
Iı	Introduction	
C	Okanogan Watershed Characteristics and Conditions	
F	Fish Distribution and Status	
Ν	Methodology For Developing Habitat Limiting Factors Assessments By Subwatersh Okanogan Watershed	ed In The
N C	Methodology For Developing Habitat Limiting Factors Assessments By Subwatersh	ed In The 97
N C F	Methodology For Developing Habitat Limiting Factors Assessments By Subwatersh Okanogan Watershed	ed In The 97
M C F S	Methodology For Developing Habitat Limiting Factors Assessments By Subwatersh Okanogan Watershed Fisheries Resources and Habitat Limiting Factors Ratings by Subwatershed	ed In The
M C F S L	Methodology For Developing Habitat Limiting Factors Assessments By Subwatersh Okanogan Watershed Fisheries Resources and Habitat Limiting Factors Ratings by Subwatershed Summary of Action Item Recommendations by Sub-basin	ed In The 97 97
M C F S L Subba	Methodology For Developing Habitat Limiting Factors Assessments By Subwatersh Okanogan Watershed Fisheries Resources and Habitat Limiting Factors Ratings by Subwatershed Summary of Action Item Recommendations by Sub-basin	ed In The 97 112 212 214 222
M C F S L Subba C	Methodology For Developing Habitat Limiting Factors Assessments By Subwatersh Okanogan Watershed Fisheries Resources and Habitat Limiting Factors Ratings by Subwatershed Summary of Action Item Recommendations by Sub-basin Literature Cited	ed In The 97 97
M C F S L Subba C S	Methodology For Developing Habitat Limiting Factors Assessments By Subwatersh Okanogan Watershed Fisheries Resources and Habitat Limiting Factors Ratings by Subwatershed Summary of Action Item Recommendations by Sub-basin Literature Cited asin Management Chinook	ed In The 97 97
M C S L Subba C S S S S	Methodology For Developing Habitat Limiting Factors Assessments By Subwatersh Okanogan Watershed Fisheries Resources and Habitat Limiting Factors Ratings by Subwatershed Summary of Action Item Recommendations by Sub-basin Literature Cited asin Management Chinook Sockeye	ed In The 97 97
M C S Subba C S S U U	Methodology For Developing Habitat Limiting Factors Assessments By Subwatersh Okanogan Watershed Fisheries Resources and Habitat Limiting Factors Ratings by Subwatershed Summary of Action Item Recommendations by Sub-basin Literature Cited asin Management Chinook Sockeye Steelhead	ed In The 97 112 212 214 222 223 224 224 224
M C S Subba C S S U U U U	Methodology For Developing Habitat Limiting Factors Assessments By Subwatersh Okanogan Watershed Fisheries Resources and Habitat Limiting Factors Ratings by Subwatershed Summary of Action Item Recommendations by Sub-basin Literature Cited asin Management Chinook Sockeye Steelhead USDA Forest Service	ed In The 97 97
M C F Subba C Subba C S S U U U V	Methodology For Developing Habitat Limiting Factors Assessments By Subwatersh Okanogan Watershed Fisheries Resources and Habitat Limiting Factors Ratings by Subwatershed Summary of Action Item Recommendations by Sub-basin Literature Cited asin Management Chinook Sockeye Steelhead USDA Forest Service	ed In The 97 97 212 214 222 223 224 224 224 224 224 224 224
M C F Subba C Subba C S U U U V V V	Methodology For Developing Habitat Limiting Factors Assessments By Subwatersh Okanogan Watershed	ed In The 97 97 97

Upper Columbia Salmon Recovery Board (UCSRB)	
Transborder Coordination and Ecosystem Planning Processes	
Goals, Objectives, and Strategies	
Statement of Fish and Wildlife Needs	
Canadian Okanagon/Similkameen Subbasin Description	
General Description	
Fish and Wildlife Resources	
Fish and Wildlife Status	
Habitat Areas and Quality	
Watershed Assessment	
Limiting Factors	
Artificial Production	
Existing and Past Efforts	
Present Subbasin Management	
Existing Management	
Okanogan Subbasin Recommendations	
Projects and Budgets	
Research, Monitoring and Evaluation Activities	
Needed Future Actions	
Actions by Others	
References	
Addendum to the Okanogan Subbasin Summary	

LIST OF APPENDICES

Appendix A	Culverts
Appendix B	Dams in the Okanogan Basin as Identified by WDFW
Appendix C	Fish Species
Appendix D	Endangered Species Act Listings for Steelhead Trout and Spring Chinook
	Salmon
Appendix E	Wildlife Species of the Okanogan
Appendix F	State Listed Wildlife Species
Appendix G	Hatchery and Genetic Management Plan (HGMP) for Upper Columbia
Appendix H	Confirmed Methow/Upper Columbia Agreement on Abundant Hatchery
	Returns
Appendix I	USDA Forest Service Schedule of Proposed Actions for 2001
Appendix J	Subbasin Maps

Appendix K Confederated Tribes of the Colville Reservation Strategic Options for Okanogan Spring Chinook CTCR Strategic Options for Okanogan Summer/Fall Chinook

Appendix L

LIST OF LFA APPENDICES

Appendix A	Okanogan Overview Maps for Fish Distribution within the Entire Basin
Appendix B	Chinook, Sockeye, and Steelhead Fish Distribution Maps of the Washington
	Okanogan/Similkameen Sub-Basins
Appendix C	Photographs of Select Sub-Basin Conditions
Appendix D	Canadian Okanagan/Similkameen Subbasin Summary
Appendix E	Chinook, Sockeye, and Steelhead Fish Distribution Maps of The Canadian
	Okanogan/Similkameen Sub-Basins

LIST OF TABLES

Table 1: Selected Subbasins of the Okanogan/Similkameen Watersheds.	11
Table 2: Forests of the Okanogan Basin	15
Table 3: USGS Flow Records for Okanogan and Similkameen Rivers, 1911 – 1996 (USGS, 199	·
Table 4: Base Flows (cfs) for the Okanogan River, as Set by WSDOE in 1976 (NMFS, 1998)	18
Table 5: Okanogan Subbasin City Populations and Growth Rates 1990-1998. (OFM, 1998)	19
Table 6: Okanogan Subbasin Land Ownership (U.S. Only) (NRCS, 2000)	21
Table 7: Approximate Total Acreage of Land Use Types in the Okanogan Basin (U.S. Only)	22
Table 8: Grazing Use in the U.S. Okanogan Subbasin.	23
Table 9: Summary of USFS Riparian Area Acreage Monitored in 1997. (Percent of total acreage that meets or is moving towards forest plan objectives.)	
Table 10: Road Miles within 200 feet of U.S. Streams in the Okanogan Subbasin	29
Table 11: Roads within 50 Feet of Streamchannels in the Okanogan Subbasin (USDA, 2000)	29
Table 12: Chemicals Applied to Railroad Right-of-ways for Maintenance by the Cascade & Columbia River Railroad As Needed	30
Table 13: Irrigation Districts of the Okanogan Basin.	31
Table 14: Summary of Water Rights in the Okanogan Basin (U.S. Only) (WSDOE, 1995)	
Table 15: Dams in the U.S. Okanogan Basin (Streamnet, 2000).	32
Table 16: Okanogan Basin Water bodies on the Washington State 1998 303(d) List	33
Table 17: US Sport Fishery Harvest of Adult Summer Steelhead Trout in the Okanogan Basin,1965 – 1994 (Streamnet, 2001).	44
Table 18: Spawner Counts for Summer Chinook Salmon in the Okanogan River (Mile 0 to Mile81.9) 1977 - using Fish per Mile; estimation method unknown (Streamnet, 2001)	
Table 19: Redd Counts for Summer Chinook Salmon in the Okanogan River (Mile 0 to Mile 77.and Similkameen River (Mile 0 to Mile 27.8) 1956-1996 (Streamnet, 2001).	
Table 20: Spawner Counts of Sockeye Salmon in the Okanogan River (Mile 0 to Mile 81.9) 195 - 1966; 1977 - 1988 (Streamnet, 2001).	
Table 21: Fish Distribution in the Okanogan Basin (Streamnet, 2001).	51

	Federal and State Listed Wildlife Species Present or Potentially Present in the	
Okar	nogan Basin.	60
Table 23:	Okanogan Subbasin Introduced Wildlife Species.	66
Table 24:	Hatcheries that Supply the Okanogan Basin.	70
Table 25:	Artificial production in the Okanogan Subbasin - year 2000 (Streamnet, 2000)	70
Table 26:	Projected Releases of Steelhead for 2001.	71
Table 27:	Historic Hatchery Release Data for the Okanogan Basin, 1983 – 1998	71
Table 28:	Recent and Existing BPA projects in the Okanogan Basin	76
Table 29:	Washington State Wildlife Areas in the Okanogan Basin	225
Table 30:	Global and Provincial Status of "At Risk" Fish Species in the Okanagan Basin	247
Table 31:	Global and Provincial Status of "At Risk" Wildlife Species in the Okanagan Basin	249
Table 32:	Chute Creek Limiting Factors Matrix	256
Table 33:	Eneas Creek Limiting Factors Matrix	258
Table 34:	Equesis Creek Limiting Factors Matrix	259
Table 35:	Inkaneep Creek Limiting Factors Matrix	262
Table 36:	Kelowna Creek Limiting Factors Matrix	263
Table 37:	Lambly Creek Limiting Factors Matrix	270
Table 38:	Mission Creek Limiting Factors Matrix	273
Table 39:	Naramata Creek Limiting Factors Matrix	279
Table 40:	Naswhito Creek Limiting Factors Matrix	282
Table 41:	Okanagan Mainstem Limiting Factors Matrix	284
Table 42:	Peachland Creek Limiting Factors Matrix	289
Table 43:	Penticton Creek Limiting Factors Matrix	297
Table 44:	Powers Creek Limiting Factors Matrix	300
Table 45:	Robinson Creek Limiting Factors Matrix	303
Table 46:	Similkameen Creek Limiting Factors Matrix	306
Table 47:	Trepanier Creek Limiting Factors Matrix	319
Table 48:	Trout Creek Limiting Factors Matrix	324
Table 49:	Vaseux Creek Limiting Factors Matrix	328
Table 50:	Vernon Creek Limiting Factors Matrix	332
Table 51.	Okanogan River Subbasin FY 2003 BPA Funding Proposal Matrix	459

LIST OF FIGURES

Figure 1:	Site Map.	. 7
	Chinook Distribution.	
Figure 3:	Sockeye Distribution	. 9
Figure 4:	Steelhead Trout Distribution.	10
Figure 5:	Soils Map for the Okanogan Basin	13
Figure 6:	Major Landowners in the Okanogan Basin.	19
Figure 7:	Land Use Types in the Okanogan Basin (NRCS, 2000).	22

v

Figure 8:	Major Crops of the Okanogan Basin (NCRS, 1998)	. 26
Figure 9:	Erosion Rates in 30 Okanogan Subwatersheds (NRCS, 1998).	. 38
Figure 10	: Canadian Subbasin Location Map	242

LIST OF ACRONYMS

ACCOE	Army Corps of Engineers
BLM	Bureau of Land Management
BMPs	Best Management Practices
BOD	Biological Oxygen Demand
BPA	Bonneville Power Association
CBFWA	Columbia Basin Fish and Wildlife Authority
CTCR	Confederated Tribes of the Colville Reservation
CDC	Center for Disease Control
cfs	cubic feet per second
DFO	Department of Fisheries and Oceans
DO	dissolved oxygen
EA	Environmental Assessment
EAP	Early Action Plan
ENTRIX	(not an antonym)
ERSPP	Columbia Basin Ecoprovince Review and Subbasin Planning Process
ESU	Evolutionarily Significant Unit
FERC	Federal Energy Regulatory Commission
LFA	Limiting Factors Analysis
MELP	
	Ministry of Environment, Land, and Parks
MTCA	Ministry of Environment, Land, and Parks Model Toxics Control Act
MTCA	Model Toxics Control Act
MTCA NEPA	Model Toxics Control Act National Environmental Policy Act
MTCA NEPA NID	Model Toxics Control Act National Environmental Policy Act National Inventory of Dams
MTCA NEPA NID NOAA	Model Toxics Control Act National Environmental Policy Act National Inventory of Dams National Oceanic and Atmospheric Association
MTCA NEPA NID NOAA NMFS	Model Toxics Control Act National Environmental Policy Act National Inventory of Dams National Oceanic and Atmospheric Association National Marine Fisheries Service
MTCA NEPA NID NOAA NMFS NPDES	Model Toxics Control Act National Environmental Policy Act National Inventory of Dams National Oceanic and Atmospheric Association National Marine Fisheries Service National Pollutant Discharge Elimination System
MTCA NEPA NID NOAA NMFS NPDES NPPC	Model Toxics Control Act National Environmental Policy Act National Inventory of Dams National Oceanic and Atmospheric Association National Marine Fisheries Service National Pollutant Discharge Elimination System Northwest Power Planning Council
MTCA NEPA NID NOAA NMFS NPDES NPPC NRCS	Model Toxics Control Act National Environmental Policy Act National Inventory of Dams National Oceanic and Atmospheric Association National Marine Fisheries Service National Pollutant Discharge Elimination System Northwest Power Planning Council Natural Resources Conservation Service

LIST OF ACRONYMS (Continued)

OCD	Okanogan Conservation District
OCHD	Okanogan County Health District
OID	Okanogan Irrigation District
ONA	Okanogan Nations Alliance
ONF	Okanogan National Forest
OSS	On-site Sewage
OTID	Oroville Tonasket Irrigation District
OWSAC	Okanogan Watershed Stakeholders Advisory Committee
PNRBC	Pacific Northwest River Basins Commission
PSIAC	Pacific Southwest Interagency Committee
PST	Pacific Salmon Treaty
PUD	Public Utility District
RM	River Mile
SOSCP	South Okanagon-Silmilkameen Conservation Program
TAC	Technical Advisory Committee
TAG	Technical Advisory Group
TMDL	Total Maximum Daily Loads
TPN	Total Per Sulfate Nitrogen
U.S.	United States
USBIA	U.S. Bureau of Indian Affairs
USDA	United States Department of Agriculture
USDI	United States Department of the Interior
USEPA	U.S. Environmental Protection Agency
USFS	United States Forest Service
USFWS	U.S. Fish and Wildlife Service
USGS	United States Geological Survey
WAC	Washington Administrative Code
WDFW	Washington Department of Fish and Wildlife
WDNR	Washington Department of Natural Resources
Working Group	Okanagon Basin Technical Working Group

LIST OF ACRONYMS (Continued)

WRIA	Water Resource Inventory Area
WSCC	Washington State Conservation Commission
WSDOE	Washington Department of Ecology
WSDOT	Washington Department of Transportation
WSOFM	Washington State Office of Fiscal Management

Executive Summary

In October of 2000, the Northwest Power Planning Council adopted a revised Fish and Wildlife Program for the Columbia River Basin. The new program is intended to be more comprehensive than, but complimentary to, regional efforts related to the Endangered Species Act, State-sponsored recovery and watershed planning and coordination efforts, and tribal recovery initiatives. The revised Program calls for an ecosystem-based approach for planning and implementing fish and wildlife recovery.

To accomplish this, the Program divides the Columbia Basin into ecological provinces that are further divided into individual subbasins. At the heart of the Program is the subbasin plan consisting of a comprehensive description of the basin general ecology including the identification of specific fish and wildlife needs. Future action strategies and project funding are to be based upon these identified needs. Subbasin *summaries* are an interim step to allow near-term implementation of the revised Fish and Wildlife Program until comprehensive subbasin *plans* can be completed. The information provided in this document satisfies the summary requirements for the Okanogan subbasin.

Accordingly, this report presents a compilation of known and existing data on anadromous fish and fish habitat for the United States and Canadian portions of the Okanogan River Watershed. Seventy-two subwatersheds were examined. The report also provides data and context for wildlife, land use, human population patterns, and overall resource management issues. Portions of the Similkameen watershed are included where additional anadromous fish distribution and access dictate. The Okanogan Subbasin Summary is the first report being generated from within the Columbia Cascade Ecoprovince. The Methow, Wenatchee, Lake Chelan, Entiat, and Upper (mainstem) Columbia subbasins comprise the remainder of this province.

Because this report represents the largest single subwatershed in the entire Columbia Basin, and is one of the only "transborder" watersheds, the document is lengthy. Great effort was expended to include all pertinent data and information focusing on the key ecological attributes and overall processes in the Okanogan. This was done while attempting to keep the document "manageable." While there will be differing opinions as to the success of this endeavor, the information presented has been scrutinized within the context of its general applicability for use in a focused and credible subbasin planning effort. The broad utility of this document will therefore be more useful in establishing interim actions as development of the final Subbasin Plan proceeds. This summary report will also provide guidance for developing regional priorities and processes.

The information and data presented in this document have been assembled and reviewed by a 22-member technical advisory committee and have been augmented with specific input from expert sources such as tribal staffs, state, provincial, and federal agency biologists, hydrologists, and local government staffs. This broad-based approach was necessary to compile the fundamental data and information in support of an ecosystem-based approach for fish, wildlife, and their diverse habitats.

This report also contains a final draft version of the Okanogan/Similkameen Limiting Factors Analysis (LFA). The LFA is sponsored by the Confederated Tribes of the Colville Reservation (CTCR) and is being developed in conjunction with the Washington State Conservation Commission (WCC) as provided for in Engrossed Substitute House Bill 2496. The LFA technical effort is led by input from over 25 technical advisors representing state, federal, and local governments, and the public. The information contained within this report will be used for numerous applications, including providing critical habitat information for subbasin planning.

The report is organized according to the format developed by the Columbia Basin Fish and Wildlife Authority (CBFWA) and approved by the Northwest Power Planning Council. A summary of the major sections in this report includes:

- Fish and Wildlife Resources,
- Limiting Factors Analysis,
- Subbasin Habitat Reports,
- Recommended Actions,
- Goals, Objectives and Strategies,
- Existing Management,
- Proposed Actions by Management Agencies,
- Research, Monitoring and Evaluation Activities,
- Statements of Fish and Wildlife Needs,
- Subbasin Planning Maps (72 subbasins, including extent of anadromous ranges), and
- Pertinent Appendix Materials.

Taken together, these sections, and the detail contained within individual subsections, provide a focal point to be used by the reader and planner to accomplish the following general goals:

- 1. Establish actions, priorities, and guidance for development of specific project proposals for the intervening 3-year period between this report and final Subbasin Plan development;
- 2. Initiate an in-depth technical analysis of the information presented;
- 3. Identify major data gaps and assessment needs, and
- 4. Culminate these efforts into actions and final Subbasin Plan development.

Thus, in the near term, projects and actions will be determined by a review of the fish and wildlife needs and recommendations contained herein. The longer-term effort will require a more thorough and sophisticated approach employing tools such as the Ecosystem Diagnosis and Treatment Model and an expanded analysis of needs.

To sufficiently address the complex nature of the Okanogan Watershed, it was necessary to view this ecosystem as uniquely contiguous. This point cannot be overemphasized. International treaties and agreements, as well as language within the Northwest Power Act dictate a broad response to fish and wildlife recovery and protection in the Okanogan subbasin. Cooperation across the shared boarder and within the Okanogan watershed is required from both a legal and biological/ecological perspective.

Consequently, and, in order to facilitate continued transborder collaboration throughout the region, we have provided perspectives on how efforts between U.S. and Canadian management entities and stakeholders can be incorporated into the subbasin planning process. These features are unique to the Okanogan subbasin and contribute to the overall complexity, and utility, of this document and to the subbasin planning process.

This approach required that the subbasin summary effort incorporate a vast amount of information and data from the entire watershed, two-thirds of which is found within Canada. To retain the overall focus of the effort, and for the designated purposes and focus of this subbasin summary, we have limited some of the detail to the geographic extent of anadromous fish access. We recognize and acknowledge that Canadian and U.S. resident fish and wildlife issues may go beyond the detail provided in this report to date.

Major themes derived from the subbasin summary:

- The Okanogan watershed comprises one the of the largest geographic subbasins in the Columbia River Basin;
- The Factors influencing salmon survival and population status extend beyond the geographic boundaries of the Okanogan, and of the United States. Thus, coordination between basins, and in the Canadian portion of the watershed, is essential.
- There are significant needs and factors identified across all species, lands, and habitats that will require substantive actions in this basin;
- Near-term actions are needed in key subwatersheds;
- Land ownership throughout the watershed/subbasin is predominantly in private ownership;
- The basin is reasonably data rich in terms of geology, land use and climate, however, gaps in data for key environmental attributes, especially basin hydrology, land use impacts, and riparian and rangeland function, exist;
- Because of the geography of the basin, it is doubtful that salmon can be recovered, or overall ecological functions improved, without near-term actions, followed by long-term strategic planning;
- The use of artificial production strategies, such as supplementation, is an inextricable part of recovery planning;
- The effects of harvest in relation to this subbasin are poorly defined;
- Recovery efforts will have to be closely linked with passage improvements at all mainstem hydroelectric projects as well as with existing tributary and Okanogan river mainstem water withdrawal and diversions;
- All species of anadromous salmonids have experienced a long-term, and in most cases, severe decline in abundance, diversity and habitat productivity;
- Many resident fishes are also in decline, especially in the Canadian subbasins.
- Sockeye and steelhead represent the primary species for recovery and protection focus; spring chinook the best opportunity for restoration and reintroduction.

- Many issues are also applicable to summer/fall chinook salmon;
- Temperature issues predominate the factors influencing salmon survival in the mainstem Okanogan River;

- Resident and Wildlife related habitat issues are ill-defined, but impacts to ecological function are pervasive;
- Passage is a key component of the Canadian watershed limiting factors;
- The Okanogan Basin is fortunate to have a sophisticated and coordinated infrastructure focused on salmon recovery. The Upper Columbia Salmon Recovery Board provides one example that integrates many efforts;
- The Canadian portion of the watershed suffers from a lack of funding mechanisms, however, it is not lacking an overall impetus to address critical fish and wildlife issues;
- The subbasin planning process represents one of the best opportunities to support the Canadian tribes, citizenry, and governmental entities in initiating a host of new recovery options and funding strategies that will benefit the US portions of several fish and wildlife needs;
- The Okanogan basin has lacked detailed and coordinated assessment effort in the past. Thus, many new needs have been identified, and
- Goals, objectives, and strategies need, and will receive, continued refinement.

Okanogan/Similkameen Subbasin Summary

U.S. Okanogan/Silmilkammen Subbasin Description

General Description

Subbasin Location

The Okanogan River originates in British Columbia and flows south through a series of six large lakes before reaching the U.S. border (Figure 1) where it enters Washington State. The basin covers approximately 8,200 square miles, with 2,500 square miles in the United States. The eastern and western boundaries are steep, jagged, forested ridges at elevations ranging from 1,500 feet to over 5,000 feet above the basin floor. Tiffany Mountain is the highest peak in the drainage, at 8,242 feet above sea level.

The floodplain of the Okanogan River averages approximately one mile in width. The elevation of the valley floor ranges from 920 feet at the international boundary, to about 780 feet at Lake Pateros. Lake Osoyoos covers the northernmost 4 miles of the valley floor in the U.S., and extends several miles into Canada. Natural terraces, created mostly of glacially deposited gravel and sands, rise as much as 500 feet above the floodplain to the foot of, and between, the lateral ridges (WSDOE, 1995).

The river joins the Columbia River at river mile (RM) 533.5, between Chief Joseph and Wells dams, near the town of Brewster, Washington. The Okanogan River is the northernmost geologic dividing line between the Cascade and Rocky Mountain ranges.

Within Washington State the watershed is about 65 miles long, averages about 35 miles wide, and covers about 1.65 million acres. There are 32 subbasins within Washington (Table 1 and Figure 1). Several of these do not have surface flow into the Okanogan River. The Similkameen River, located primarily in Canada, contributes 75 percent of the flow to the Okanogan River.

The coastal and Cascade Mountains cast a rain shadow on the basin, giving it a dry climate. The interior portion of the Okanogan is considered true desert – it receives about 3.0 to 3.3 inches of rain annually. The open waters of the Okanogan's finger lakes moderate local temperatures, however, cooling the air in summer and warming it in winter.

The basin is home to over two dozen species of plants and animals that are currently listed in the U.S. and Canada as nationally Threatened, Endangered, or Vulnerable. A full one-third of *all* Red-listed species in British Columbia reside in the Okanogan, and the National Marine Fisheries Service has concluded that the upper Columbia, where spring chinook and steelhead are listed as endangered, is the first priority for recovery planning efforts in the Columbia Basin. Additionally, the Okanogan supports one of only two viable populations of sockeye salmon left in the entire Columbia Basin.

The Okanogan Basin is an important ecological corridor for migratory megafauna as well. Species such as mule deer utilize the north-south corridor that connects the dry landscapes of British Columbia's interior with the grasslands to the south. In addition to salmon and megafauna this corridor is a crucial part of the flight path for many species of birds during annual migrations between summer and winter ranges.

Climate

Cold, snowy winters and hot, dry summers characterize the semi-arid climate of the Okanogan River Watershed. The climate is influenced by the barrier to marine air that the Cascade Mountain Range provides, as well as by the mountain and valley formations of the region. Precipitation in the watershed ranges from more than 40 inches in the western mountain region to approximately 8 inches at the confluence of the Okanogan and Columbia Rivers. Precipitation in the main river valley averages approximately 12 inches annually (NOAA, 1994). The Okanogan Highlands, in the easternmost part of the basin, receives an average of 25-35 inches per year. About 50 to 75 percent of annual precipitation falls as snow during the winter months. Okanogan County's forestlands receive approximately 75 percent of the total annual precipitation (Gullidge, 1977). July, August, and September are the driest months.

Mean annual temperature for the Okanogan Watershed is 49° F. The average temperature for January is 21° F and the July average is 73° F. Temperatures and weather conditions vary widely by elevation. Wind velocities throughout the region are calm to moderate, and winds generally originate from the north or south. Thunderstorms occur occasionally in the watershed during late spring and early summer. Summer months have approximately 5 cloudy days per month, and winter has about 20 cloudy days per month. On average, there are 150 frost-free days each year in the main Okanogan River Valley, and about 75 frost-free days in the surrounding uplands (NOAA, 1994).

Geology

The bedrock geology of the basin is composed primarily of granitic, andesitic, metamorphosed sedimentary and basaltic rocks. These rocks form a complex arrangement of geologic terrains that are highly fractured, folded, and faulted.

During the last large-scale glaciation, the entire Okanogan drainage was covered by the Okanogan Lobe of the Cordilleran ice sheet. As the glacier melted, it deposited sequences of silt, sand, gravel, and cobbles. These sequences of unconsolidated materials are present as valley fill and form the walls of terraces. More recently, rivers have scoured the bedrock and glacial deposits and redeposited them as additional sand and gravel terraces and plains, and volcanic eruptions have deposited ash.

Soils

Most of the soils in the valley derived from volcanic ash and glaciation within the last 10,000 years. In that time, there has been accumulation of organic matter and translocation of carbonates, iron, aluminum, and small amounts of clay. Well logs and soil reports indicate that valley fill and terrace deposits may be more than 500 feet thick in areas (WSDOE, 1995). There are ash layers from the geologically recent eruptions of Mt. Mazama, Glacier Peak, and Mt. St. Helens. Depth and degree of mixing of the ash mantle varies with aspect and topography.

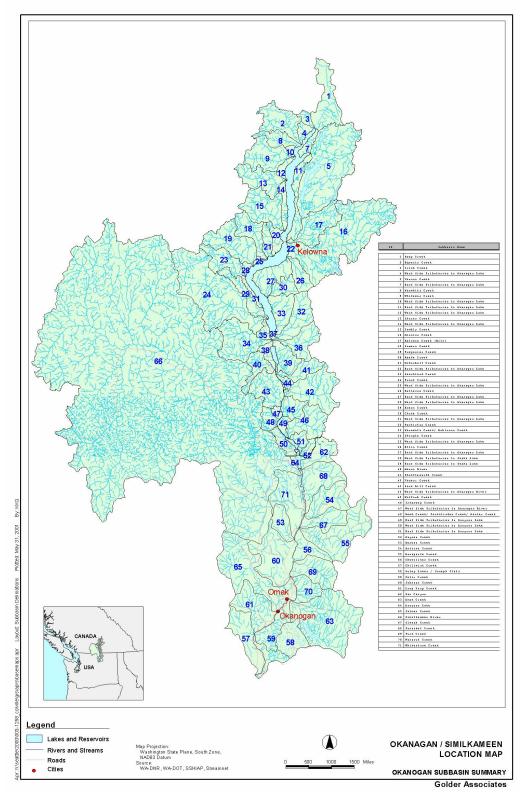


Figure 1: Site Map.

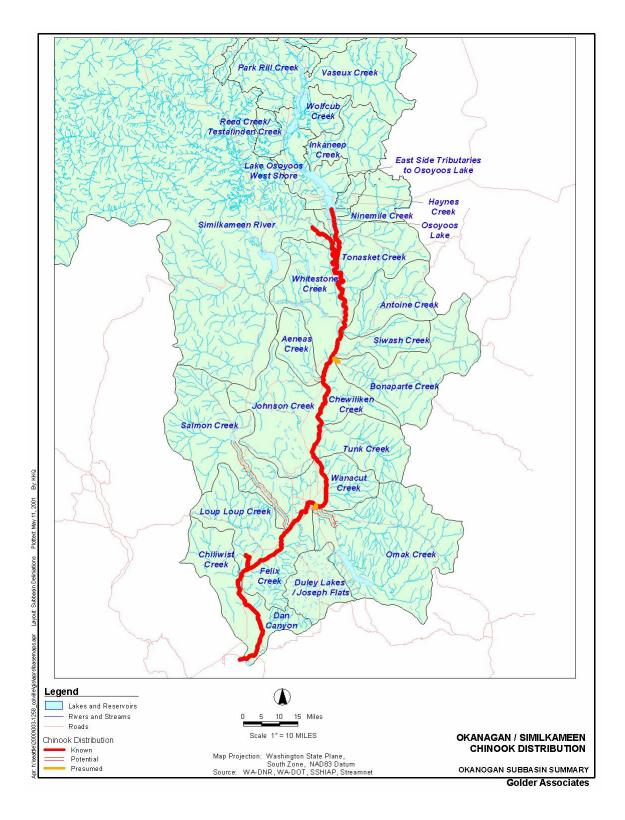


Figure 2: Chinook Distribution.

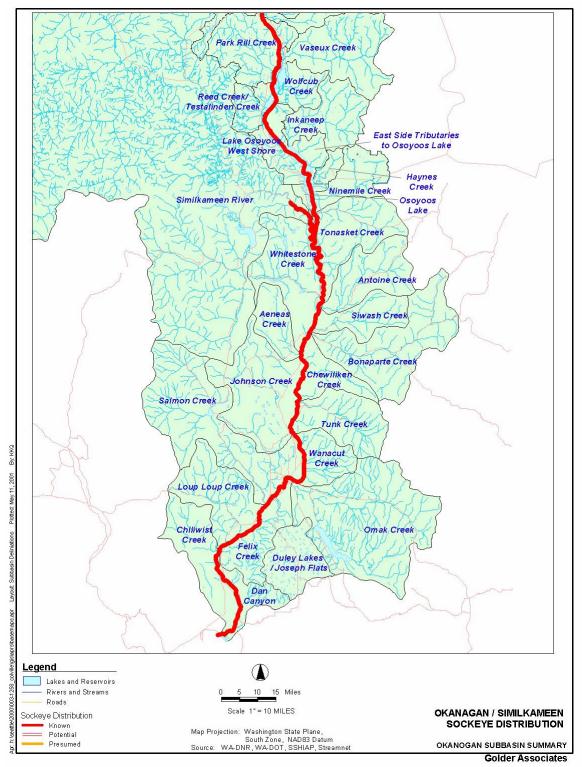


Figure 3: Sockeye Distribution

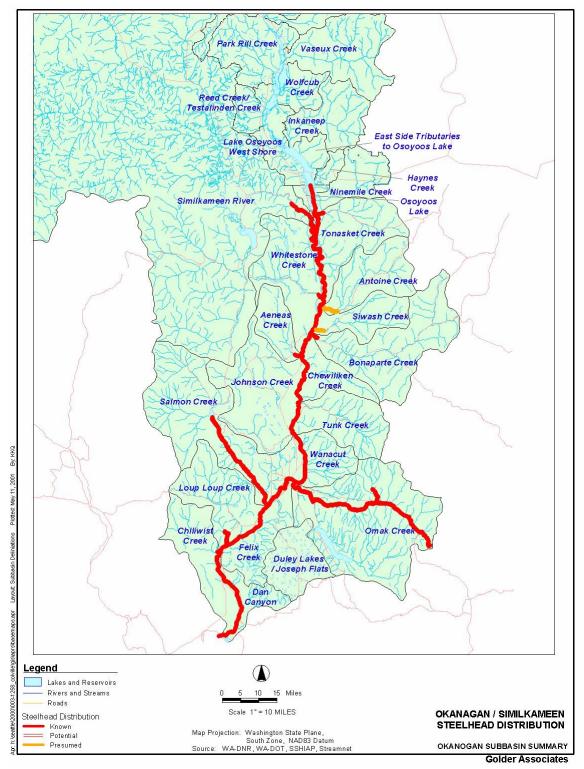


Figure 4: Steelhead Trout Distribution.

U.S. Subbasins	U.S. Subbasins (cont'd.)
Aeneas Creek	Omak Creek
Antoine Creek	Osoyoos Lake
Bonaparte Creek	Salmon Creek
Chewiliken Creek	Silmilkameen River
Chiliwist Creek	Siwash Creek
Dudley Lakes/Joseph Flats	Tonasket Creek
Felix Creek	Tunk Creek
Johnson Creek	Wanacut Creek
Loup Loup Creek	Whitestone Creek
Nine Mile Creek	
Canadian Subbasins	Canadian Subbasins (cont'd.)
Bellevue Creek	Ninemile Creek (U.S./Canada)
Deep Creek	Osoyoos Lake (U.S./Canada)
Ellis Creek	Park Riff Creek
Enear Creek	Peachland Creek
Equesis Creek	Penticton Creek
Haynes Creek	Powers Creek
Irish Creek	Okanogan Lake East Shore
Irrigation Creek/Vastux Lake	Skaha Creek
Keefe Creek	Shingle Creek
Kelowna Creek (Mill)	Shuttleworth Creek
Lake Osoyoos/West Shore	Shorts Creek
Lamby Creek	Similkameen River (US/Canada)
MacDonald Creek	Trepainer Creek
Madeline Lake	Trout Creek
Maron River	Unnamed #1 (north)
Matheson Creek	Unnamed #2 (south)
McLean Creek	Vaseux Creek
Mission Creek	Vernon Creek/Kalamalka Lake
Naramata Creek/Lake	Whiteman Creek
Nashwito Creek	Wolfcub Creek
Newport Creek	

Table 1: Selected Subbasins of the Okanogan/Similkameen Watersheds.

The Okanogan valley is narrow and steep-walled and many of the soils are loose. This condition contributes to streambank instability and sediment delivery. The most erosive soils along the Okanogan River are the Colville silt loams and Bosel fine sandy loams.

The soils of the watershed have been placed into three major groups:

• Soils of steep and very steep mountainous lands. Soils are slightly acid to extremely acid, sandy loam to silt loam soils formed in volcanic ash, glacial materials, and

weathered granite, schist, limestone, shale, and gneiss. These soils are predominantly forested.

- Soils of the nearly level to strongly sloping valleys, terraces, plateaus, and till plains. These soils are moderately deep and deep loam, silt loam, and sandy loam formed in glacial outwash, alluvium, ash, and pumice. Some bottomland soils are sandy loam formed in glacial outwash, alluvium and lake sediments. Also included in this group are moderately deep and deep loam soils formed in glacial till with some wind-laid silts, ash, and pumice overlay. These soils are mainly used for forage and crop production; some areas also have shrub and forest cover.
- Soils of gently sloping to steep uplands. These are deep silt loam and loam soils formed in volcanic ash and glacial till and underlain by granite, basalt, andesite, and limestone. They are primarily in grassland cover (Pacific Northwest River Basins Commission, 1977).

For a map of soil types, Figure 5.

Vegetation

There are 71 species of state and federally listed plants in Okanogan County. (this list is available at http://www.wa.gov/dnr/htdocs/fr/nhp/refdesk/lists/plantsxco/okanogan.html). These plants are vitally important to the quality of the fish and wildlife habitat of the region. Virtually every plant in the region is important to the CTCR and tribal membership for their cultural, historic, and subsistence value. The CTCR do plant inventories of the region. Many species are declining due to land use practices.

Forest

Forestland comprises approximately 47 percent of the Okanogan River Basin. Dominant forest species include ponderosa pine, Douglas-fir, lodgepole pine, Englemann spruce, western larch, subalpine fir, and aspen. Whitebark pine and subalpine larch occupy alpine settings. Dominant riparian species include black cottonwood, water birch, and white and thinleaf alder (Arno, 1977), but riparian forests and shrub steppe have been virtually eliminated in the basin. Table 2 summarizes the forest types in the Okanogan Basin that would be present under natural conditions.

Prior to European settlement, frequent fires in the mid elevations, (2000 to 4500 ft) created open stands of predominantly mature, fire-resistant Ponderosa pine, with a smaller larch component above 3,000 feet. Unpublished preliminary data of forest reconstruction plots in North Central Washington indicate 12 to 20 percent canopy closure at these elevations. In the 1900s, fire suppression led to a dramatic increase in seedling survival, creating stands with 100 percent canopy closure. Shade tolerant, fire sensitive Douglas-fir is now favored over fire-tolerant, but shade-intolerant pine and larch.

Harvest of large trees has also contributed to the current condition of dense stands dominated by small, suppressed Douglas-fir that is prone to insect infestation, disease, and catastrophic fire. An extensive road system in the forest has increased the sediment delivery to the stream channels. Sediment-laden runoff is exacerbated by the predominance of loose soil types that have high erosion potential. The road system is also a major source of weed transport, and weed infestations are present throughout the basin.

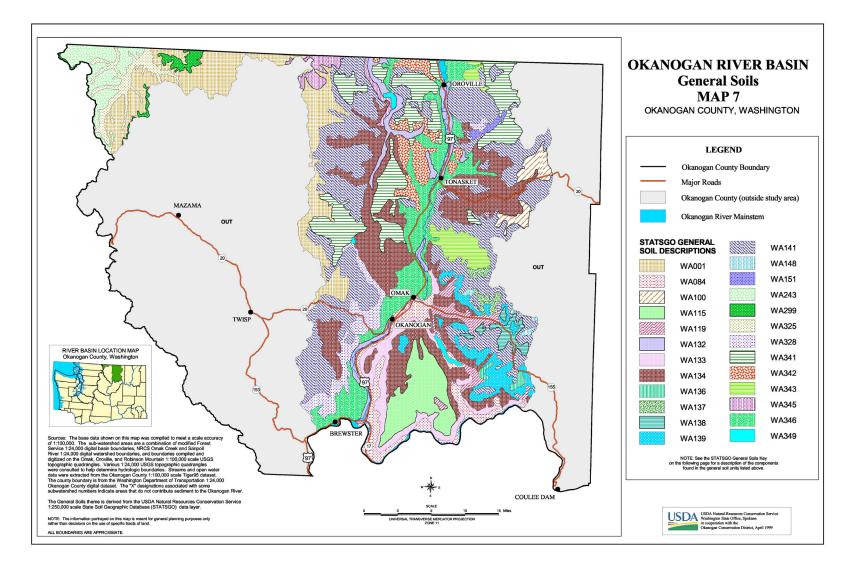


Figure 5: Soils Map for the Okanogan Basin.

Shrub Steppe

Shrub-steppe habitat was originally a major component of the landscape in the Okanogan Basin, extending from the outer edge of the floodplain to the beginning of the lower elevation forest, at roughly 2500-foot elevation. Native shrub-steppe habitat is dominated by shrubs and perennial bunch grasses, with a microbiotic crust of lichens and mosses on the soil surface. Sagebrush was the dominant shrub; bitterbrush was also an important component (Oregon-Washington Partners in Flight, 2000).

Native shrub-steppe communities have been diminished in both extent and condition as a result of overgrazing by livestock, invasion of non-native plants, agricultural conversion, and wildfire suppression. Most extant shrub-steppe may appear to be in a natural condition, but it is actually a considerably altered ecosystem, compositionally and functionally different than pre-European settlement conditions (Partners in Flight, 2000).

Riparian/Floodplain

The Okanogan River valley is broad and flat. Given the topography and geology, the river probably once meandered across the valley, and riparian habitat formed an extensive mosaic of diverse species. It was dominated by some combination of grass-forbs, shrub thickets, and mature forests with tall, deciduous trees. Common shrubs included willows, red-osier dogwood, hackberry, mountain alder, Wood's rose, snowberry, and currant. Trees included cottonwood, aspen, and water birch (Oregon-Washington Partners in Flight, 2000).

Since European settlement, the river has been channelized from the mouth to beyond the U.S. border. State and county highways parallel the river at close proximity for its entire length in the U.S., except for a reach from Riverside to Janis, Washington. This is the only largely undeveloped reach in the U.S. along the Okanogan River floodplain. Agriculture, primarily orchards, livestock feed, and wheat, dominates the valley bottom. There are also several population centers and municipalities along the river and the lower reaches of the tributaries. Riparian vegetation such as cottonwood, spruce, alder and a dense shrub layer are virtually nonexistent. Agriculture, residences, and associated roads contribute chemical contaminants and sediments to the streams and rivers.

Hydrology

The hydrology of the Okanogan River Watershed is characterized by high spring run-off and low flows occurring from late summer through winter. Peak flows coincide with spring rains and melting snowpack. Low flows coincide with minimal summer precipitation, compounded by the reduction of mountain snowpack. Irrigation diversions in the lower valley also contribute to summer low flows.

Forest Type (i) = shade intolerant * = dominant species	Dominant Disturbances	Location and Habitat Type	Characteristic Plant Species	Characteristic Wildlife Species
Low-elevation, dry Ponderosa pine zone * ponderosa pine (i) Douglas-fir	Frequent, low-intensity ground fires are typical but not universal (mixed- and high-intensity fires uncommonly occur). Localized outbreaks of western pine beetle in stressed ponderosa pine. Other pathogens of ponderosa pine include <i>Armillaria</i> root disease and western dwarf mistletoe.	Located between 1,500' and ~3,000' elevation, higher on s-facing slopes and ridgetops. These forests are generally open and park-like due to frequent ground fires, dominated by large/old pines. Tree regeneration is in small, scattered pockets, including both ponderosa pine and Douglas-fir.	Shrubs: antelope bitter- brush, big sagebrush, snowbrush ceanothus, kinnikinnick, wax currant, serviceberry Forbs: bluebunch wheatgrass, Idaho fescue, arrowleaf balsamroot, Lyall's mariposa lily	Birds: white-headed woodpecker, pygmy nuthatch, gray flycatcher, flammulated owl Mammals: yellow pine chipmunk, silver- haired bat, sagebrush vole, mule deer (winter range)
 Mid-elevation, moist mixed conifer zone * Douglas-fir ponderosa pine (i) lodgepole pine (i) western larch (i) west/white pine (i) grand fir 	Mixed severity fires are typical, w/fire intensity and size determined by complex interaction of weather, fuels, and terrain. Species-specific pathogens (e.g., root diseases, bark beetles, dwarf mistletoe) can be important in localized areas.	Located between 2,000' and 5,500' elevation, usually mid-slope locations on all aspects and topographic positions. Variable stand structure, ranging from relatively open and park-like to dense, multi-storied. Trees in understory are shade- tolerant species.	Shrubs: boxwood, Oregon grape, wood rose, shinyleaf spiraea, common snowberry Forbs: heartleaf arnica, coltsfoot, broadleaf lupine, western sweetroot, showy aster, little sunflower	Birds: northern goshawk, pileated woodpecker, Townsend's warbler, western tanager Mammals: Pacific fisher, porcupine, red squirrel, pygmy shrew

 Table 2: Forests of the Okanogan Basin

Forest Type (i) = shade intolerant * = dominant species	Dominant Disturbances	Location and Habitat Type	Characteristic Plant Species	Characteristic Wildlife Species
High-elevation, wetSubalpine fir zone* subalpine fir* Engelmann spruce* lodgepole pine (i)subalpine larch (i)Pacific silver firmtn. hemlockwhitebark pine (i)Rocky Mtn. juniperSitka alder (i)	Infrequent, high-intensity fires are typical in dense, continuous forests; intensity is reduced on open, rocky sites. Snow avalanches occur in steep terrain, widespread outbreaks of mountain pine beetle occur in older, stressed stands of lodgepole pine.	Between 5,000' and 8,500' elevation, on upper slope positions and in cold air drainages. Growth is slow in these forests and nutrients may be limiting. Standing dead and downed trees may persist for a long time because cool temperatures slow decomposition rates.	Shrubs: mountain huckleberry, Cascade azalea, rusty menziesia, mountain ash Forbs: Sitka valerian, mountain heather, partridgefoot, pasqueflower, one-sided wintergreen	Birds: Clark's nutcracker, gray jay, hermit thrush, spruce grouse Mammals: lynx, pine marten, wolverine, snowshoe hare (in winter), moose
Riparian * black cottonwood * quaking aspen * willow spp. mountain alder Douglas maple western red cedar Pacific yew water birch black hawthorne	Riparian areas most often burn at low intensity, due to their valley bottom position and abundant moisture. Occasional moderate to high intensity fires do occur, with the risk increasing with decreasing area of riparian forest and increasing elevation. Floods are also important disturbance events, rearranging the stream channel and setting back forest development. All of these disturbances generate large woody debris, which plays a critical role in the aquatic ecosystem.	Stream-side locations in valley bottoms at all elevations. Low-elevation, bottomland locations have the most extensive, well- developed forests. Species composition of deciduous broadleaf trees and shrubs changes gradually with elevation, stream gradient, and moisture availability. Species diversity of both plants and animals is extremely high in these forests. Structural complexity generally increases with increasing time following a major disturbance event.	Shrubs: redosier dogwood, prickly currant, twinberry honeysuckle, thimbleberry Herbs: horsetail, bog orchid, tiger lily, false hellebore, baneberry, monkshood, starry Solomon's seal, fairy bells	Birds: American dipper, belted kingfisher, yellow warbler, willow flycatcher, red-eyed vireo, veery Mammals: mink, Pacific water shrew, beaver, numerous bat spp. Amphibians: tailed frog, Columbian spotted frog

Source: Forests of the Methow Valley, Evan Frost, 1999.

The hydrologic function of the watershed has changed over the last century in response to human activity. The Okanogan River has been channelized for its entire length in the U.S., and is no longer connected to its floodplain. Forest and range management practices have altered forest species composition, age class mix, and soil conditions.

Formerly, Douglas-fir was confined to wet areas or areas where topography limited fire intensity. Frequent low-intensity fires favored survival of mature pine and larch while increasing mortality rates for seedlings, younger trees, and Douglas-fir. This condition maximizes interception loss, and minimizes the snowpack on the ground (OWSAC, 2000).

Streamflow

The average annual flow for the Okanogan River, measured at Ellisforde, is 3200 cubic feet per second (cfs). About 75 percent of the flow comes from the Similkameen River, located primarily in Canada. The gradient on the U.S. portion of the mainstem Okanogan averages about 0.04 percent. The first 17 miles of the river are within the backwater of Wells Dam (NMFS, 2000).

Stream flow in the U.S. portion of the Okanogan River is controlled by a series of 13 dams in British Columbia, and the Zosel Dam on Osoyoos Lake in Washington. Water releases to meet fishery needs are negotiated yearly by a consortium of fisheries and irrigation managers from both Canada and the U.S.

The USGS has been recording flows in the Okanogan Basin continuously since 1911. Table 3 summarizes USGS flow data for the basin.

Station #	Location	Year	Average	High	Low
		Started	Flow (cfs)	Flow (cfs)	Flow (cfs)
12438700	Oliver, B.C.	1944	639	3,740	55.9
12439500	Oroville, WA	1942	676	3,730	-2,270*
12445000	Tonasket, WA	1929	2,940	44,700	126
12447200	Malott, WA	1958	3,063	45,600	288 **
12442500	Nighthawk (Similk. R.), WA	1911	2,289	45,800	65

Table 3: USGS Flow Records for Okanogan and Similkameen Rivers, 1911 – 1996 (USGS, 1995).

*During high flows, backflow from the Similkameen River results in negative flow values on the Okanogan at this station.

**This record was observed.

The WSDOE established base flows for the Okanogan and Similkameen rivers in 1976 (Table 4). Data are based on measurements made at the USGS Tonasket gaging station and snow survey data collected by NRCS. This table is a simplified version of the flow standards set in the Washington Administrative Code. At the time these base flows were established, WSDOE ruled that no further appropriations of surface water shall be made from the Okanogan River and its tributaries if they would conflict with these base flows (NOAA, 2000).

Reach	April*	May*	June*	July*	August*	September*	October*
Lower Okanogan RM 17.4 - 51	1120 1,250	1,400 4,000	,		1,050 800	800 800	940 1,100
Middle Okanogan RM 51 - 70	910 1,070	1,200 3,800		,	840 600	600 600	730 900
Upper Okanogan RM 70 - 77.6	330 340	350 500		420 350	320 300	300 300	330 370
Similkameen RM 0 - 27.3 (Canadian border)	510 640	800 3,000	,	,	590 400	400 400	450 500

Table 4: Base Flows (cfs) for the Okanogan River, as Set by WSDOE in 1976 (NMFS, 1998).

*The top value is for the first half of the month, the bottom value for the latter half of the month.

Groundwater

There have been several groundwater studies conducted in the watershed, but little is known about the deep, hard-rock aquifers. The shallow aquifers are characterized in the following quotation from a WSDOE report:

Alluvial and glacial sedimentary deposits, ranging from a few feet to several hundred feet thick, contain the main volume of groundwater in the basin, with sand and gravel layers constituting the principal water-bearing zones. Most of the sedimentary deposits occur in or adjacent to major valleys and are underlain by rather impermeable bedrock which consists principally of granitic and various metamorphic rocks; limestone, dolomite, and basalt form the bedrock in small areas. Generally, the bedrock establishes the floor of the groundwater reservoir, although cracks in the bedrock below the water table become filled with water, and limestone, dolomite, and basalt formations yield small quantities of water to springs and wells.

In some places, the sedimentary deposits are thick and consist almost entirely of sand and gravel containing large quantities of groundwater. In other cases, the deposits hold little water, being thin or consisting mostly of clay or poorly permeable glacial till. (WSDOE, 1974)

Groundwater in the Okanogan tends to be more mineralized than surface water, and the chemical composition varies more. There have been occurrences of excessive iron and sulfates, but generally the water is usable for most purposes. Groundwater in the basin is typically hard to very hard. Ground water temperature ranges from 11^{0} C to 16^{0} C; the shallower zones tend to produce cooler water. Nitrate levels in tested wells ranged from 0.3 to 4.9 parts per million (Walters, 1974).

The shallow aquifers tend to be high in sediments, indicating that it is fairly susceptible to pollution during ground-disturbing activities.

The coarse soils in the basin create hydraulic continuity between the ground and surface waters. Most municipal water is supplied from wells that penetrate the groundwater aquifers. Supplies are probably adequate, given the current demand, but groundwater tables are dropping in some areas.

Population

The population of Okanogan County in 1998 was approximately 38,400, according to the Washington State Office of Financial Management (WOFM, 1999). Population figures have never been collected specifically for the Okanogan River Watershed. Table 5 displays recent changes in population in cities in the basin.

Table 5:	Okanogan Subbasin City Populations and Growth Rates 1990-1998.	(OFM,
1998)		

City	1990	1998	% Increase
Brewster	1,633	2,050	25.5%
Conconully	174	205	17.8%
Okanogan	2,370	2,415	1.9%
Omak	4,117	4,435	7.7%
Oroville	1,505	1,595	5.9%
Pateros	570	595	4.3%
Riverside	223	365	63.7%
Tonasket	900	995	10.6%

Land Ownership

Land within the Okanogan River Basin is split almost evenly among public, private, and Tribal ownership (Figure 6 and Table 6). Colville tribal lands include both private and Tribal ownership. The diverse ownership complicates resource management in the basin.

The USFS manages 58 percent of commercial forests on public lands, the Bureau of Indian Affairs manages 24 percent, and the WDNR manages 16 percent. Most privately owned commercial forests are small blocks. Conversion of privately owned timber areas into other uses, such as residential subdivisions, is a trend, but not on the large scale that it is further south, in Wenatchee and Entiat (NMFS, 1998). During a recent four-year period (1994-1997), approximately 11,000 acres of forestland were subdivided (OWSAC, 2000).

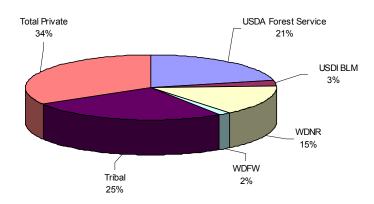


Figure 6: Major Landowners in the Okanogan Basin.

Land Use

History

Humans have been living in the Okanogan Basin for at least 7,000 years (Wilson, 1990). Before European settlement, native tribes lived in small, autonomous bands or villages (Honey, 1979). Most of the natives of the region spoke Salish, but there were seven languages in the Okanogan area alone (Wilson, 1990).

The Okanagan Tribe

The word "Okanogan" is derived from a Salish word which refers to the place on the Okanogan River which marks the furthest ascent of salmon up the river. Okanogan territory stretched from where the Okanogan River flows into the Columbia in the south, to beyond Lake Okanogan in the north. The tribe's territory stretched east from the crest of the Cascades for one hundred miles. Okanogans did not recognize the United States/Canadian border as a demarcation dividing the tribe, but the boundary has created somewhat different lifestyles for those north and south of the border.

At least five bands of Okanogans lived south of the United States/Canadian border in at least twelve villages. Okanogans hunted, fished and gathered throughout that territory. There were salmon traps at locations near Oroville, Monse, Malott, and Omak. Other fish were caught in various locations inland from the Okanogan River. Bear, deer, mountain goats, rabbits and other small game, ducks, geese and grouse were hunted throughout Okanogan territory. Foods gathered included service berries, thorn berries, huckleberries, blueberries, raspberries, strawberries, Oregon Grape. Bitterroot was also dug as was some Camas. Various native medicines were also gathered. Soapstone, dyes and paints were also collected at locations west of the Okanogan River. The stretch of Okanogan River controlled by the Okanogan also constituted a portion of an important trade route, with the mouth of the Okanogan being an especially important trading location.

The Okanogan bands were not parties to any treaty with the United States, and remained relatively isolated from Whites until the Moses Columbia Reservation was established in 1879-80. In 1886 the reservation was opened to non-Indian settlement, but a few Okanogans received allotments west of the Okanogan River and continued to live there. Most Okanogans moved onto the Colville Reservation and became one of the Confederated Colville Tribes. Today there are still a few allotments west of the Columbia River, but most people continue to live on the Colville Reservation. Tribal members continue to utilize their traditional food resources throughout their territory, fishing for salmon, digging camas, and gathering berries within their ancient territory (Hart, 2001).

Winter housing sites, located on southern aspects close to water, likely received heavy use, as did the summer housing sites at the fishing grounds. However, these areas were not occupied year around and were likely quite small. In the spring, small family groups dispersed to gather roots (Ray, 1933). Due to the dispersed activity and the small group size, root gathering had little to no effect on water quality in the watershed.

Ownership	Agency	Acreage
	USDA Forest Service	357,000
Federal	USDI BLM	48,000
	USDI FWS	2,750
	USDI Dept of Defense	375
	Total Federal Lands	408,125
	WDNR	245,000
Washington State	WDFW	29,873
	Department of Parks & Recreation	600
	Total State Lands	275,473
Other Public Lands	Okanogan County	300
	Municipal	2,900
Total Public Lands		686,798
	Tribal	422,000
	Private	559,000
Total Land Area		1,667,798

Table 6: Okanogan Subbasin Land Ownership (U.S. Only) (NRCS, 2000).

Trappers and traders moved to the area in the early to mid 1800s. Orcharding gradually became the mainstay of the local economy; growth was slow due to limited transportation and the lack of irrigation (Wilson, 1990).

Gold mining brought a major influx of people to the valley in the late 1800s. Many boom towns sprang up. The most famous town was Ruby, which became the first county seat of Okanogan County in 1888. The county seat was moved eleven months later to Salmon City (now named Conconully). Soon afterwards the gold diminished, the miners moved away, and the boom towns declined in size and distinction. Mining in the Fraser River basin in British Columbia spurred large cattle drives up the Okanogan River Valley. The British customs station at Osoyoos collected duty on 22,256 head of beef cattle between 1859 and 1870. It is likely that as many cattle or more escaped the collector's attention (Wilson, 1990). This activity suggests over-grazing occurred along the river's floodplains (Wissmar et al., 1994).

The mining economy was replaced by dry land farming and ranching. During high spring flows, paddle-wheel riverboats traveled up the Okanogan River to the town of Riverside to offload goods and new settlers. In 1914, the Great Northern Railroad came to the basin, virtually replacing the paddle-wheelers. Following in the footsteps of the railroad was the extensive expansion of irrigation systems throughout the valley. With the relatively fast and reliable railroad service to the area, farmers were able to convert more and more land into agricultural production, most notably orchards. Better transportation and a solid economic base allowed the communities to become more settled and permanent.

Current Conditions

Land use in the Okanogan Basin includes timber, rangeland, agriculture, and residential.

Forestry and range are by the far the major uses of land in the Okanogan Basin, followed by croplands (Table 7 and Figure 7). Most of the landscape, from the riparian areas to the upper elevation forests, have been used extensively for agriculture and resource extraction. The valley bottom is dominated by agriculture, primarily orchards and livestock feed. The benches are dominated by livestock grazing, and the lower to mid-upper elevation forests have been harvested for timber and used for livestock grazing. The Okanogan Basin contains six state wildlife areas, a natural preserve in the DNR's Loomis Forest, and a portion of the USFS's Pasayten Wilderness.

Table 7: Approximate Total Acreage of Land Use Types in the Okanogan Basin (U.S. Only)

Land Use	Acreage (approx.)
Forest	787,070
Range	754,996
Cropland	101,930
Urban	5,737
Other	18,065
Total Land Area	1,667,798

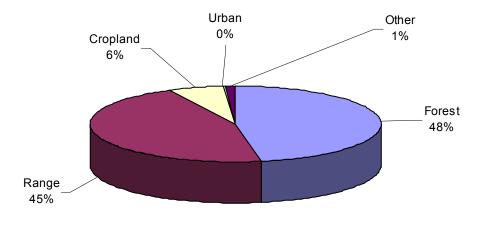


Figure 7: Land Use Types in the Okanogan Basin (U.S. Only) (NRCS, 2000)

Timber

Most of the forested land is publicly owned, and most of it is managed for timber. The major timber-producing areas in the basin are Toats Coulee, managed by the USFS, and the Loomis Forest, managed by WDNR. Forest productivity in the basin is relatively low due to the arid climate, the short growing season at high elevations, and steep, rocky terrain (NMFS, 1998).

Range

Livestock production is a major part of the economic base in the county. There are 754,996 acres of rangeland in the Okanogan Subbasin, owned and managed by USFS, BLM, DNR, CTCR, and private owners. Cattle are grazed on forested lands as well as grass lands. Much of the Okanogan floodplain is used for forage crops and livestock wintering grounds (PNRBC, 1977). The Okanogan River corridor has limited grazing in the Ellisforde area (less than 2,000 acres). During the summer, cattle graze at high elevations, on state, federal, and private lands. Historically, sheep were grazed on public lands, but in 1998 the last band of sheep grazed on public lands was sold off. Currently small flocks of sheep and goats, and some horses, are grazed on private parcels in the lower basin (Keller, 2001).

A federal grazing allotment system began in the early 1900s in response to complaints about the grazing and burning of the forests. Eligible ranchers were granted permits to graze on federal lands at specific times of the year at a fee for each animal per month. In the Toats Coulee area, now DNR and USFS lands, between 1906 and 1925 1,096 cattle grazed the area from June 1 to November 15 each year.

Table 8 lists nine grazing areas in the Okanogan Watershed. Forage quantity is summarized by Animal Units Months (AUM). DNR lands are divided into two categories, permitted land and leased land. All of the DNR permit land was inventoried between 1989 and 1996. Few of the DNR lease parcels have had recent range inventories. Private lands that have not been inventoried in the past ten years are given an AUM of *Unknown*.

Subbasins	Ownership	AUM	Acres
Similkameen & Sinlahekin	USFS permit	1,577	1,577
	BLM	4,178	4,178
	DNR lease	Unknown	Unknown
	DNR permit	13,640	13,640
	WDF&W	60	60
	Private not	Unknown	Unknown
	Inventoried		
Spectacle Lake, Wannacut Lake, Aeneas Lake, Aeneas Creek	BLM	Unknown	Unknown
	DNR lease	Unknown	10,520
	DNR permit	300	1,497
	Private inventoried	2,778	19,068
	Private not Inventoried	Unknown	Unknown
Bonaparte, Siwash, Antoine, Mosquito, Tonasket, Nine Mile creeks	USFS permit	7,234	74,842
	BLM	Unknown	Unknown
	DNR lease	Unknown	10,500

Table 8: Grazing Use in the U.S. Okanogan Subbasin.

Subbasins	Ownership	AUM	Acres	
	Private inventoried	4,423	10,689	
	Private not Inventoried	Unknown	Unknown	
Omak, Wannacut, Tunk, Chewiliken Creeks	BLM	Unknown	600	
	CTCR	5,100	86,766	
	DNR lease	Unknown	4,160	
	DNR permit	900	7,860	
Joseph Flats, Omak Lake, East WRIA	CTCR	Unknown	Unknown	
	WA State Parks	Not grazed	600	
	Private	Unknown	Unknown	
West WRIA	USFS permit	Unknown	5,100	
	BLM	Unknown	2,084	
	DNR lease	304	1,329	
	Inventoried			
	DNR lease not	Unknown	Unknown	
	Inventoried			
	WDF& W	N/A	2,660	
	Private inventoried	2,127	12,676	
	Private not Inventoried	Unknown	Unknown	
Loup Loup, Tallant, Chiliwist Creeks	USFS	Unknown	920	
	BLM	Unknown	Unknown	
	DNR permit	6,017	38,520	
	WDF&W	400	5,040	
	Private not inventoried	Unknown	Unknown	
Salmon Creek, North Fork Pine Creek, Brown Lake, Fish Lake	USFS permit	4,566	59,500	
	BLM	1,651	9,463	
	DNR lease	Unknown	Unknown	
	DNR permit	650	7,004	
	WDF&W	210	14,464	
	WA State Park	N/A	120	
	Private inventoried	2,858	14,205	
	Private not inventoried	Unknown	Unknown	
Okanogan River mainstem	BLM	Unknown	Unknown	
	CTCR	Unknown	Unknown	
	DNR	Unknown	Unknown	
	Private not Inventoried	Unknown	Unknown	
Pasayten Wilderness	USFS	Permit waived i	n 1999	

Livestock grazing practices have led to trampled streambanks, increased bank erosion and sedimentation, and changes in vegetation, including loss of native grasses, impacts to woody vegetation, and establishment of noxious weeds. A 1970s rangeland evaluation indicated that 25 percent of rangeland in the basin was in good condition, 34 percent in fair condition, and 41 percent was in poor condition (PNRBC, 1977).

According to NRCS definitions, rangelands in fair to excellent condition provide adequate ground cover to protect the soil resource. Rangeland in poor to fair condition may not protect the soil, depending on the species composition and density. Areas in poor to fair condition may be prone to accelerated erosion. Accelerated erosion will likely degrade water quality.

Tonasket Ranger District Range Conditions

Tonasket Ranger District Range Conditions Habitat conditions in range allotments on National Forest lands are in an upward trend. Most allotments have at least one localized area of overgrazing and trampling, and the Tonasket Ranger District focuses monitoring and restoration efforts on these areas. The District monitors range allotment conditions using a 1960s inventory as a baseline. In 1999 the District began conducting environmental analyses on all allotments. The allotments are assessed in clusters based on geologic features, and are being completed at a rate of one per year (Messerlie, 2001).

The USFS standards used to assess the condition of the riparian zones are contained in the Okanogan Forest Plan (USDA, 1989). On a forest wide basis, 24 percent of the all riparian acreage was monitored in 1997, a total of 268 acres (Table 9).

Table 9: Summary of USFS Riparian Area Acreage Monitored in 1997. (Percent of total acreage that meets or is moving towards forest plan objectives.)

	Currently Meets FPO		-		Undetermined status
	Verified	Estimated	Verified	Estimated	
% of Total Acreage	9	49	4	36	2

Livestock grazing no longer occurs in the Pasayten Wilderness. The existing allotment was created in 2000. The allotment still exists, but it would require an environmental analysis to reestablish grazing, and it is considered extremely unlikely to occur (Messerlie, personal communication, 2001).

Data gaps on range conditions on The Okanogan National Forest are centered around the lack of baseline monitoring data on water quality for riparian and stream systems. This type of information would include but is not limited to stream temperature, turbidity, and photo plots (OWSAC, 2000).

Cropland

Most of the Okanogan River valley bottom has been converted to agricultural uses, including cropland and orchards. Cropland in the Okanogan Basin is devoted to row crops, close-grown field crops, orchards, rotation hay and pasture, improved hayland, and summer

fallow (Figure 8). Vegetables, berries, and nuts are also grown, but acreage figures were not available.

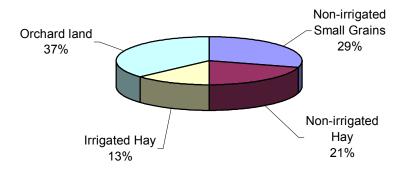


Figure 8: Major Crops of the Okanogan Basin (NCRS, 1998).

Mining

The only major placer mine in the Okanogan Basin is located on the Similkameen River, between Oroville and Nighthawk. That mine was active until recently.

The extraction of non-metallic minerals, including sand, gravel, gypsum, and limestone, is more extensive in the basin than hard rock mining, and has played a larger role in the economy of the region. There are a few gravel mine sites on the National Forest. The County maintains numerous gravel mines. The WDNR also maintains a few, and there are several on private property. Existing gravel mines are located well away from stream channels, and are probably not a major contributor of sediments to the streams.

Hard rock mines also have minimal impact on water quality and channel conditions. Most are small in size and are located away from stream channels. Some leaching may occur; it is not known if substances reach ground or surface water.

The Jessie Moore mine, in the North Fork Salmon Creek drainage, is the only patented claim within the National Forest boundary. Several claims have had plans for ground-disturbing activities in the last quarter-century, including the Silversmith Group in 1981, Quimine in 1981, and the Day Star Group in 1981. The Mar-Mac received got approval on its plans for road construction in 1983. That mine was restaked in 1993, and renamed Plata #1 (USDA, 1997).

In 1995, Okanogan County Health District conducted site hazard assessments on 25 mine sites in the Okanogan Basin:

- 6 sites were dropped because they were either active, or judged too insignificant to warrant full investigation.
- 3 sites were determined to be clean, and no further action was taken

- 16 sites were tested, and some elements were found at levels recommended for cleanup under the Model Toxics Control Act (MTCA). These elements included lead, arsenic, zinc, cadmium, copper, and antimony.
- A number of sites were identified as presenting physical danger to the public due to a variety of causes including rotten or inadequate shoring, or unstable rock masses.

Lead and arsenic in both soil and water were the metals more frequently found above the MTCA's recommended cleanup levels. Lead binds to soil particles and tends to not move significantly in the soil column. Arsenic is more prone to a slow migration through the soil column and into the groundwater.

The WSDOE will conduct site hazard assessments at each of the identified sites, as time and staffing allow, to determine the severity of the problem, rank the sites, and initiate remediation, if required (OWSAC, 2000).

The USEPA recently closed the Texas Kaaba mine, upstream of the Enloe Dam.

Transportation System

History

The road and rail systems in the Okanogan Basin were established around the turn of the century. A web of routes was developed along traditional travel corridors, typically along rivers and streams. Many of the current road locations were established at that time (Okanogan Conservation District).

During the 1920s and 1930s a number of railroad lines were built in the forested drainages of the basin. The most notable and by far the longest lasting of these was the narrow-gauge rail line into the Omak Creek watershed (Lewis, 1980). The construction of this line included a railroad grade through Omak Creek Canyon near St. Mary's Mission, and hard rock excavation was required. The crew removed 10,000 cubic yards of rock from the canyon (Lewis, 1980). Much of this was blasted or dropped into Mission Falls directly below. The extra material blocked anadromous fish passage to the waters above the falls until 1999, when the Colville Tribe and NRCS finished removing the material from the channel.

The Biles-Colman narrow-gauge railroad was unusual in that it was well maintained throughout its history. The railroad ties were not treated with creosote, as is common still, because of the ready access to timber at the mill (Lewis, 1980).

Current Condition

There are approximately 85.5 miles of railroad in the Okanogan River Watershed (OWSAC, 2000). Almost all of the lines are located in the Okanogan River corridor. The main line is located within one half mile of the Okanogan River, from its confluence with the Columbia River to Oroville. There is no new construction of railroad lines planned in the Okanogan River Watershed.

There are 4,357 miles of road in the Okanogan Watershed (WDNR, 1996). The Okanogan County road system includes less than 900 miles, with about 33 miles of county road within 200 feet of a stream or river. There is no comprehensive database quantifying

the unimproved roads currently within the watershed. Unimproved roads are unpaved, and may or may not be graveled.

Roads are considered to be the greatest contributing source of sediment to streams in the basin. Sedimentation is highest at road crossings over stream channels, along roads in close proximity to streams, along cut and fill slopes, and at roads and ditches that drain to stream channels. Private roads that access multiple parcels often do not have a coordinated maintenance program, leading to increased erosion and sedimentation.

Roads affect streams by accelerating erosion and sediment delivery, altering channel morphology, and changing the runoff characteristics of watersheds (Furniss et al., 1991). In addition, noxious weeds tend to spread along roads, increasing erosion potential. Herbicide treatment of noxious weeds along roadsides can lead to contamination of nearby streams through accidental spills, direct runoff, or infiltration (USDA, 2000).

Road construction is one of the largest impacts in terms of water pollution in the basin. Several thousand acres of land have been stripped of vegetation during the initial construction phases and subsequent maintenance operations, leaving the underlying soil exposed to the forces of wind and water.

Roads composed of native material with little rock also do not hold their shape well when soft and wet, as they often are during the autumn, winter breakup, and spring. Road use at these times can cause rutting of the road surface, compromising road drainage and greatly increasing erosion. Follow-up grading of the road surface improves driveability but simply disguises the chronic erosion, which may regularly damage water quality. Grading off soft, wet road surfaces produces sunken roads with few opportunities for drainage.

Water crossing and fill failures have occurred regularly during high water periods, degrading water quality and requiring expensive repairs. In places, erosion of road fills is chronic, due to faulty road drainage or lack of fill protection such as rock armoring or vegetation.

In addition to sediments, runoff from road surfaces carry contaminants such as heavy metals, litter, rubber particles, asphalt materials, herbicides, de-icing compounds, and asphalt sealant.

The Washington State Department of Transportation (WSDOT) maintains almost 175 miles of highway in the watershed and has made significant changes to their maintenance operations in the past several years to provide better protection to the water resource. These measures include:

- Use of vacuum trucks to clean catch basins and bridge drains rather than flushing them out, with the material being recycled or properly disposed of.
- Application of liquid deicers in the fall and spring, in lieu of sanding.
- Modification of sand specifications so a "cleaner" sand is being used.

The Endangered Species Act listing of the steelhead trout influenced WSDOT maintenance operations, including weed control operations, culvert cleaning, sanding and deicing practices (OWSAC, 2000). WSDOT has numerous culverts in need of cleaning.

Appendix A includes a list of all culverts identified by Washington State Department of Fish and Wildlife (WDFW). Many stretches of state highway are in close proximity to streams, and it is difficult for WSDOT to keep the roads safe for travel while protecting the streams from contaminants.

Although Okanogan County Public Works does not have in place written procedures for roadway maintenance practices, the department is in the process of developing guidelines (OWSAC, 2000).

Road density

Information on road density (miles per square mile) is available for two subbasins:

- Salmon Creek 2.2-miles/sq. mile (USDA, unpublished data)
- Omak Creek 6.38 miles/sq. mile (NRCS, 1995)

Road density in most subbasins in the basin is exceeds 4 miles/sq. mile, which is the figure above which sediment delivery is considered to be greater than natural erosion rates (Cederholm, 1981). Sediment delivery from roads also depends on factors such as distance from the stream, slope, vegetative cover, and precipitation.

Roads in Riparian Areas

The USFS determined the miles of road within 200 feet of stream channels for seven sub-watersheds (Table 10). At this proximity, roads are likely to increase sediment delivery to streams considerably. However, site characteristics and maintenance standards play a role in sediment delivery also.

Sub-watershed	Non-USFS	Closed USFS	Open USFS	Total Miles of Road
Bonaparte Creek	41.4	1.7	5.1	48.2
Mainstem Okanogan	56.0	4.7	1.5	62.2
NE Okanogan	52.4	2.4	10.7	65.5
SE Okanogan	25.4	0.9	0.7	27.0
SW Okanogan	31.1	0.1	0.7	31.9
Salmon Creek	19.6	6.6	19.9	46.1
Similkameen River	43.1	0.2	7.2	50.5

Table 10: Road Miles within 200 feet of U.S. Streams in the Okanogan Subbasin.

Source: USFS, 2000

Another Okanogan National Forest (ONF) analysis calculated the USFS road miles within 50 feet of a stream, as well as the total number of road crossings over streams by subbasin (Table 11).

Table 11: Roads within 50 Feet of Streamchannels in the Okanogan Subbasin (USDA, 2000).

Drainage	Miles of road within 50 Feet of Stream	Road Crossings over Streams
Bonaparte	2.9	47
Myers	2.5	41
NE Okanogan River	4.3	46
Okanogan Mainstem	4.5	87
Salmon	6.4	109
Similkameen	0.5	16
Toroda	12.2	85
WF Granite	2	25
WF Sanpoil	9.5	131

Many unimproved roads in the basin are constructed of native material with little ballast or surfacing. Such road surfaces erode readily, creating a need for frequent cross drainage.

Railroads

Railroads in close proximity to streams also increase sediment delivery. Herbicide use along right of ways creates a risk of water contamination. The only active railroad is the Cascade-Columbia River Railroad. This amounts to 0.3 mile of active railroad per square mile in the entire Okanogan River Basin. For this reason, railroads contribute very little to sediment and contaminant delivery to streams.

There is no new railroad construction planned in the Okanogan Basin. The current emphasis is on maintaining the (100-foot average) right-of-ways. Maintenance includes periodic brush cutting, and chemical application of herbicides (Table 12), and occasional track or railroad tie replacement.

Table 12: Chemicals Applied to Railroad Right-of-ways for Maintenance by the Cascade & Columbia River Railroad As Needed

Chemical	Application Rate	Chemical	Application Rate
Diuron	6-8 lbs./acre	2-4-D	1-2 qt/acre
Oust	2-3 oz/acre	Tordon	1-2 qt/acre
Telar	1-3 oz/acre	Banvel	1-2 pt/acre
Krovar	6-8 lbs./acre	Escort	0.5-1.5 oz/acre
Round Up	2 qt/acre		

Noxious Weeds

Current Conditions

Location and extent of noxious weed infestations are currently being mapped by the Okanogan County Noxious Weed Control Office using the Geographic Positioning System (GPS). All Class A and some Class B designates were mapped in 2000. In 2001, they will continue to map Class B weeds (Sheila Kennedy, personal communication, 2001).

The Okanogan National Forest has mapped noxious weed infestations on the GIS system, and continues to add more sites. They currently have 31,000 acres weed infestations across the forest, including 24,000 acres of very dense knapweed.

The ONF completed environmental assessments for their Integrated Weed Management Program in 1996, 1999, and 2001. The 1996 EA covered 34 sites, on a total of 3000 acres. The 1999 EA covered 15-18 sites, a total of 75 acres. The 2001 primarily covers the road system, a total of 1700 miles of road.

Effects on Water Quality and Riparian and Aquatic Habitat

Noxious weeds alter riparian vegetative cover by reducing the complexity of vegetative layering and diversity, on which indigenous aquatic and semi-aquatic species rely (USDA, 2000). Infestations on stream banks may lead to increased sediment delivery when weeds replace native, fibrous-rooted plants with tap-rooted weeds, such as knapweed. The weeds use available water, but do not provide enough ground cover to prevent erosion. (USDA, 2000).

Herbicide treatment of weeds also impacts streams if the herbicide reaches the channel. Herbicides may enter surface or shallow ground water when sprayed directly on running or standing water, or through drift or soil erosion, or in the case of an accidental spill.

Herbicides may indirectly affect surface waters by reducing the riparian zone vegetation, leading to increased water temperatures (USDA, 2000). Herbicides may contaminate water through accidental spills, direct application to water bodies, surface runoff or movement through the soil (USDA, 2000).

Weed treatment under the ONF preferred alternative for the Integrated Weed Management program would use a combination including herbicides and hand pulling, flower head removal, mowing and scraping. In riparian areas, glycophosphate would be sprayed during spring or fall.

Irrigation Districts

There are nine irrigation districts, reclamation districts, and canal companies operating in the Okanogan Watershed (Table 13). These water providers comprise the bulk of irrigation water delivery from surface water sources to approximately 24,710 acres (OCD, 1989). Table 14 displays information about surface and groundwater rights in the basin.

Irrigation District		Irrigated Acres	Length	Flow
Okanogan Irrigation District	Salmon Ck, Okanogan R.		50 mi. piped. 7.6 mi. lined canal	15,000 acre ft/yr.
Oroville Tonasket Irrigation Project	Similkameen R., Lk Osoyoos, Okanogan R.	10,300	110 mi. pipe 10 mi. canal	41,200 ac ft/yr.
Whitestone Irrigation and Power Company	Toats Coulee	3,000	16 mi. pipe 14 mi. lined canal	45 cfs max

Table 13: Irrigation Districts of the Okanogan Basin.

Irrigation District	Source	Irrigated Acres	Length	Flow
Pleasant Valley Irrigation Project	Loup Loup Creek, Okanogan River	2,000	3 mi. pipe 3 mi. canal	17 cfs max
Helensdale Irrigation District	Loup Loup Ck., Okanogan River	225	2 mi. pipe	
Brewster Flat Irrigation Project	Columbia River @ Chief Joseph Dam	2,832	28 mi. pipe	60 cfs max
Aeneas Lk. Irrigation District	Aeneas Lake	1400	4 mi. pipe	12 cfs
Alta Vista		40	1 mi. pipe	1 cfs
Black Bear	Sinlahekin Ck	105	2.5 mi. pipe	2 cfs

Table 14: Summary of Water Rights in the Okanogan Basin (U.S. Only) (WSDOE, 1995).

		Quantity (acre feet)	(acres)	Percent Used for Irrigation
Surface	470	105,414	67,443	98%
Ground	307	39,344	10,437	56%

The most common irrigation system is a permanent solid-set sprinkler using micro sprinklers or conventional impact sprinklers. Overhead permanent sprinkler systems are selectively used. Some irrigation systems may be used for spring frost control efforts and for summer temperature modification. Irrigation methods have changed from rills and clean cultivation to grass cover crops with sprinklers to micro-sprinkler systems. Advances in soil moisture monitoring technology have accompanied these advances in irrigation methods, although not all growers are taking advantage of them. These advances have increased the overall efficiency of the application of water.

DAMS

There are 20 dams in the U.S. portion of the basin: 9 state, 7 private, 3 federal, and 1 PUD (Table 15 and Appendix B). There are 13 vertical drop structures on the Canadian side (NMFS, 2000). Zosel Dam (RM 78) controls the level of Osoyoos Lake. Reconstruction work in 1987 improved fish passage into the lake.

A McIntyre Dam on the Okanogan River below Lake Vaseauex, B.C., is the upstream barrier to migratory fish most years. In high water years fish may access Lake Vaseauex.. The Similkameen River is impassable at Enloe Dam, an abandoned power generation facility 8.8 miles above the mouth. It blocks access to more than 95 percent of the potential anadromous fish habitat in the Similkameen River. Recently there has been interest in relicensing the Enloe Dam, and fish passage alternatives are being investigated.

Table 15: Dams in the U.S. Okanogan Basin (Streamnet, 2000).

Dam Name	Stream Name	Ownership	Year completed	Dam Length (ft)	Height (ft)t	Normal Storage (acft)	Max Storage (acft)
Fanchers Dam	Antoine Cr	Private	1926	450	68	500	600
Bonaparte Lake Dam	Bonaparte Cr	Private	1957	180	9	535	995
Stout Reservoir Dam	Chiliwist Cr	Private	1958	250	25	18	24
Horse Spring Coulee Dam	Columbia River	Private	1924	650	67		7,000
Fish Lake Dam	Johnson Cr	State	1920	50	7	2815	2,815
Schallow Lake Dam	Johnson Cr	State	1954	330	13	46	76
Osoyoos Lk. Control Dam (Zosel)	Okanogan R	State	1986	321	40	1,700	55,000
Leader Lake Dam	Okanogan R & tribs	Private	1910	300	53	5,900	6,750
Leader Lake Saddle Dam	Okanogan R & tribs	Private	1910	650	11	1,000	1,850
Little Green Lake Dam	Okanogan R & tribs	State	1959	88	11	400	730
Salmon Lake Dam	Okanogan R & tribs	Federal	1921	1,250	54	15,700	17,280
Sasse Reservoir Dam	Okanogan R & tribs	State	1910	140	10	60	60
Spectacle Lake Dike	Okanogan R & tribs	Federal	1969	1,110	25	13,450	14,080
Whitestone Lake Dam	Okanogan R & tribs	Private	1930	375	9	2,144	2,720
Conconully	Salmon Cr	Federal	1910	1,075	72	13,000	16,570
Enloe	Similkameen R	PUD	1923	316	54	400	400
Blue Lake Dam	Similkameen R & tribs	State	1923	1,500	32	4,416	4,416
Sinlahekin Dam No. 1	Sinlahekin Cr	State	1949	180	14	175	333
Sinlahekin Dam No. 2	Sinlahekin Cr	State	1949	248	18	52	82
Sinlahekin Dam No. 3	Sinlahekin Cr	State	1950	285	9	304	593

Fish Passage

Fish passage is blocked by dewatering in Salmon Creek, by elevated temperatures in the Okanogan River, and by Enloe Dam on the Similkameen River. Until 1999, fish passage was blocked on Omak Creek at two sites.

Water Quality

There are serious water quality concerns in the Okanogan Basin. The Okanogan River and several of its tributaries are on the Washington State 303(d) 1998 list (Impaired and Threatened Waterbodies Requiring Additional Pollution Controls) for "failure to meet water quality standards including temperature, dissolved oxygen, pH, and fecal coliform" (WSDOE, 1998) (Table 16).

Table 16: Okanogan Basin Water bodies on the Washington State 1998 303(d) List.

Water Body	Water Quality Issues
Okanogan River	temperature, DO, fecal coliform, PCB-1260, PCB-1254, 4,4'-DDE*, 4,4'-DDD*
Similkameen River	Temperature, arsenic
Salmon Creek	Instream flow
Nine-mile Creek	DDT
Tallant Creek	DDT
Lake Osoyoos	4,4'-DDE*, 4,4'-DDD*

*break-down products of DDT

WSDOT is currently in the technical assessment phase of developing total maximum daily loads (TMDLs) for PCB and DDT in the Okanogan Basin. This is preliminary data-gathering step to assess the extent of contamination. The WSDOE establishes TMDLs as the foundation of a basin-specific strategy to improve water quality. The WSDOE may establish statewide TMDLs for temperature-related parameters.

The Okanogan and Similkameen rivers are classified by the State of Washington as Class A waters (Chapter 173-201-A-130 WAC, 1992). Classes range from A to AAA, with AAA being the highest quality. Class A waters are required to meet, or exceed, the standards established for the various uses including: water supply, recreation, fish (migration, rearing, spawning, and harvesting), wildlife, agriculture, and commercial uses.

Compliance for Class A waters includes:

- Temperature should not exceed 18⁰C, and pH should occur within the range of 6.5 to 8.5.
- Dissolved oxygen should not fall below 8 mg/L.
- Fecal coliform counts should be below the geometric mean of 100/100ml.

When natural conditions result in water temperatures exceeding 18° C, no discharges will be allowed which raise the receiving water temperature by greater than 0.3° C. In addition, the USEPA has established the drinking water standard for nitrate at 10 parts per million.

Surface erosion from clean cultivation and rill irrigation was a serious problem in the Okanogan Valley during the 1960s and 1970s. This soil loss has been greatly reduced as row crops have changed to alfalfa hay and irrigation has been converted to overhead sprinklers. Adoption of "Best Management Practices" (BMPs) by the USDA has also contributed to reduction of soil losses and erosion. Best Management Practices are defined as "a practice or combination of practices, which are the most effective means of preventing or reducing the amount of pollution generated by non-point sources to a level compatible with water quality goals" (USDA, 1998).

Water Quality Monitoring

There are several water quality monitoring projects in the Okanogan Basin:

- The WSDOE monitors ambient water quality conditions on the Okanogan River at Malott and Okanogan. These sites were established in 1977. Data collection has been sporadic at times, but sufficient data has been collected to demonstrate general conditions and trends.
- The USGS collects water quality information at Malott on a monthly basis. This station was established in the mid 1970s.
- The Okanogan Conservation District (OCD) began a water quality monitoring program in May 2000. There are 38 sites in 11 subdrainages. All sites are tested for pH,

dissolved oxygen (DO), temperature, turbidity, conductivity, and total dissolved solids. Seven of the sites are also tested for ammonia-nitrogen, nitrate-nitrite, total per sulfate nitrogen (TPN), dissolved phosphorus, total phosphorus, total alkalinity, total suspended solids, and fecal coliform. During storm events sites are tested for the presence of heavy metals. OCD also manages a pesticide and organochloride scan, and a macroinvertebrate survey.

• In 1995, the WDNR and the WSDOE cooperatively established several water quality monitoring sites on the Loomis State Forest. The purpose of these monitoring sites is to detect long-term changes in water quality (if any) as a result of management practices on the forest. A macro-invertebrate assessment and stream channel condition assessment is conducted annually at each of the study sites. The project was developed in response to the Loomis Forest Landscape Plan (WDNR, 1996). Three treatment sites and two control sites are measured annually for water quality parameters such as temperature, DO, pH, salinity, and stream flow. In addition, stream channel conditions are assessed, macroinvertebrates sampled, and there are established photo points.

The following discussion is based on the WSDOE and USGS data.

Nitrogen

The nitrate values recorded on the Okanogan and Similkameen Rivers are well below any action level for health standards and are thus acceptable for all Class A water uses. Common sources for nitrogen include on-site sewage disposal systems, discharges from municipal sewer treatment plants, irrigation system return flows, fertilizer applications for both agricultural and residential uses, waterfowl congregating on the waterbody, and atmospheric deposition.

Dissolved Oxygen

Dissolved oxygen (DO) in the Okanogan River system is generally at or above saturation levels at all sites, even during the summer months when the water temperatures are elevated. The Malott has the lowest saturation values. This is predictable, since the monitoring station is located downstream of the largest municipalities in the basin, where sewage and stormwater impacts are highest. In addition, there is very little turbulent water between the Okanogan monitoring station and the Malott station to facilitate reaeration.

There are a few data sets available for the Malott site that include values over the course of a single day. These data sets show a 10 to 12 percent increase in DO levels from the morning to mid-day readings. This may indicate the presence of algae in the river that produce oxygen during the daylight hours.

Temperature

The Okanogan and Similkameen rivers both have elevated temperatures during the months of July and August, and the Okanogan maintains elevated temperatures into September. Water temperatures are also high on the Canadian portion of the drainage (Province of British Columbia, 1996). Temperatures in the Canadian portion of the river were recorded to remain higher than 21^o C for many days in July and August (Hansen, 1993). Elevated temperatures are considered to be a result of both natural conditions, such as the north-

south orientation and the low gradient, and human-influenced conditions, including lack of riparian vegetation, elevated sediment delivery, dam operations, and irrigation withdrawals (NMFS, 2000).

pН

The average pH values measured in the basin have risen approximately 0.3 point over the last 20 to 30 years. This puts pH at the upper limits of the desired range. This alkaline condition may exert a stabilizing effect on the heavy metals by keeping the metals sorbed onto the soil particles and sediments, and out of solution (WATERSHEDSS, 1997). Influences on the pH level include acid mine drainage, atmospheric deposition (acid rain), calcium, calcium carbonate, effluent water, and land use practices.

Fecal Coliform

Data collected from 1977 to 1997 indicate that fecal coliform is not a concern at existing monitoring sites. The Malott station had 9 exceedences in 163 recorded samples; the Okanogan station had 5 exceedences in 128 observations; and the Oroville stations had 0 exceedences out of 190 observations on the Okanogan, and 1 exceedence out of 208 observations on the Similkameen (DOE - EAP Lab, 1977-1997). These results are all well below the the State water quality standards, which allow for up to 10 percent of the samples to exceed the published standard as long as the mean value of the samples is below 100 colonies per 100 ml.

Values recorded varied widely, with high peak values interspersed with very low values. This suggests that the source was not a constant contributor, such as a regular sewage treatment plant discharge. The source could be the result of flood events that caused overloading of the sewage treatment plants with a subsequent discharge of less than fully treated wastes. Other possible sources of contamination include an animal carcass in or near the river; rain events that cause surface runoff from animal stockyards or feedlots; wildlife feces adjacent to streams; or a concentration of waterfowl in the vicinity of the monitoring station.

Turbidity

Turbidity was low at Malott, Okanogan, and Oroville for the months of May, June, and July (1978-1996). The May average for the stations was 16.5, 7.7, and 2.9 nephelometric turbidity units (NTUs), respectively, on the Okanogan, and 8.7 NTUs on the Similkameen. During June (peak flow month), the values were 17.1, 21.8, and 2.2 NTUs on the Okanogan and 13.7 NTUs on the Similkameen.

The peak values recorded on the free-flowing sections of the Okanogan and Similkameen were collected in the late fall and winter months. It appears that the highest sediment loads are produced during extreme storm events rather than from normal snowmelt.

Sand has been reported to be a problem with irrigation pumps withdrawing water from the river system. The months of May and June have the highest average readings of suspended sediment, a period during which significant quantities of water are withdrawn. Additional monitoring of the river for sediment over the entire vertical water column would be desirable and a grain size analysis conducted to assist in identifying the sources. Primary sources for sediment are erosion from forest fire burn areas, agricultural practices, cut and fill slopes on roadways, highway maintenance practices, construction sites, logging operations, and strip mines (including gravel operations).

Sedimentation

Sedimentation is a major water quality concern in the Okanogan Basin. Naturally erosive soils coupled with high road density, timber harvest practices, and livestock grazing practices have resulted in accelerated sediment delivery to the stream system.

Several historical developments have affected sediment and runoff rates since European settlement in the basin. Major impacts began in the 1880s when mining and timber removal began. Some hillsides were denuded, resulting in high sediment yields in the 1894 flood, and subsequent high flows. At low elevations, overgrazing coupled with low precipitation has resulted in lower infiltration rates and higher runoff. As described above, roads are considered to be primary causes of increased sediment delivery to Okanogan Basin stream channels.

The effects of sedimentation include channel widening; loss of pool habitat; shallower, broader channels; elevated water temperatures; and loss of spawning and rearing habitat.

Surface erosion on agricultural bottomlands and mass wasting on adjacent hill slopes were serious problems in the 1970s, when clean cultivation and rill irrigation were extensively used in the U.S. part of the Okanogan Basin. This soil loss has been reduced, though not eliminated, through a change of crops, and the adoption of Best Management Practices (BMPs) by the USDA (NMFS, 1998). The sub-watersheds with the highest levels of sheet and rill erosion are the Similkameen River, Bonaparte Creek, upper Salmon Creek, and Sinlahekin Creek.

The subwatersheds of Bonaparte Creek, Salmon Creek, Antoine Creek, and, to a lesser degree, Omak Creek had noticeable streambank failures. Some of these areas have high width to depth ratios, and lack streambank vegetation and woody debris (NRCS, 1998).

In 1998 NRCS assessed the sediment yields of 30 subwatersheds in the Okanogan Basin using the Pacific Southwest Interagency Committee (PSIAC) sediment yield model (cite), a road bank erosion assessment model, and a watershed yield comparison method (OWSAC, 2000). The drainage area upstream of Lake Osoyoos was not included because the lake acts as a sediment trap. This study was a broad assessment, and the estimates are best used as a relative comparison of yields between large subwatersheds. The PSIAC model is most effective when an interdisciplinary approach is used to evaluate the factors that affect the movement of sediment.

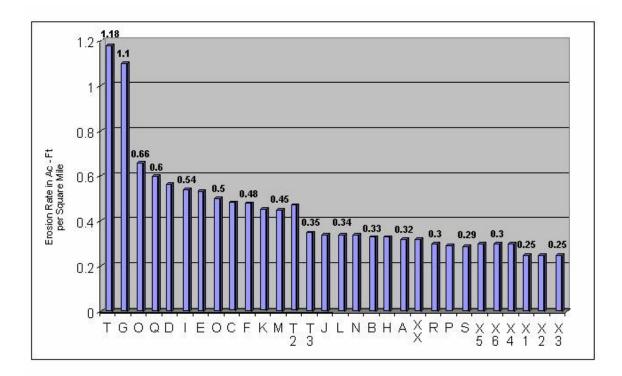


Figure 9: Erosion Rates in 30 Okanogan Subwatersheds (NRCS, 1998).

Key:

Tl-Similkameen River	K -Omak Creek	XX-Columbia inter-WRIA
G -Bonaparte Creek	M -Loup-Loup Creek	R -Aeneas Creek
01-Salmon Upper (NW)	T2-Ashnola	P -Browns Lake
Q -Sinlahekin River	T3-Pasayten	S -Spectacle Lake/Whitestone
D -Mosquito Creek	J -Wannacut Creek	X5-Aeneas Lake
I -Tunk Creek	L -Chiliwist Creek	X6-Wanacut Lake
E -Antoine Creek	N -Tallant Creek	X4-N. Fork Pine Creek
02-Salmon-Lower	B -Nine Mile Creek	XI-Omak Lake
C -Tonasket Creek	H -Chewiliken Creek	X2-Duley Lakes/J. Flats Area
F -Siwash Creek	A -Okanogan Interfluve	X3-Fish Lake Basin Area

The Similkameen River and Bonaparte Creek are the largest sediment contributors to the Okanogan River, yielding 531,295 tons/year, or 33 percent of the total yield. These two subdrainages account for 9.5 percent of the total land area modeled. These drainages have the highest levels of road bank erosion per unit area. The Similkameen has the highest erosion rate, at 3.5 tons per acre (NRCS, 1998).

The Okanogan mainstem contributes 12.4 percent of the total sediment yield, and accounts for 12.4 percent of the total area modeled.

In 1972, the USGS studied the Enloe Reservoir to determine how the Similkameen and Okanogan rivers would be affected by removal, transport, and deposition of sediment deposited behind Enloe Dam if the dam were removed. The average annual suspended sediment discharge at Nighthawk, located 6 miles above the Enloe Dam, was 134,000 tons per year. Over a 51-year period, 2.4 million tons of sediment, primarily sand, settled into the Enloe Reservoir. The average yearly amount of sedimentation from 1920 to 1972 in the Enloe Reservoir was 47,000 tons. Depth at the Enloe dam rose an average of 0.65 feet per year from 1920 to 1972 (USGS, 1972).

Mass Wasting

Landslides have been noted on steep glacial outwash terrace escarpments and silty glacial lake deposits in some of the forest basins in the western portion of the basin.

Follow-up analysis of a slide which occurred in the Cecile Creek drainage in May 1995 points both to localized natural soil instability and loss of tree root strength following harvest as contributing factors.

Stormwater

The volume and rate of stormwater runoff is directly related to how much of the basin is covered by asphalt and other impervious surfaces. Okanogan Basin in primarily rural, and the area covered with impervious surfaces is low compared to urban areas. However, road density is high in the population centers, and these tend to be located close to major rivers and streams. Several stream channels are paralleled by roads. Also, there is a number of rural land use activities that contribute to stormwater, such as culvert discharge and overland surface flow.

Neither Okanogan County nor any of the incorporated communities within the watershed have a comprehensive stormwater management plan or erosion and sediment control ordinance in place to provide water quality protection. However, floodplain, shoreline, and zoning regulations are routinely used to review and adapt land use applications to control surface water runoff (OWSAC, 2000). The WSDOE requires that all disturbed sites greater than 5 acres obtain National Pollutant Discharge Elimination System (NPDES) coverage under the General Permit issued for this activity. This entails the filing of a Notice of Intent to conduct land disturbing activity, and the use of Best Management Practices with regard to erosion and sediment control.

The cumulative effects of development have the potential to impact stormwater in the Okanogan River Watershed. There are hundreds of vacant parcels within the watershed and most of them were created from short plats that did not require erosion control drainage plans. As development occurs on these lots, cumulative stormwater and erosion problems may develop that will not be addressed by drainage plans for single family residences. Without an overall plan or outline for movement of stormwater over and through the landscape, solutions to stormwater problems will not be comprehensive or an efficient use of funds. Regional stormwater management planning conducted on a basin-wide scale is beneficial because it incorporates the entire watershed and allows for analysis and planning to address cumulative stormwater impacts (Okanogan Conservation District, 2000).

Nine sites in the Okanogan Basin were identified on the WSDOE 1998 Hazardous Sites List. Five of these sites were service stations, and seven had completed a remedial action plan or were in process. The two sites without a remedial action plan in place were the Tonasket Post and Rail operation and the Loomis Chevron (both were ranked as a level 5 site - the lowest ranking).

There are 56 active stormwater permitted industries in the Okanogan River Watershed. The amount of impact from the unpermitted industries is unknown (Okanogan Conservation District, 2000).

Stormwater management within the urban areas of the watershed is the responsibility of the individual towns and cities.

Sewage

Historically, on-site sewage (OSS) disposal systems have been used for the treatment and disposal of human wastes in the unincorporated areas of the Okanogan River Watershed. In the incorporated cities and towns of the watershed, this was also true until the development of collection and centralized treatment systems. These were established in Okanogan, Omak, and Tonasket in the late 1940s, and in Conconully in 1980.

The Okanogan County Health District (OCHD) oversees on-site systems under 3,500 gallons per day. Design standards take into consideration soil type and depth, slope, and proximity to water bodies when approving the siting and design of a system (Okanogan County Health District, 1996). On-site systems between 3,500 gallons and 14,500 gallons per day are permitted by the Washington State Department of Health. Systems over 14,500 gallons per day require WSDOE approval. All systems over 3,500 gallons per day require approval by the Okanogan County Public Works Department prior to construction.

The CTCR oversees the installation and maintenance of on-site systems on reservation lands. The Tribe prepared an Onsite Wastewater Management Plan in 1982 as part of their 208 Water Quality Management Plan. This document outlines the procedures for the design, installation, and maintenance of on-site systems on reservation lands. The County Health District works in close cooperation with the CTCR on sewage disposal issues that involve nontribal members that own land within the reservation boundary (Montgomery, 1982).

The OCHD has a database of on-site systems (OWSAC, 2000).

The disposal of the biosolids (septage) removed from septic tanks, as well as toilet vaults and porta-potties during routine maintenance is typically handled in Okanogan County through land application. The biosolids are spread on the surface of the ground, lime is applied to stabilize the material and reduce odors and pest attraction, and it is then tilled in. Each septic tank pumper in Okanogan County has one or more permitted sites for the disposal of septage. This is necessitated in part by the fact that none of the publicly owned treatment plants is designed to treat septage (OWSAC, 2000).

The publicly owned sewage treatment facilities in Omak, Okanogan, Oroville, Tonasket, and Conconully are all operated by the respective municipalities under the guidelines and overview of the WSDOE. Oroville and Omak employ oxidation ditch technology, Okanogan uses rotating biological contactors, and both Conconully and Tonasket use lagoon systems. Like on-site sewage systems, treatment plant effluent can have detrimental impacts on receiving water quality. In the Okanogan Basin in the U.S., the Omak and Okanogan municipal treatment plants discharge to the Okanogan River, and the Oroville plant discharges to the Similkameen River. The WSDOE, through NPDES permit process, sets the monitoring requirements and testing schedule for each of the treatment plants, and collates and reviews the collected data. The Conconully system is a lagoon treatment process that employs land application for disposal of the effluent by means of irrigation. The Tonasket treatment plant discharges its effluent to groundwater rather than directly to the river, although the discharge point is only 50 to 60 feet from the Okanogan River.

There is some conflicting information regarding fecal coliform contamination in the Okanogan River Watershed. The 1994 supporting documents to the §305(b) report (WSDOE, 1994), state that the Okanogan and Similkameen are both impaired for use because of fecal coliform contamination. The 1996 §305(b) report (WSDOE, 1996), does not list fecal coliform as one of the parameters exceeding standards on the Okanogan or Similkameen, nor does the 1996 §303(d) list (Millam, correspondence, 1996). A review of the WSDOE EAP data collected over the past 20 years at Malott, Okanogan, and Oroville shows occasional samples that exceed parameter standards but no pattern of violation (WSDOE, 1977-1997).

In 1988, the WSDOE conducted a receiving water survey at the Okanogan wastewater treatment plant to determine the effects of the treatment plant discharge on water quality during low-flow periods. The results, while not conclusive, did demonstrate that the effluent grab samples contained higher fecal coliform counts than were permitted (Carey, 1990). In the last year, the effluent fecal coliform counts have averaged considerably lower than the permitted values, reflecting improved disinfection of the effluent prior to discharge. The river reach containing the Okanogan wastewater treatment plant outfall has been proposed for the 1998 §303(d) list for fecal coliform contamination as a result of this study.

All soil types in the Okanogan River Watershed have been identified by the NRCS as having features unfavorable for effective sewage drainfield use. A review of the Soil Survey of Okanogan County Area shows that all soil types existing on a side slope of 8 percent or more were listed as having moderate restrictions for siting septic tank absorption fields. This classification was done when leachfields were typically installed as level beds and therefore slope became a consideration. The technology utilized in the construction of an OSS has advanced greatly over the last 30 years, and the restriction imposed by slope is no longer a major concern.

Fish and Wildlife Resources

Fish and Wildlife Status

History

Over hundreds of years northwest Native American tribes developed an economic and social dependence upon Columbia River salmon. Fishing areas such as Celilo Falls and Kettle Falls were focal points from May through August, during salmon runs that reached

7.5 million per year. Several tribes gathered to net, spear, dry, and trade salmon. Early European explorers and trappers remarked at the "millions" of salmon ascending Kettle Falls. As many as 40,000 salmon may have been taken by native fishermen around Kettle Falls in the early 1800s. In the mid-1800s there was a marked drop in the size of some salmon runs. Major salmon shortages in the mid-Columbia were noted by whites in the late 1820s, and early 1830s and at Kettle Falls in the 1880s. Indians were starving and had abandoned some of the traditional fishing spots due to lack of returning adult salmon. This points to the unpredictability of ocean rearing and survival conditions, which could be a contributing factor in today's declining runs (Schalk, 1986).

By the mid-1800s, European settlers in the Columbia River area established net sites and built commercial canneries in the central and lower reaches of the Columbia River. This harvest peaked at 2.3 million fish in 1883. From 1889 to 1922, the resource sustained an average annual harvest of 25 million pounds. Average yield was approximately 1.3 million fish from 1890-1920. Runs continued to decline steadily, and by 1958, the harvest was down to about 5 million pounds. The early canneries depleted some of the salmon runs before the first dams were built.

As spring and summer chinook runs declined at the turn of the century, the harvest shifted to fall chinook. By 1912, the ocean commercial fishery was established in the Columbia River delta, with a fleet of 1,000 trolling boats.

Ten dams were planned for the Columbia River during the 1930s to control flooding and produce cheap electricity. In 1933, Rock Island Dam was the first completed, followed by Bonneville Dam in 1938, and Grand Coulee Dam in 1941. Fish passage was not provided at Grand Coulee Dam, although the biology and engineering were available at the time. As a result, salmon spawning was eliminated upstream of the dam.

In 1956, the pool behind The Dalles Dam was flooded, eliminating Celilo Falls, the traditional tribal fishing area (NW Power Planning Council, 1992). By 1958, all non-Indian commercial fishing in the Columbia River above Bonneville Dam had ended. In 1967, Hells Canyon Dam was completed and blocked upstream migration of adult chinook salmon on the upper Snake River (NW Power Planning Council, 1992). During this period, the human population in the Columbia Basin grew as a result of the cheap electric rates and improved irrigation.

The remaining runs were lost or reduced due to hydroelectric dams, irrigation diversion dams, and commercial fishing, and a shift was made to hatchery production. Today hatchery-raised salmon make up 80 percent of the total harvest in the Columbia Basin.

Current Conditions

The Okanogan Watershed currently supports anadromous runs of summer chinook salmon (*Oncorhynchus tshawytscha*), sockeye salmon (*Oncorhynchus nerka*), and steelhead trout (*Oncorhyncus mykiss*). There are 6 nonanadromous salmonids in the basin, and 24 species of nonsalmonids. See Appendix C for a species list.

ESA Listed Species

The Okanogan summer chinook stock is listed as Depressed based on a short-term severe decline in escapement. The Okanogan sockeye stock is listed as Healthy based on escapement. The Methow/Okanogan summer steelhead stock is listed as Depressed based on chronically low numbers (WDF and WDW, 1993).

Upper Columbia River steelhead trout and Upper Columbia River spring chinook salmon were listed as Endangered under the Endangered Species Act in August 1997 and March 1999, respectively. The steelhead listing includes both wild and hatchery stocks. The Okanogan Basin was not included as critical habitat for listed spring chinook because the species was extirpated at the time of listing. Bull trout were listed as Threatened in 1998. Westslope cutthroat trout were recently judged to be not warranted for listing. See Appendix D for excerpts of the ESA determinations.

Spring Chinook

Spring chinook have been extirpated from the Okanogan Subbasin. Suitable habitat for spring chinook exists above Enloe Dam and possibly in Salmon and Omak creeks. Historical records indicate spring chinook in Salmon Creek prior to 1906 (Craig & Suomela, 1941), tributaries upstream of Lake Osoyoos (Chapman, et al., 1994), and possibly in Omak and Similkameen Creeks (Fulton, 1968; Craig & Suomela, 1941). There is no clear evidence that chinook passed the natural falls on the Similkameen River (NMFS, 1998). Chinook currently do not have access to upper Salmon Creek because the lower 4 miles are dewatered.

Historically, chinook in the Okanogan may have included the following life history types:

- 1. Spawn, rear, overwinter in Salmon Creek.
- 2. Spawn and rear in Salmon Creek, overwinter in mainstem Okanogan River.
- 3. Spawn, rear in tributaries above Lake Osoyoos; overwinter in the lake.
- 4. Spawn, rear, overwinter in mainstem Okanogan above Lake Osoyoos.
- 5. Spawn, rear, and overwinter in Omak Creek.

In 2001, the USFWS Winthrop Hatchery released Carson stock spring chinook smolts and fry into Omak Creek.

Steelhead Trout

The historical record for steelhead trout in the Okanogan Basin is incomplete (Mullan, et al., 1992), but it is likely that very few ever used the Okanogan River. Salmon Creek, Omak Creek, and the Similkameen River supported small runs, but these were eliminated or reduced by passage barriers (NMFS, 1998). Few wild steelhead currently spawn successfully in the Okanogan Basin because many of the tributaries with spawning habitat are dewatered during the summer months. Furthermore, elevated temperatures and sedimentation in the Okanogan River limit quality and quantity of cold water refugia.

In the spring of 2001, Heather Barlett, WDFW fisheries biologist, and Chris Fisher, CTCR fisheries biologist, observed 2 steelhead redds in Bonaparte Creek and witnessed a

steelhead spawning in Tonasket Creek. Whether or not the environmental conditions of Bonaparte Creek remained conducive for steelhead this year is unknown, however, Tonasket Creek is dry (Fisher, 2001).

The river is primarily used as a migration corridor to clearer, colder tributaries. Current habitat conditions in the migration corridor are poor for most if not all history types.

Five life history types are identified:

- 1. Spawn, rear and overwinter in Salmon Creek, outmigrate in spring.
- 2. Spawn and rear in Salmon Creek, overwinter in Okanogan River; outmigrate in spring.
- 3. Spawn and rear in Okanogan River and tributaries upstream of Lake Osoyoos, overwinter in the lake, and outmigrate in spring.
- 4. Spawn, rear, and overwinter in Omak Creek, outmigrate in spring.
- 5. Spawn and rear in Omak Creek, overwinter in Okanogan River, outmigrate in spring.

In the early 1960s, the Washington State Department of Game (now WDFW) began the steelhead hatchery program. This resulted in over-harvests of wild steelhead in mixed stock fisheries (Douglas, Chelan, and Grant PUDs, 1998). By the 1980s, it was standard practice to clip the adipose fin on hatchery stock, in order to distinguish the two populations and spare the wild steelhead. Table 17 summarizes steelhead sport fishery harvest from 1965 – 1994.

Table 17: US Sport Fishery Harvest of Adult Summer Steelhead Trout in the Okanogan Basin, 1965 – 1994 (Streamnet, 2001).

Stream Name	From Mile	Production	Begin Date	End Date	No.
Okanogan River	0 - 77.2	Hatchery	5/1/86	4/30/87	706
		Hatchery	5/1/87	4/30/88	159
		Hatchery	5/1/88	4/30/89	131
		Hatchery	5/1/89	4/30/90	317
		Hatchery	5/1/90	4/30/91	78
		Hatchery	5/1/91	4/30/92	489
		Hatchery	5/1/92	4/30/93	516
		Hatchery	5/1/93	4/30/94	107
		Mixed	5/1/65	4/30/66	20
		Mixed	5/1/66	4/30/67	129
		Mixed	5/1/67	4/30/68	10
		Mixed	5/1/68	4/30/69	22
		Mixed	5/1/69	4/30/70	6
		Mixed	5/1/70	4/30/71	31
		Mixed	5/1/71	4/30/72	66
		Mixed	5/1/72	4/30/73	12
		Mixed	5/1/73	4/30/74	6

Stream Name	From Mile	Production	Begin Date	End Date	No.
		Mixed	5/1/74	4/30/75	2
		Mixed	5/1/75	4/30/76	2
		Mixed	5/1/76	4/30/77	8
		Mixed	5/1/77	4/30/78	9
		Mixed	5/1/78	4/30/79	4
		Mixed	5/1/79	4/30/80	10
		Mixed	5/1/80	4/30/81	7
		Mixed	5/1/81	4/30/82	2
		Mixed	5/1/82	4/30/82	6
		Mixed	5/1/83	4/30/83	34
		Mixed	5/1/83	4/30/84	397
		Mixed	5/1/85		
		IVIIXEU	J/ 1/00	4/30/86	1193
		Natural	5/1/86	4/30/87	336
		Natural	5/1/87	4/30/88	2
		Natural	5/1/88	4/30/89	0
		Natural	5/1/89	4/30/90	0
		Natural	5/1/90	4/30/91	0
		Natural	5/1/91	4/30/92	4
		Natural	5/1/92	4/30/93	26
		Natural	5/1/93	4/30/94	0
<u></u>			= / / /0.0		~
Similkameen River	0 - 27.8	Hatchery	5/1/86	4/30/87	314
		Hatchery	5/1/87	4/30/88	72
		Hatchery	5/1/88	4/30/89	128
		Hatchery	5/1/89	4/30/90	164
		Hatchery	5/1/90	4/30/91	139
		Hatchery	5/1/91	4/30/92	447
		Hatchery	5/1/92	4/30/93	256
		Hatchery	5/1/93	4/30/94	76
		Mixed	5/1/81	4/30/82	10
		Mixed	5/1/82	4/30/83	13
		Mixed	5/1/83	4/30/84	17
		Mixed	5/1/84	4/30/85	339
		Mixed	5/1/85	4/30/86	746
		IVIIAEU	5/1/05	4/30/00	740
		Natural	5/1/86	4/30/87	40
		Natural	5/1/87	4/30/88	0
		Natural	5/1/88	4/30/89	0
		Natural	5/1/89	4/30/90	0
		Natural	5/1/90	4/30/91	0
		Natural	5/1/91	4/30/92	0
		Natural	5/1/92	4/30/93	11
		Natural	5/1/92	4/30/94	0

Summer Chinook

The summer chinook run has declined slightly in the Okanogan River over the last 20 years, and has increased slightly in the Similkameen River (Chapman et al., 1994). The increase in the Similkameen population is at least partially due to the presence of the hatchery there, built in 1989. Summer chinook are managed for natural production and spawn in limited areas between Zosel Dam and Malott in the mainstem Okanogan River. In the Similkameen River, they spawn from Enloe Dam downstream to Driscoll Island. Many juveniles rear in the mid-Columbia impoundments after spending 1 to 4 months in the Okanogan. Table 18 lists summer chinook spawning survey results, and Table 19 lists redd count survey results.

Table 18: Spawner Counts for Summer Chinook Salmon in the Okanogan River (Mile 0 to Mile 81.9) 1977 - using Fish per Mile; estimation method unknown (Streamnet, 2001).

Begin Date	End Date	Ν
1/1/77	12/31/77	24
1/1/78	12/31/78	29
1/1/79	12/31/79	19
1/1/80	12/31/80	18
1/1/81	12/31/81	11
1/1/82	12/31/82	5
1/1/83	12/31/83	6
1/1/84	12/31/84	33
1/1/85	12/31/85	28
1/1/86	12/31/86	31
1/1/87	12/31/87	18
1/1/88	12/31/88	14
1/1/89	12/31/89	25
1/1/90	12/31/90	10
1/1/91	12/31/91	7

Table 19: Redd Counts for Summer Chinook Salmon in the Okanogan River (Mile 0 to Mile 77.2) and Similkameen River (Mile 0 to Mile 27.8) 1956-1996 (Streamnet, 2001).

Stream Name	Begin Date	End Date	No.
Okanogan River	1-Jan-56	31-Dec-56	37
	1-Jan-57	31-Dec-57	53
	1-Jan-58	31-Dec-58	94
	1-Jan-59	31-Dec-59	50
	1-Jan-60	31-Dec-60	29
	1-Jan-63	31-Dec-63	9
	1-Jan-64	31-Dec-64	112
	1-Jan-65	31-Dec-65	109
	1-Jan-66	31-Dec-66	389
	1-Jan-67	31-Dec-67	149
	1-Jan-68	31-Dec-68	232
	1-Jan-69	31-Dec-69	103

Stream Name	Begin Date	End Date	No.
	1-Jan-70	31-Dec-70	656
	1-Jan-71	31-Dec-71	310
	1-Jan-72	31-Dec-72	182
	1-Jan-73	31-Dec-73	138
	1-Jan-74	31-Dec-74	112
	1-Jan-75	31-Dec-75	273
	1-Jan-76	31-Dec-76	107
	1-Jan-77	31-Dec-77	276
	1-Jan-78	31-Dec-78	195
	1-Jan-79	31-Dec-79	173
	1-Jan-80	31-Dec-80	118
	1-Jan-81	31-Dec-81	55
	1-Jan-82	31-Dec-82	23
	1-Jan-83	31-Dec-83	36
	1-Jan-84	31-Dec-84	235
	1-Jan-85	31-Dec-85	138
	1-Jan-86	31-Dec-86	197
	1-Jan-87	31-Dec-87	201
	1-Jan-88	31-Dec-88	113
	1-Jan-89	31-Dec-89	134
	1-Jan-90	31-Dec-90	88
	1-Jan-91	31-Dec-91	55
	1-Jan-92	31-Dec-92	35
	1-Jan-93	31-Dec-93	144
	1-Jan-94	31-Dec-94	372
	1-Jan-95	31-Dec-95	260
	1-Jan-96	31-Dec-96	100
Similkameen River	1-Jan-57	31-Dec-57	30
	1-Jan-58	31-Dec-58	30
	1-Jan-59	31-Dec-59	31
	1-Jan-60	31-Dec-60	23
	1-Jan-63	31-Dec-63	17
	1-Jan-64	31-Dec-64	51
	1-Jan-65	31-Dec-65	67
	1-Jan-66	31-Dec-66	154
	1-Jan-67	31-Dec-67	77
	1-Jan-68	31-Dec-68	107
	1-Jan-69	31-Dec-69	83
	1-Jan-70	31-Dec-70	357
	1-Jan-71	31-Dec-71	210
	1-Jan-72	31-Dec-72	55
	1-Jan-73	31-Dec-73	64
	1-Jan-74	31-Dec-74	130
	1-Jan-75	31-Dec-75	201
	1-Jan-76	31-Dec-76	184
	1-Jan-77	31-Dec-77	139

Stream Name	Begin Date	End Date	No.
	1-Jan-78	31-Dec-78	268
	1-Jan-79	31-Dec-79	138
	1-Jan-80	31-Dec-80	172
	1-Jan-81	31-Dec-81	121
	1-Jan-82	31-Dec-82	59
	1-Jan-83	31-Dec-83	57
	1-Jan-84	31-Dec-84	301
	1-Jan-85	31-Dec-85	309
	1-Jan-86	31-Dec-86	300
	1-Jan-87	31-Dec-87	164
	1-Jan-88	31-Dec-88	191
	1-Jan-89	31-Dec-89	221
	1-Jan-90	31-Dec-90	94
	1-Jan-91	31-Dec-91	68
	1-Jan-92	31-Dec-92	48
	1-Jan-93	31-Dec-93	152
	1-Jan-94	31-Dec-94	463
	1-Jan-95	31-Dec-95	337
	1-Jan-96	31-Dec-96	252

Sockeye Salmon

The Okanogan River sockeye run is one of two remaining major sockeye runs in the lower 48 states. The Wenatchee River supports the other run. Lake Osoyoos is the primary rearing area for sockeye salmon in the Okanogan Basin. The lake is eutrophic and the good food supply produces good-sized smolts. Run strength is variable, ranging from a low of 1,662 in 1994 to a high of 127,857 in 1966, measured at Wells Dam. The 10-year average from 1986 to 95 is 28,460. Sockeye salmon spawn in the fall in an 4.97-mi reach of the river upstream of Osoyoos Lake (Hagen and Grette, 1994).

Upstream migration of adult sockeye to Lake Osoyoos is sometimes delayed by high water temperatures in the lower Okanogan River during July and August (Pratt, 1991). Schools of adult sockeye will stage at the mouth of the river to wait for a drop in water temperatures, which is often brought on by an upstream rain event.

Sockeye life history types include:

- 1. Spawn in Okanogan River downstream of McIntyre Dam, rear to a subyearling stage in Lake Osoyoos, outmitgrate in spring.
- 2. Spawn in Okanogan River upstream of McIntyre Dam, rear to a subyearling stage in Lake Osoyoos, outmigrate in spring.
- 3. Spawn in Okanogan River below McIntyre Dam, rear to a subyearling or yearling stage in Okanogan River downstream of Lake Osoyoos, outmigrate in spring.
- 4. Spawn in lower Similkameen River, rear to a subyearling stage in Okanogan River downstream of Lake Osoyoos, outmigrate in spring.

According to Fulton (1970), sockeye historically spawned in Palmer Lake and Sinlahekin Creek. Table 20 lists sockeye spawning survey data from 1956 to 1988.

Table 20: Spawner Counts of Sockeye Salmon in the Okanogan River (Mile 0 to Mile
81.9) 1956 – 1966; 1977 – 1988 (Streamnet, 2001).

Begin	End Date	N
Date		
1/1/56	12/31/56	
1/1/57	12/31/57	25,350
1/1/58	12/31/58	31,035
1/1/59	12/31/59	40,650
1/1/60	12/31/60	8,600
1/1/61	12/31/61	2,440
1/1/65	12/31/65	4,970
1/1/66	12/31/66	24,166
1/1/77	12/31/77	2020
1/1/78	12/31/78	620
1/1/79	12/31/79	2170
1/1/80	12/31/80	2270
1/1/81	12/31/81	2320
1/1/82	12/31/82	1320
1/1/83	12/31/83	1970
1/1/84	12/31/84	5550
1/1/85	12/31/85	4100
1/1/86	12/31/86	2490
1/1/87	12/31/87	3110
1/1/88	12/31/88	7580
1/1/89	12/31/89	1230
1/1/90	12/31/90	700
1/1/91	12/31/91	2080

Bull Trout

Salmon Creek and Loup Loup Creek historically supported bull trout populations (*Salvelinus confluentus*). The introduction of brook trout and resulting hybridization of the two species has resulted in the extinction of bull trout in the Okanogan River Basin (NMFS, 1998).

Inland Species: Residents, Fluvials, and Adfluvials Important inland species include mountain whitefish (*Prosopium williamsoni*), rainbow trout (*Oncorhynchus mykiss*), cutthroat trout (*Oncorhynchus clarki*), and eastern brook trout (*Salvelinus fontinalis*).

Rainbow Trout

Rainbow trout are the freshwater variety of steelhead trout (*O. mykiss*). They are present in Salmon Creek, Omak Creek, Toats Coulee, Sinlahekin Creek, Bonaparte Creek, and

Tonasket Creek, as well as other smaller tributaries. They appear to have one life history pattern: to spawn and rear in upper tributaries. The population size and distribution of rainbow trout in these streams is not known (NMFS, 1998).

Westslope Cutthroat Trout

The status of westslope cutthroat in the basin is unknown. They are present in the North Fork Salmon Creek subbasin, the Sinlahekin headwaters, and in numerous alpine lakes. In at least some locations, these waters were stocked with cutthroat in the past. They may not be native to the watershed.

Eastern Brook Trout

Eastern Brook trout are an introduced species that is present throughout the basin. In drainages where brook trout and bull trout are both present, they hybridize. Brook trout appear to be more tolerant to disturbed habitat conditions than bull trout.

Other species in the watershed include: bridgelip sucker (*Catostomus* columbianus), largescale sucker (*C. macrocheilus*), sculpin (*Cottus rhotheus* and confusus), chiselmouth (*Acrocheilus alutaceus*), peamouth (*Mylocheilus caurinus*), northern squawfish (*Ptychocheilus oregonensis*), longnose dace (*Rhinichthys cataractae*), redside shiner (*Richardsonius balteatus*), and burbot (*Lota Lota*) (Pacific Rivers Council, 1996).

Several warm water species which have been introduced into the Okanogan Watershed include: largemouth bass (*Micropterus salmoides*), smallmouth bass (*Micropterus dolomelui*), white crappie (*Pomoxis annularis*), bluegill (*Lepomis macrochirus*), yellow perch (*Perca flavescens*), pumpkinseed sunfish (*Lepomis gibbosus*), black bullhead (*Ictalurus melas*), and walleye (*Stizostedion vitreum*). These species are favorites of many sports anglers. They also provide a large biomass of fish in the basin, and contribute to predation on juvenile salmon in the pools behind the mid-Columbia dams.

The recently released WDFW Wild Salmonid Policy Draft Environmental Impact Statement proposes to restore wild salmonid runs to historical habitats blocked by dams and diversion ditches. Nearly 3,000 miles of salmon and steelhead spawning streams in Washington State are currently inaccessible by fish (WDFW, 1997).

Table 21 displays a summary of salmonid distribution in the Okanogan Basin.

Salmonid Species	Subbasin	Current Known Upstream Distribution	Presumed Upstream Distribution	Historic Upstream Distribution (first natural barrier)	Potential Upstream Distribution (assumes no natural barriers)	Barriers	Comments	Sources
Sockeye	Canadian mainstem		Presumed distribution equivalent to known distribution.	Okanogan Falls	Headwaters of Okanogan Lake assuming fish passage above Okanogan Falls could be engineered.	 McIntyre Dam, 12.5 miles upstream of L. Osoyoos [partial barrier some years, complete block in others], artificial. Okanogan Falls (natural, complete block). 	L. Osoyoos, in between Skaha Lake and McIntyre	Okanagan Nation Fisheries Commission. Supporting literature to review: BC Environment.

Table 21: Fish Distribution in the Okanogan Basin (Streamnet, 2001).

Salmonid Species	Subbasin	Distribution	Presumed Upstream Distribution	Historic Upstream Distribution (first natural barrier)	Potential Upstream Distribution (assumes no natural barriers)	Barriers	Comments	Sources
Sockeye		Delta	distribution to Enloe Dam on Similkameen (T. Scott harvested sockeye below dam in years past).	distribution because no lake systems within Similkameen to support early life stages. Some sockeye stocked into Palmer Lake in the early 1900s (Chris F.); could sockeye have distributed into Palmer Lake? not known.		Dam on the Similkameen	Mouth of Similkameen is used as a holding station for migrating sockeye. Refugia as cool water holding station may be critically important.	Tom Scott, Oroville- Tonasket Irrigation District; NMFS ESA status report; Douglas County PUD telemetry report; Dissertation of Jeff Fryer.
Sockeye	Other tributaries	Not known	use of all tributary deltas with	Not known, assumed equivalent to presumed distribution.	potential up to	Barriers presumed equivalent to chinook barriers.	Olfactory clues may have been introduced into the Similkameen from Lake Osoyoos sockeye when they were initially stocked into Palmer Lake in the early 1900s (1910).	TAC group consensus

Salmonid Species	Subbasin	Current Known Upstream Distribution	Presumed	Historic Upstream Distribution (first natural barrier)	Potential Upstream Distribution (assumes no natural barriers)	Barriers	Comments	Sources
Summer/ Fall Chinook	Canadian mainstem	To McIntyre Dam (Department of Fisheries and Ocean (DFO) 1-day float for sockeye in October identified ~4 dead Chinook below McIntyre Dam).	McIntyre Dam in good flow years	Headwaters of Okanogan Lake (historic fishery at Kettle Falls indicates passage into lake system).	Okanogan Lake and tributaries (with engineered fish passage)	 (1) Zosel Dam (2) McIntyre Dam (3) Okanogan Falls 	 Mission Creek tributary to Okanogan Lake could provide spawning habitat for chinook if they could get into the lake (H. Wright) Some spawning may have occurred above Osoyoos Lake, as juveniles were captured just below Zosel Dam (outlet of Osoyoos L.) in 1997 smolt trapping efforts. These juveniles could also have been derived from spawning below the dam. Perhaps juvenile residents below. 	Dept. of Fisheries and Oceans

Salmonid Species	Subbasin	Current Known Upstream Distribution	Presumed Upstream Distribution		Potential Upstream Distribution (assumes no natural barriers)	Barriers	Comments	Sources
Summer/ Fall Chinook	Tonasket Creek	established with	Presumed distribution to first passage barrier at ~RM 1.0. Habitat for refugia and rearing presumed; no spawning habitat available.	Unknown	Likely equivalent to historic distribution	Approximately 1 mile up from mouth a falls/cascade of large metal debris would restrict further fish passage upstream (N. Wells, T. Scott). Barrier status requires field confirmation.	 Dewatered during spawning season; dewatering due to natural conditions and withdrawals. (2) CREP map says 1 mile distance up from mouth. Likely juvenile rearing habitat only (TAC consensus). (4) Water quality limited (temperature, sediment C. Fisher). No summers/fall adults seen in mouth/delta surveys by Colville Tribe (C. Fisher). Rearing not observed in summer surveys (C. Fisher). (5) Limited potential use of this habitat supports priority screening of restoration projects (S. Higby). 	
Summer/ Fall Chinook	Similkameen	Enloe Dam	same as current	Likely extensive use up to natural barriers.	Unknown	Enloe Dam	(1) Spawning occurs up to Enloe Dam	
Summer/ Fall Chinook	Bonaparte Creek	Unknown	Presumed rearing and refugia at mouth; no spawning.	Unknown	Unknown	 (1) Flow likely restricts spawning and migration (C. Fisher). (2) Falls at ~ RM 1.0 	 Flow likely restricts spawning and migration (C. Fisher) Confirmation helpful Fisher) 	C. Fisher

Salmonid Species Summer/ Fall Chinook	Subbasin Aeneas Creek	Current Known Upstream Distribution	Presumed Upstream Distribution Presumed	Historic Upstream Distribution (first natural barrier) To falls at ~ RM 1.25	Potential Upstream Distribution (assumes no natural barriers) Unknown	Barriers (1) Highway 7 barrier (box culvert) ~ ½ mile upstream (2) Falls ~ ¾ mile upstream of	Comments (1) Good water quality for rearingsome of the best of the tribs (C. Iten) (2) Probably flow limited (C. Fisher)	Sources C. Fisher/C. Iten
Summer/ Fall Chinook	Omak Creek	Known rearing to ~ RM 0.5 (C. Fisher)	distribution equivalent to known;	Historic evidence of Spring Chinook (Chapman et al. 1941)	Likely equivalent to historic distribution	culvert no known barriers		Chapman et al., 1941
Summer/ Fall Chinook	Salmon Creek	Unknown 1/2 mile from mouth?	Presumed use of mainstem to confluence of 3 forks for rearing under high flow years ? Presumed use of delta	Historic use by spring chinook to confluence of the west and south forks. Presumed use by fall/summer chinook to confluence of all three forks.	Unknown, limited likely by flow and prohibitive gradients upstream.	>10%	Uncertain if spring chinook could have used system at all (info from affidavits, Mullen et al., 1992 case).	K. Williams
Summer/F all Chinook	Loup-Loup	Unknown	Presumed rearing to ~ RM 1/8	Unknown	Unknown	 (1) Old Highway 97 ~ 1/8 river mile, and at Mallott (double culverts) 		W. Trihey and C. Fisher
Bull Trout	Canadian waters	Unknown; not demonstrated	Unknown	Unknown	Unknown	no known barriers?		J. Olyslager

Salmonid Species		Current Known Upstream Distribution	Presumed Upstream Distribution	Upstream Distribution (first natural barrier)	Potential Upstream Distribution (assumes no natural barriers)		Comments	Sources
Bull Trout	Ruby Creek	not demonstrated - USFS reports	Unknown	lower extent at Ruby Creek up to inlet of Conconnully	Likely equivalent to historic distribution	no known barriers?		W. Trihey & C. Fisher
Bull Trout	Creek	not demonstrated - USFS reports	absent	headwater falls and falls on Pelican Creek. West Fork: to Salmon Creek Falls. South fork: to barrier before Forest Service Property	historic distribution	 Barrier on West Fork (Salmon Creek falls). South Fork Barrier before F. Service Property 		N. Wells, C. Fisher
Bull Trout		not demonstrated		Falls was historic lower extent (near where K. Williams lives); presumed historic distribution to headwaters		no known barriers?	Rainbow and brook trout introductions may be, in part, responsible for loss (?) of bull trout.	K. Williams
Steelhead	Canadian waters	Steelhead (tagged) just	distribution to McIntyre Dam, in	Historic distribution to headwaters of Okanogan Lake.	Likely equivalent to historic distribution	no known barriers?	Uncertain if tagged steelhead was a resident fish or migrant. No data on specific life stages supported in Canadian waters.	H. Wright

Salmonid Species	Subbasin	Current Known Upstream Distribution	Presumed Upstream Distribution		Potential Upstream Distribution (assumes no natural barriers)	Barriers	Comments	Sources
Steelhead	Tonasket	below large metal debris falls (Dave B.). Spawning not supported currently. Rearing and refugia at the mouth	Presumed equivalent to known distribution.	Unknown. Historically probably not able to support spawning		mile up from mouth a falls/cascade of large metal debris may restrict further fish passage upstream (N. Wells, T. Scott).	Barrier status requires field confirmation.	Dave B.
Steelhead	Similkameen	distribution to Enloe dam	equivalent to known	Unknown. Historically likely to prohibitive gradients.	Likely equivalent to historic distribution	no known barriers?		TAC group consensus
Steelhead	Bonaparte	falls (river mile 1.0), possible ascension	Presumed distribution equivalent to known	Historic distribution is the same as current and presumed distribution	Unknown available habitat above falls.	(1) falls at RM 1.0.	 no spawning surveys have been conducted in the subbasin. (2) good water quality, could support rearing if the steelhead spawned (T. Neslen) 	C. Fisher,
Steelhead	Antoine Creek	used.	distribution	likely to ~ RM 3.5 (N. Wells)	Unknown, limited likely by flow and prohibitive gradients upstream.		(1) low flows from natural conditions and private withdrawals limit the current use of the subbasin (N. Wells).	N. Wells
Steelhead	Aeneas Creek		Same as current distribution	To ~ RM 1.25, at falls	Unknown distance above natural falls	 Highway 7 barrier (box Culvert) ~ ½ mile upstream Falls ~ ¾ mile upstream of culvert 	 Good water quality for rearingsome of the best of the tribs (C. Iten) Probably flow limited (C. Fisher) 	C. Fisher and N. Wells

Salmonid Species	Subbasin	Current Known Upstream Distribution	Presumed Upstream Distribution		Potential Upstream Distribution (assumes no natural barriers)	Barriers	Comments	Sources
Steelhead	Siwash Creek	Currently not used.	distribution equivalent to known distribution.	RM 0.5		no known barriers?	Dewatering likely restricts current use.	
Steelhead	Chiliwist Creek	Unknown	Presumed to ~ RM 0.5.	About the same	where flow and	 (1) natural gradient on old 97 blocks access through orchards. (2) Culvert at ~ RM 0.5. (3) Channelization in lower reach 		T. Neslen, Okanogan Cons. Dist.
Steelhead	Omak Creek	mouth of Trail Creek (RM 17) ; Lower 1 mile of Trail accessible (mainstem Omak not		Same as current distribution	Same as current distribution	No barriers to about river mile 17 (C. Fisher).	Tagged fish recovered for upstream (about river mile 10)	
Steelhead	Salmon Creek	mile from	Possible presumed current use in high water years only to Conconully	Same as spring chinook	Same as spring chinook	Same as Spring Chinook		

Salmonid Species	Distribution	Presumed	Upstream Distribution (first natural barrier)	Potential Upstream Distribution (assumes no natural barriers)	Barriers	Comments	Sources
Steelhead	RM 1/8 mile	equivalent to known	To falls by Ken Williams; need to confirm RM.	where flow and gradients cumulatively	 (1) Old highway 97 ~ 1/8 river mile, and at Mallott (double culverts) 		
Steelhead		Presumed equivalent to known distribution.	unknown	Unknown, likely to where flow and gradients cumulatively prohibitive.		Highly channelized along Loomis Highway	
Steelhead		Presumed equivalent to known distribution.	McAllister Falls	Unknown, likely to where flow and gradients cumulatively prohibitive.			

Wildlife

The Okanogan River watershed supports a wide range of wildlife, as its varied topography and vegetation would suggest. Plant communities in the basin range from the sub-alpine in the high elevations of the Tiffany Mountain area and Pasayten Wilderness to shrub-steppe in the lower elevations along the Similkameen and Okanogan rivers. See Appendix E for a complete list of wildlife species in the basin.

Humans have impacted wildlife since before recorded history. Records begin with European exploration and settlement. Activities of the early European settlers that impacted wildlife and wildlife habitat included mining, cattle drives, fur trapping, agriculture, and orcharding, fire suppression, and forest management activities. Farms and orchards fragmented wildlife habitats and hindered movement of many species.

Wildlife species listed under the Endangered Species Act that are present or may be present in the Okanogan Basin are listed in Table 22. Both federal and state status are listed. Species that are included on the Washington State list but not listed on the Endangered Species Act are listed in Appendix F.

Species	Federal Listing	State listing
Grizzly bear	Threatened	Endangered
Grey Wolf	Endangered	Endangered
Wolverine	Concern	Concern
Lynx	Threatened	Threatened
Fisher	Concern	Endangered
California Bighorn sheep	Concern	
Western gray squirrel	Concern	Threatened
Long-eared myotis	Concern	Monitor
Fringed myotis	Concern	Monitor
Long-legged myotis	Concern	Monitor
Yuma myotis	Concern	Monitor
Small-footed myotis	Concern	Monitor
Pacific Townsend's big-eared bat	Concern	Concern
Bald Eagle	Threatened	Threatened
Northern goshawk	Concern	Concern
Ferruginous hawk	Concern	Threatened
Peregrine Falcon	Concern	Endangered
Burrowing owl	Concern	Concern
Sharp-tailed grouse	Concern	Threatened
Harlequin duck	Concern	
Loggerhead shrike	Concern	Concern
Black Tern	Concern	Monitor
Tailed frog	Concern	Monitor
Columbia spotted frog	Concern	Concern
Oregon Spotted frog	Candidate	Endangered
Western toad	Concern	Concern

Table 22: Federal and State Listed Wildlife Species Present or Potentially Present in the Okanogan Basin.

Species	Federal Listing	State listing
Sagebrush lizard	Concern	
Giant Columbia spire snail	Concern	Concern
Sage grouse	Concern	
Willow flycatcher	Concern	
White-breasted nuthatch	Concern	Concern

The CTCR's main concern for this subbasin and other areas on the Reservation is to maintain viable populations of native and desired non-native species of wildlife, and their supporting habitats, while providing wildlife in sufficient numbers to meet cultural, subsistence, and recreational needs of the Colville Tribal members.

The WDFW maintains an active management program for species of special concern in the basin. Following are discussions of these species and the WDFW management activities.

Forest Carnivores and other Fur-bearers

Fur bearing animals were extensively trapped in the early 1800s and by the turn of the century were practically nonexistent. Reintroduction and protective management has restored harvestable populations of some of these animals (Pacific Northwest River Basins Commission, 1977). The WDFW conducts snow tracking surveys to assess populations of lynx, wolverine, fisher, and other forest carnivores. Lynx, wolverine, and fisher are state and federally listed species. Several of these populations declined dramatically as a result of trapping in the early 1800s. Later, timber harvest and other resource activities further impacted remaining populations.

The CTCR participates in ongoing cooperative studies of forest carnivores with both WFWD and Forest Service including the lynx tracking study and a proposed marten habitat and prey base diet suitability study for the Okanogan Highland area. As previously stated, all native and desired non-native species are of concern to the CTCR. Forest carnivores, specifically: Grizzly bear, black bear, wolf, coyote, fox, cougar, lynx, bobcat, wolverine, fisher, marten, badger, mink, and weasel, are all very important in spiritual, cultural, economic, and ecological ways. It is a priority to the tribes that the predators continue to persevere here in a biologically balanced way. These animals are of high regard ceremonially as are the furbearers, which includes otter, beaver, muskrat, raccoon, and rabbits. The status of these animals in remains unknown.

Mule Deer

Mule deer populations have varied dramatically throughout recorded history of the region. In the 1800s mule deer populations were reported to be extremely low (OWSAC, 2000). In the 1900s, deer populations fluctuated widely, with historic highs in the 1950s and 1960s. Population lows are due to a number of factors, including severe weather conditions, overused winter range, and hunting pressure. Severe winter weather conditions have significantly reduced mule deer populations since 1992. The winter of 1996-97 was especially hard on the local herds. "Qualitative observations from land managers, biologists, and long time residents, as well as harvest figures, suggest the populations may be half of what it was in the mid 1980s and early 1990s" (OWSAC, 2000). A shorter season and reduced number of hunters in 1997 along with easier overwintering conditions during the 1997-98 winter has been beneficial to the herds (OWSAC, 2000).

"Deer damage is a chronic problem in the Omak district. During severe winters, deer are often forced onto low elevation private property in close proximity to human development. At such times, damage to orchards, haystacks, and landscaping can be significant" (OWSAC, 2000).

The WDFW conducts annual mule deer and white-tail deer population surveys, and manages its wildlife areas for winter mule deer range. The USFS and WDNR also manage portions of their lands for winter deer range.

The CTCR is a major financial contributor to, and is involved in, an ongoing longterm mule deer study with WFWD, Chelan Co. PUD, Forest Service, Inland NW Wildlife Council, WSU, UW, and UI. CTCR is actively monitoring habitat, limiting factors and population trends. CTCR performs annual aerial surveys, regulates tribal hunting seasons and manages hunter check stations. Mule deer on the reservation are suffering long –term declines attributed to habitat changes, habitat fragmentation, severe weather conditions and overgrazing. Data from CTCR aerial trend counts indicate severe declines in both mule deer and white-tail populations. (Sanpoil Subbasin Summary). Mule deer are important for cultural and subsistence reasons.

Elk

Elk populations in Eastern Washington are strong and relatively stable due primarily to the large amount of elk winter range controlled by WDFW. Data compiled by CTCR indicate that elk numbers appear to be declining reservation-wide while the population is becoming more distributed. The Omak Creek drainage provides good elk habitat and hunter report records verify that elk are being harvested in that area. CTCR collect information on herd size and structure, regulate tribal member hunting seasons, and utilize check stations. Elk are extremely important to the tribes for subsistence and ceremonial purposes.

Bighorn sheep

Prior to 1900, bighorn sheep roamed over much of the area, but by the turn of the century had all but disappeared. The last native bighorn sheep was killed near Loomis about 1915 (Pacific Northwest River Basins Commission, 1977). They were reintroduced to the basin starting in 1957. (WDFW, 1995). Currently The WDFW is transplanting bighorn sheep to the basin. There are isolated herds of bighorn sheep on both the North Half and on the reservation portion of the Okanogan Subbasin. The CTCR does manage a tribal member bighorn sheep hunt with a drawing for one tag per year. Current information regarding total numbers and structure of the Omak Reserve herd is incomplete.

Small Mammals

Small mammals of particular interest to the Tribes in the Okanogan drainage area, are the myotis and pallid bats, the western gray squirrel, and Merriam's shrew. Tribal management efforts extend to supporting and enhancing existing and potential habitat through reduced fragmentation of wildlife habitat necessary to provide for the life requisites of viable populations of terrestrial, avian, and aquatic species (CTCR, 1999). The Tribes goal of increasing numbers of lagomorphs and small mammals to help support recovery of the lynx may in turn provide a prey diet base for coyote and cougar. This could help to lessen pressure on deer and elk populations.

Raptors

There are currently 21 known active bald eagle nesting territories on the Colville Reservation (Bald Eagle Survey 2000). Nesting activity appears to be expanding due to an increase in breeding adults produced in previous years and presence of abundant potential habitat. Nests are checked twice annually: once in April for occupancy and again in July for production (Annual Report 2000.) The CTCR was an active participant in a 5 year peregrine falcon reintroduction project, concluded in 1997 (CTCR, 1998). The hope is that the falcons have dispersed throughout the reservation. Additionally, golden eagle, goshawk, ferruginous hawk, merlin, prairie falcon, and flammulated owl, as well as other birds of prey, are currently or have been known to inhabit the Okanogan Subbasin area of the reservation. The CRCT holds as a guideline the protection of raptor nest sites that are currently being used, as well as important roost trees and associated habitat in the area surrounding the nest trees (CTCR, 1999). Status of all raptors is, other than bald eagles, is virtually unknown. Raptors are particularly important to the Tribes culturally and spiritually.

Columbia Sharp-tailed Grouse

Columbian sharp-tailed grouse numbers have drastically declined in Washington over the past 100 years, and they are now a federally and state listed species. The breeding population of sharp-tailed grouse in Washington is currently estimated at 380. Shrub-steppe and riparian habitat are critical habitat for sharp-tailed grouse, and both have been heavily manipulated in the basin (OWSAC, 2000). The USFWS recently issued a 90-day Finding on a petition to list sharp-tailed grouse as Threatened under the ES (USFWS, 1999).

According to early explorers sharp-tails used to be plentiful in Eastern Washington. A total of 112 sharp-tailed grouse leks (courtship areas) were documented between 1954 and 1994. Lek counts are used to estimate population size and stability. The number of males per lek and active leks also indicate stability of the population. Males per lek declined from 13 in 1954 to 5 in 1994. In Douglas County from 1954 to 1994, 46 percent of active leks disappeared, 65 percent disappeared in Okanogan County, and 61 percent disappeared in Lincoln County.

Several environmental and habitat changes appear to have led to improved sage grouse and sharp-tailed grouse populations. Sharp-tails are present in Douglas, Lincoln, and Okanogan counties. Areas supporting the most sharp-tails include West Foster Creek, East Foster Creek, Cold Springs Basin, and Dyer Hill in Douglas County; Swanson Lakes Wildlife Area in Lincoln County; and the Tunk Valley and Chesaw Units of the Scotch Creek Wildlife Area in the Okanogan Basin. Ziegler (1979) documented a 51 percent decline in waterbirch and aspen from 1945 to 1977 in Johnson Creek. Waterbirch buds are the primary food of sharp-tailed grouse during the winter (Hays et al., 1988). In addition, 13 percent of landowners contacted in Okanogan County were planning to remove waterbirch or aspen (OWSAC, 2000). Much winter habitat in Okanogan County has been lost to residential development. One lek was destroyed by a recreational subdivision (OWSAC, 2000). Hofmann and Dobler (1988a) also reported the loss of waterbirch in two locations in Okanogan County in less than three months of observation. Sharp-tails no longer used these areas after waterbirch was removed (Hofmann and Dobler, 1988a).

WDFW has an active survey and management program for sharp-tailed grouse due to their state-listed status, and the Okanogan population is considered to be one of the last strongholds for the species. There is an augmentation program underway. Populations and habitat are surveyed annually. Birds are transplanted from elsewhere, research is underway, and WDFW is pursuing land acquisition for habitat.

The CTCR is currently managing sharp-tailed grouse within the Reservation boundaries to eliminate habitat alteration, fragmentation, and human-caused events that put these populations at risk. The CTCR has recently begun a study of this species in coordination with Washington State University to address limiting factors and habitat restoration within the region.

Upland and Game Birds

There are numerous upland birds and small game animals in the Okanogan Basin. Most of these species are dependent upon the riparian zone along rivers and creeks. Upland game bird populations increased in the early years of dry-land farming, which provided winter feed for the birds and fence rows for cover. More recently, bird populations have been negatively impacted by changes in crops, farming methods, grazing, and abandonment of upland dry-land farms. (Pacific Northwest River Basins Commission, 1977).

The CTCR reservation supports many species of upland and other game birds. The CTCR wildlife staff run annual grouse and dove counts, in cooperation with the USFWS. The Tribes provide an annual non-member game bird hunt. Dove numbers on the Okanogan route are down from the early 1990's and chukar numbers are depressed as well (CTCR, 2001). Dove are particularly important in a cultural aspect. Tribal members engage in turkey and grouse hunting and all game birds hold economic, subsistence and cultural value for the tribal membership. Status of birds, other than doves and chukar, is unknown.

Waterfowl

The 1997-98 midwinter waterfowl inventory was completed by WDFW and U.S. Fish and Wildlife Service (USFWS). During the 1980s, ducks declined in the Pacific Flyway

midwinter survey, from about 7,000,000 in the 1970s. Numbers increased from 5,473,691 in 1996-97 to 6,607,263 in 1997-98.

Principal waterfowl species of the Okanogan Basin include Canada goose, mallard, wood duck, common merganser, coot, teal, green-winged teal, American widgeon, common goldeneye, Barrow's goldeneye, ruddy, ring-necked duck, lesser scaup, and bufflehead. Less common species included northern pintail, shoveler, harlequin duck, redhead, canvasback, blue-winged teal, cinnamon teal, gadwall, and whistling swan.

The CTCR performs annual waterfowl surveys which have indicated that waterfowl numbers peaked on the Colville Reservation during the mid-80's and though numbers are still low by comparison, they seem to be slowly increasing (CTCR, 2001) Waterfowl are also part of the non-member hunt and are important not only economically but culturally as well.

Common Loon

Common loons have been nesting on the Twin Lakes, in the eastern portion of the reservation, for at least 20 years on record, though likely much longer historically. Two nesting sites are known and protected. The CTCR participates in an annual international loon banding program and actively protects and manages loon nesting sanctuaries, in conjunction with public education and tribal enforcement of no-wake zones. Large numbers of migratory loons do also utilize many other bodies of water on the reservation, potentially including the Okanogan drainage area. The CTCR have and will continue to demonstrate dedication to the protection of nesting and migratory loons.

Neotropical birds

Surveys for neotropical birds and their habitats have been done only in recent times on forested uplands. There is little or no existing data on which to base trends that might relate to watershed condition. Wild turkeys are being transplanted to the area to augment existing populations.

The CTCR is planning to conduct surveys to assess neotropical bird populations and their habitat. There is presently little data available to determine the limiting factors on neotropical birds.

Reptiles and Amphibians

Very little is currently known of the herptile (reptile and amphibian) in the Okanogan subbasin area. Sagebrush lizard and western toad, both federally listed, have been documented in this area. The CTCR Wildlife department acknowledges the need to survey and does plan collect that information and develop management objectives as resources allow.

Exotic Species

There are numerous introduced species in the basin. Many of these were introduced as game animals. The practice of stocking exotic wildlife for hunting ended in 1983

(OWSAC, 2000). Declines in pheasant and chukar populations since may be a result of this policy change as well as changes in habitat and weather conditions. Table 23 is a listing of the species introduced into the Okanogan River Watershed.

Species	When Introduced	Current Status/Remarks
California bighorn sheep	Native – reintroduced in 1957, 1970, and currently	Program to supplement native populations
Chukar	Unknown	Unknown
Hungarian partridge	Unknown	Unknown
Ring-necked pheasant	Unknown	Unknown
Turkey (Rio Grande subspecies)	1991 through 1995	Stable
California quail	Unknown	Unknown
Red fox	Unknown	Documented

Table 23: Okanogan Subbasin Introduced Wildlife Species.

Watershed Assessment

Numerous assessments have been completed by federal, state, tribal, and local agencies over the last several years. They are listed here, followed by a brief excerpt from each introduction, describing the contents.

USDI Bureau of Land Management and USDA Forest Service. 2000. The Interior Columbia Basin Ecosystem Management Project DRAFT.

This project was implemented to develop a scientifically sound and ecosystembased strategy for management of eastside forests. The draft EIS focuses on critical needs at a broad scale: landscape health; aquatic habitat; terrestrial habitat; and human needs, products, and services. The management direction in the EIS describes desired outcomes, and defines a network of important areas from which to anchor fish and wildlife conservation and ecosystem restoration efforts.

USDA Forest Service. 1999. Antoine & Siwash Creeks Watershed Analysis Draft. Tonasket Ranger District, Okanogan National Forest, Okanogan, WA.

USDA Forest Service. 1999. Tonasket Creek Watershed Analysis Draft. Tonasket Ranger District, Okanogan National Forest, Okanogan, WA.

USDA Forest Service. 1998. Bonaparte Creek Watershed Analysis Draft. Tonasket Ranger District, Okanogan National Forest, Okanogan, WA.

USDA Forest Service. 1997. Salmon Creek Watershed Analysis Draft. Tonasket Ranger District, Okanogan National Forest, Okanogan, WA

Beginning in 1995, the Okanogan National Forest has conducted watershed analyses on all major drainages on the forest. These assessments document the existing condition of the resources, and recommend activities that would help to meet management direction pertaining to the watershed.

USDA Forest Service. 2000. Integrated Weed Management Environmental Assessment. Okanogan National Forest, Okanogan, WA.

This assessment documents the analysis and potential effects of implementing an integrated weed management program in the Okanogan National Forest. Current conditions and environmental consequences of the proposed alternative action plans are described.

National Marine Fisheries Service, et al. 1998. Aquatic Species and Habitat Assessment: Wenatchee, Entiat, Methow, and Okanogan Watersheds.

This document summarizes information on aquatic species and their habitats in the four major tributaries to the mid-Columbia River. The emphasis is on anadromous salmonids. The report is based on the knowledge of local parties, fisheries and aquatic scientists, and from historical and recent studies.

Washington Department of Ecology. 1995. Initial Watershed Assessment, Water Resource Inventory Area 49, Okanogan River Watershed. Open file Report 95-14. Prepared by Montgomery Water Group, Inc., Kirkland, WA.

This report is the product of a recent initiative by the WSDOE to assess the availability of ground and surface water for each watershed within Washington State. This initiative is part of a larger overall effort to make the water rights decision-making process more efficient. The watershed assessment process will not only reduce the time needed to make decisions, but also will allow WSDOE to make better informed decisions based on a more comprehensive understanding of each watershed. WSDOE also believes these reports will be useful to local governments for planning purposes.

The scope of this report was limited to a review of existing information. No new field work or data collection efforts were conducted. Numerous data exist providing information on the geology and groundwater resources of the Okanogan area. The information is primarily in the form of reports and maps by the United States Geological Survey (USGS), the State of Washington Department of Natural Resources (WDNR) and the State of Washington Department of Ecology (WSDOE). Other sources of data include master's theses performed in the area, water well logs on file with WSDOE, and miscellaneous data collected by various agencies. A complete list of the data reviewed for this report is contained in the bibliography.

Washington State Conservation Commission. Salmon, Steelhead, and Bull Trout Habitat Limiting Factors. Water Resources Inventory Area 49. Prepared by ENTRIX and Golder Associates, Inc. Due to be released in June 2001.

This document will assess the habitat conditions in the Okanogan Basin as they affect the capacity of the habitat to sustain naturally producing salmonid populations.

Confederated Tribes of the Colville Indian Reservation and Natural Resource Conservation Service. 1995. Omak Creek Restoration Plan. Okanogan County, Washington.

Confederated Tribes of the Colville Indian Reservation, Okanogan County, NRCS. 1995. Omak Creek Watershed Plan and Environmental Assessment. Okanogan, Washington.

During 1995 a watershed assessment was completed for Omak Creek. The assessment was prepared under the authority of the Watershed Protection and Flood Prevention Act (16U.S.C 1001-1008), known as Public Law 566 (PL 566). The plan was prepared by the CTCR, Natural Resources Conservation Service (NRCS) and the Bureau of Indian Affairs (BIA). The plan was formulated to achieve watershed improvement and to restore fish habitat for anadromous fish.

Colville Confederated Tribe. 1997. F. Phase I: Inventory and Analysis Reports. Okanogan County, WA.

Okanogan Conservation Districts and Okanogan Watershed Stakeholders' Advisory Committee. 2000. Okanogan Watershed Water Quality Management Plan. Okanogan, WA.

This document was developed to characterize the environments of the Okanogan River Watershed and recommend action items necessary to protect or improve water quality conditions. A water quality monitoring plan is outlined in this document, and was implemented in fall 2000.

Loomis State Forest Final Landscape Plan. 1996. Washington State Department of Natural Resources. Olympia.

Upper Columbia Salmon Recovery Board (UCSRB). 2001 A Strategy to Protect an Restore Salmonid Habitat in the upper Columbia Region. Discussion draft, July 12, 2001

This document outlines a proposed strategy to protect and restore salmonid habitat in the Upper Columbia Region. The intent of the document is to provide a technical foundation to set regional priorities for habitat protection and restoration, based on available information and the professional judgement of fisheries biologists familiar with the region. This report was developed by a Regional Technical Team (RTT), which was established by the Upper Columbia Salmon Recovery Board (UCSRB). Recommendations contained herein may be used by decision-makers to more effectively allocate resources to contribute to the recovery of salmonids listed under the federal Endangered Species Act (ESA). This report is an update to an initial document provided to the UCSRB (RTT 2000). It provides more detail than the previous reports on the types of habitat protection and restoration measures, and suggests means to incorporate various habitat and fish production assessments into an interim regional effectiveness-monitoring program. The RTT will release a companion report on assessment and effectiveness monitoring in early 2002. Proposed Actions by Management Agencies Appendix K lists projects proposed by the Confederated Tribes of the Colville Reservation.

A Strategy to Protect and Restore Salmonid Habitat in the Upper Columbia Region

A Report to the Upper Columbia Salmon Recovery Board (USCRB) from the Upper Columbia Regional Technical Team (RTT)

This document outlines a proposed strategy to protect and restore salmonid habitat in the Upper Columbia Region. The intent of the document is to provide a technical foundation to set regional priorities for habitat protection and restoration, based on available information and the professional judgement of fisheries biologists familiar with the region.

The RTT considers this report to be iterative. New and more refined biological priorities could be developed when key policy directives are made, or when new biological data are gathered. The priorities suggested in this report are consistent with the July 2000 report released by the RTT. This version provides greater detail and suggests a more strategic approach for protection and restoration of habitat.

This document complements the Habitat Limiting Factors Analyses (HLFA) conducted by the Washington Conservation Commission. It uses the information in the completed HLFA reports (Entiat, Foster Creek/Moses Coulee, and Methow) and the draft HLFA reports (Wenatchee and Okanogan) to establish a common framework throughout the region, rather than on an individual WRIA basis.

Limiting Factors

Barriers to fish migration, elevated temperatures, and sedimentation are some of the primary limiting factor to anadromous fish reproductive success in the Okanogan Basin. The Okanogan River and most of the tributaries have human made barriers, including dams, culverts, and dewatered stream channels. High water temperatures in the mainstem Okanogan River limit fish reproduction and migration.

The CTCR is currently conducting a limiting factors analysis in conjunction with WSCC for the Okanogan Basin.

Artificial Production

There are four hatcheries that supply salmonids to the Okanogan Basin streams (Table 24). Wells Dam supplies steelhead and chinook. The Omak Hatchery produces rainbow trout, eastern brook trout, Lahontan cutthroat trout, and kokanee, all for the sports fishery. The CTCR runs a resident trout hatchery, from which they supply Lahontan cutthroat to Omak Lake. The CTCR also managed the Cassimer Bar Hatchery on the Columbia River to produce sockeye salmon, until 2001, when the Douglas PUD discontinued funding to that facility. There are several reasons for the decision to withdraw funding. The CTCR is currently considering management options, including using the facility to raise locally adapted steelhead for the basin.

Table 24: Hatcheries that Supply the Okanogan Basin.

Hatchery	Management Agency	Drainage	Fish
Omak Hatchery	WDFW	Omak	Trout, Kokanee
Similkameen Rearing Pond	WDFW	Similkameen	
Wells Dam Hatchery	WDFW	Columbia	Steelhead, chinook
CTCR trout hatchery	CTCR	Columbia (Chief Joseph Bar)	Trout

Artificial production in the basin for 2000 is outlined in Table 25. Projections for artificial production of steelhead in 2001 are displayed in Table 26. Artificial production from 1983 – 1998 is summarized in Table 27. See Appendix G for the Hatchery and Genetic Management Plan for Okanogan Subbasin production programs.

Table 25: Artificial production in the Okanogan Subbasin - year 2000 (Streamnet, 2000).

Agency	Species	Age	Size #/lb.	# Rls'd	Facility	Release Location	Comments
CTCR	Sockeye	1	56	21,557	Cassimer Bar	L. Osoyoos/ Okanogan River	100% left ventral clipped
WDFW	Summer Steelhead	1	6.2	68,580	Wells	Similkameen Rearing Pond	100% adipose clipped
WDFW	Summer Steelhead	1	6.2	76,070	Wells	Okanogan River	100% adipose clipped
				19,400	Wells	Omak Creek	100% adipose clipped
				10,395	Wells	Salmon Creek	100% adipose clipped
WDFW	Summer Chinook	1	9	293,064	Wells	Similkameen Rearing Pond/ Okanogan River	100% adipose clipped and coded wire tagged.
WDFW	Summer Chinook	0	70	85	WDFW	Okanogan River	Released by Brewster School District Unmarked
WDFW	Summer Chinook	0	80	196	WDFW	Similkameen Rearing Pond/ Okanogan River	Released by Oroville Elem. School in Similkameen River. Unmarked

Stream Name	Projected Release
Omak Creek	20,000
Salmon Creek	15,000
Similkameen	50,000
Okanogan River	75,000
Total for all streams	160,000

Table 26: Projected Releases of Steelhead for 2001.

In March 2001, 140,000 Carson stock spring chinook smolts were released into Omak Creek. These fish were the progeny of surplus returning adults at the USFWS hatchery in Winthrop, Washington.

An agreement between NMFS and CTCR on the use of Carson Stock spring chinook is included in Appendix O. There is an ongoing discussion about the use of outof-basin stocks.

Stream Name	Species	Run	Release Year	Number Released
Bonaparte Creek	Chinook	Summer	1995	384
Bonaparte Creek	Sockeye		1995	30,100
			1996	30,000
			1998	30,228
Okanogan River	Chinook	Summer	1995	480
Okanogan River	Sockeye		1993	38,200
Okanogan River	Steelhead	Summer	1987	95,550
			1988	91,620
			1989	102,300
			1990	98,400
			1991	72,830
			1992	66,645
			1993	60,660
			1994	38,700
			1995	40,875
			1996	37,500
			1997	49,920
			1998	39,998
Omak Creek	Steelhead	Summer	1989	10,500
			1991	6,290

Table 27: Historic Hatchery Release Data for the Okanogan Basin, 1983 – 1998.

Stream Name	Species	Run	Release Year	Number Released
			1992	5,400
			1993	6,460
			1994	7,410
			1998	10,005
Palmer Creek	Sockeye	N/A	1995	100,100
Palmer Creek	Sockeye	N/A	1998	115,416
0:			1001	000
Similkameen River	Chinook	Fall	1994	828
			1996	466
Similkameen River	Chinook	Summer	1991	352,600
			1992	540,000
			1993	675,690
			1994	547,182
			1995	586,532
			1996	536,299
			1997	587,000
			1998	507,913
Similkameen River	Steelhead	Summer	1983	99,639
Similikameen Kiver	Steemeau	Summer	1983	76,080
			1985	59,439
			1986	50,984
			1987	90,410
			1988	81,528
			1989	89,674
			1990	97,494
			1991	90,320
			1992	47,215
			1993	51,360
			1994	49,800
		1	1995	50,350
		1	1996	37,500
		1	1997	49,800
		1	1998	49,901

Existing and Past Efforts

Okanogan River Streambank Restoration

A streambank restoration demonstration project was completed in 1995 along 500 meters of highly erosive bank near Ellisforde. The restoration included bank sloping, rootwads, rock placement, and willow/cottonwood plantings. By 1997, much of this streambank restoration has failed in flood conditions due to inadequate size and placement of barbs (NRCS, 1994).

Okanogan River Floodplain Acquisition

The Washington Department of Fish and Wildlife has talked to landowners in the Okanogan floodplain between Riverside and Janis. This is the only intact riparian area along the Okanogan in the U.S. Landowners are interested in selling, but as yet the state does not have funds to make the purchase.

Okanogan River Sockeye Population

To address stabilizing and rebuilding the population of Okanogan River sockeye, an experimental re-introduction of sockeye salmon in Skaha Lake is proposed. This study would assess the potential risks (disease transfer, exotic species introduction, competition) and benefits (strengthening an indigenous stock, increased commercial, sport and tribal fisheries) of reintroducing sockeye salmon. The results of this study would be the basis for developing a strategy for re-introducing the species into Okanogan Lake, the farthest upriver lake. Okanogan Lake (34,997 ha) is considerably larger than Osoyoos Lake (2,332 ha) and Lake Wenatchee (995 ha), and consequently has the potential for a substantial increase in rearing capacity.

Omak Creek Instream And Riparian Habitat Restoration

The CTCR and NRCS have ongoing efforts to restore instream and riparian habitat in Omak Creek. Restoration efforts include

- Point bar and log weir construction on the mainstem Omak Creek to divert flow from exposed banks.
- Riparian planting on Omak Creek and tributaries.
- Removal of two passage barriers in 1998.
- Redesign of the stream channel in lower Omak Creek to address severe erosion and lateral migration of the channel.
- In 2001, 2 more miles of the creek will be inventoried in order to develop further restoration plans.

Omak Creek projects are funded by the National Fish and Wildlife Federation, the Salmon Recovery Funding Board (Project #00-1683-D), and BPA (Project #200000100).

Upper Columbia River Salmonid Spawning Habitat Assessment

The CTCR is conducting an assessment of spawning habitat for anadromous salmonids from Chief Joseph Dam to Grand Coulee Dam. This project is funded by CTCR and conducted by Batelle, Inc.

Omak Creek Upland Restoration

The CTCR is restoring upland habitat. Efforts include:

• Road decommissioning – including pulling culverts and seeding roads.

- Changes in logging practices to minimize sediment delivery and to lessen the impact on hydrologic cycle.
- Fencing riparian areas in upland grazing allotments.
- Altering allotment sizes to better utilize existing vegetation.
- Incorporating grazing strategies such as rest-rotation and deferred grazing.

Salmon Creek Instream Habitat Restoration

For the past 90 years, the Okanogan Irrigation District (OID) has diverted 100 percent of the flow from Salmon Creek leaving 3.5 miles downstream of the diversion dam dry.

The CTCR, OID, and NRCS are involved in an effort to restore instream and riparian habitat in lower Salmon Creek. The primary goal is to restore fish passage for spring chinook and steelhead. Restoration efforts include:

- In May 1998, the CTCR and the OID formed a partnership to study the feasibility of providing water downstream of the diversion dam while maintaining the OID water delivery service.
- In 2000, acquired 1500 acre-feet of water from irrigators, to be spilled at the time of spring chinook smolt migration to allow downstream passage.
- In 2001, Phase 1 of the restoration of the lower 4.3 miles of Salmon Creek will begin. This will involve public outreach, field studies, NEPA, project design, and permitting.

Protection of existing spawning and rearing habitat along with alleviation of survival problems in summer rearing/overwintering in the lower tributaries are critical objectives of the strategy. Specific recommendations of habitat protection activities are being developed and pursued through the Mid-Columbia Habitat Conservation Plan currently under development. There is significant potential for increasing spawning and rearing habitat available to anadromous fish in this subbasin by addressing passage barriers such as Enloe Dam.

Supplementation is being implemented primarily through mid-Columbia PUD funding.

Scotch Creek Wildlife Area Upland Restoration

As a working cattle ranch, much of the uplands in this Wildlife Area were converted from native shrub-steppe grassland to grain fields of rye or wheat. Later these fields were seeded for livestock grazing. The native rangeland has been severely over-grazed, allowing the encroachment of diffuse knapweed and Russian knapweed. Deciduous trees (primarily water birch) were removed along the riparian corridor to accommodate alfalfa production. This practice drastically reduced critical wintering habitat for sharp-tailed grouse.

The Scotch Creek Wildlife Area management plan was approved by BPA in 1997. Since that time restoration and enhancement efforts have included planting shrubs, weed control, and grassland seedings.

Sinlahekin Wildlife Area Ecosystem Assessment And Restoration The Sinlahekin Wildlife Area will conduct vegetation and small mammal inventories in 2001. They are in the preliminary stages of reintroducing fire the forest habitat. This involves thinning dense stands of ponderosa pine and Douglas-fir.

Loomis Forest Water Quality Monitoring

Loomis Water Quality Monitoring Project is in its fifth year. In 1995, the Washington Department of Natural Resources (WDNR) and the Washington Department of Ecology (WSDOE) cooperatively established several water quality monitoring sites on the Loomis State Forest. The purpose of these monitoring sites is to detect long-term changes in water quality (if any) as a result of management practices on the forest. A macroinvertebrate assessment and stream channel condition assessment is conducted annually at each of the study sites.

Loomis/Pasayten Forest Carnivores Tracking Survey

A forest carnivore study is being funded by WFDW and USFS in the mid-elevation forests of the eastern Pasayten Wilderness and the western Loomis Forest. The project is being managed by a University of Washington graduate student, and will run from Winter 2000-01 to Winter 2001-02.

Basin-Wide Water Quality Assessment

The Okanogan Conservation District (OCD) began a water quality monitoring program in May 2000. There are 38 monitoring sites in 11 subdrainages. All sites are tested for pH, DO, temperature, turbidity, conductivity, and total dissolved solids. Seven of the sites are also tested for ammonia-nitrogen, nitrate-nitrite, total per sulfate (TPN), dissolved phosphorous, total phosphorus, total alkalinity, total suspended solids, and fecal coliform. During storm events sites are tested for the presence of heavy metals. There is also a pesticide and organochloride scan, and a macroinvertebrate survey.

Bonneville Power Administration

The Bonneville Power Administration has several recent and ongoing efforts in the Okanogan Basin (Table 28).

			Project				
Location	State	Proj. #	Description	Agency	ProjTitle	Milestones	Short Project Description
Okanogan basin	вс	198347700	Tributary Passage	IEC BEAK Cnsits.	Enloe Dam passage	Project biologists inventoried the aquatic habitat of 4 major tributaries and 59 stream reaches in the mainstem of the Similkameen River in northeastern Washington above Enloe Dam. Streamflows were measured and water samples analyzed for contaminants.	Study of passage issues at Enloe Dam and potential salmonid habitat above the dam. Develop a preferred alternative.
Okanogan basin	WA	199604200		ССТ	Okanogan Focus	Due to a water quality study currently underway by the Okanogan County Public Works and the Okanogan Conservation which would serve some functions similar to this project, it was decided to postpone the focus watershed effort for the whole basin and conce	Initiate the coordination of a watershed planning project that will assist with the restoration and enhancement of the anadromous fish resources of the Okanogan River basin. Gather data pertinent to current, and desired watershed conditions.
Okanogan basin	WA	199505600	Land Purchase / Enhanceme nt	WDFW	Scotch Ck Wildlife Area enhancem ent	Not recorded	Purchase and initiate enhancement activities on at the Scotch Creek Wildlife Area sites: Scotch Creek, Pogue Mtn, Chesaw and Tunk Valley Units in the Okanogan Basin.
Upper Columbia basin	WA	199506700	Land Purchase / Enhanceme nt	ССТ	CCT Perfomanc e contract	Purchased 11,720 acres for \$6,401,516 from the Berg Brothers. The tract lies between Whitmore Mtn and the Columbia River and is part of the Hellsgate Winter Range. Baseline HEP field work and analysis completed for about 4,800 acres.	Acquire minimum habitat units to be permanently protected for wildlife as outlined in a MOA with the Colville Tribe. The Berg Brothers Habitat Area between Whitmore Mtn and the Columbia River is one tract.
Upper Columbia Basin	WA	198503800	Facility Design / Construction			The Colville Confederated Tribes received the construction contract for the resident fish hatchery in July 1988. Construction was completed October 1, 1989.	Produce 22,679 kg (50,000 lbs.) of resident fish that include brook trout, rainbow trout and lahontan cutthroat trout. All the fish will be released into reservation waters, including boundary waters in an effort to provide a successful subsistence/recre
Upper Columbia Basin	WA	198503801	Education	сст	CCT cultural training program	Six individuals were trained in the field of fish culture to operate the Colville Tribal Trout Hatchery. Two individuals were chosen to assist the hatchery manager in operation and maintenance of the facility. The training was completed in July 1989.	Training of 6 members of the Colville Tribe to operate the Colville Tribal Trout Hatchery.
Upper Columbia Basin	WA	199404100	Mitigation / Recovery	сст		The CCT developed and implemented a public involvement program to review wildlife mitigation proposals. This included an Information Hot Line, brochures, maps, and committee and general meetings.	Develop and implement a public involvement program to reveiw wildlife mitigation proposals on the Colville Reservation. Coordinate such activities with BPA to facilitate NEPA requirements.
Okanogan Basin	вс	20001300		ССТ			Evaluation of experimental re-introduction of sockeye salmon into Skaha Lake
Okanogan Basin	WA	200000100		ССТ			Improvement of anadromous fish habitat and passage in Omak Creek

Table 28: Recent and Existing BPA projects in the Okanogan Basin.

Habitat Conservation Plan for Wells, Rocky Reach and Rock Island Hydroelectric Projects

The CTCR is in the process of creating Habitat Conservation Plans (HCPs) for the three Columbia River hydroelectric projects.

Proposed Actions by Management Agencies

Okanogan River Sockeye Population

An experimental re-introduction of sockeye salmon in Skaha Lake has been proposed. The goal is to stabilize and rebuild the Okanogan River sockeye population. This study would assess the potential risks and benefits of reintroducing sockeye salmon. Potential risks include disease transfer, exotic species introduction, competition. Potential benefits include increased commercial, sport and tribal fisheries. The results of the study would be

the basis for developing a strategy for reintroduction sockeye into Okanogan Lake, the farthest upriver lake. Okanogan Lake is considerably larger than Lake Osoyoos and Lake Wenatchee, and has the potential for a substantial increase in rearing capacity.

Other Proposed Actions

Appendix J includes the Okanogan National Forest Schedule of Proposed Actions (SOPA) for 2001. Appendix O lists projects proposed by the Confederated Tribes of the Colville Reservation.

Subbasin Habitat Reports (Limiting Factors Analysis)

Notice to Readers

This report chapter contains a final draft version of the Okanogan/Similkameen Limiting Factors Analysis (LFA)¹. This report is sponsored by the Confederated Colville Tribes and being developed in conjunction with the Washington State Conservation Commission as provided for in Engrossed Substitute House Bill 2496 (1998). Some material is duplicated. However, the stand-alone report provides additional detail in key areas.

¹ Fisher J. S. & K. S. Wolf, et al. 2001. Golder Associates/ENRIX: Report to the Confederated Colville Tribes Limiting Factors Analysis for the Okanogan Watershed.

Introduction

Under the Salmon Recovery Act—RCW 75.46, passed as House Bill 2496, and later revised as Senate Bill 5595, the Washington Conservation Commission (WCC) is charged with administrating the identification of the habitat factors limiting the production of salmonids throughout the watersheds of the State of Washington. This information is intended as a tool to guide Lead Entity groups and the Salmon Recovery Funding Board (SRFB) in prioritizing salmonid habitat restoration and protection projects seeking state and federal funds. Specifically, ESHB 2496 in part:

- directs the WCC, in consultation with local government and the tribes, to invite private, federal, state, tribal and local government personnel with appropriate expertise to act as a technical advisory group (section 090, subsection 1, RCW 75.46);
- directs the assembled technical advisory group to identify limiting factors for salmonid production that relate specifically to habitat (section 090, subsection 3, RCW 75.46);
- defines limiting factors as "conditions that limit the ability of habitat to fully sustain populations of salmon." (section 010, subsection 5, RCW 75.46);
- defines salmon as "all members of the family Salmonidae that are capable of self-sustaining, natural production." (section 010, subsection 7, RCW 75.46).

The overall goal of the limiting factors assessments overseen throughout the state by the WCC is to identify habitat factors limiting production of anadromous salmonids in Washington's major watersheds. The responsibilities assigned to the WCC under ESHB 2496 do not constitute a full limiting factors analysis, as the exercise does not identify which factors limiting production are *most* limited—at either the watershed *or* sub-watershed scale. Furthermore, the process focuses on the habitat elements of a watershed only, and does not consider in depth how hatcheries, hydropower, water quantity and harvest management potentially affect salmonid production. Collateral watershed planning efforts detailed under ESHB 2514 heavily focus on water quantity evaluations, with some examination of habitat as well.

Beginning in October 2000, a technical advisory group (TAG) consisting of persons with technical/professional knowledge of the Okanogan watershed was convened. Through a series of meetings held between late 2000 and July 2001, input was solicited from TAG participants regarding existing data, published reports, and their professional knowledge of habitat conditions in the watershed. The information was then assembled into draft chapters of the report and circulated for review and comments. The TAG was then reconvened in August 2001 to critique the draft final document, consider limiting factor ratings on the sub-watershed level, and develop associated action item recommendations. This September 2001 final draft of the Okanogan LFA reflects the reviews of the draft distributed in August 2001 to the TAG for comment.

Given the limited data on fish habitat conditions in the Okanogan watershed, professional knowledge was heavily relied upon in rating habitat at the sub-watershed and/or reach level. Sub-watershed habitat conditions were rated as "Good", "Fair" or "Poor" based on criteria outlined in chapter 4 of this document. A quantitative reach-by-reach assessment of habitat conditions in most of the Okanogan sub-watersheds was not funded and therefore could not be performed for this current effort. Such analyses are needed in some Okanogan sub-watersheds to refine the coordinated, watershed-level strategy that appropriately protects and restores salmonid habitat. Coordinated on-the-ground habitat assessment and rehabilitation efforts will ultimately facilitate the sustainability of anadromous salmonids in the naturally suitable habitats of the Okanogan watershed.

The Role of Habitat in the Natural Reproduction of Salmonids

Washington State anadromous salmonid populations have evolved in their specific habitats during the last 10,000 years (Miller 1965). While there continues to be debate over the specific numeric tolerance and preferences of habitat conditions required by salmonids, the following elements of habitat are generally accepted as necessary for the continued survival of all salmonid species:

- cool, clean, well-oxygenated water free of toxic pollutant concentrations;
- in-stream flows that resemble the natural hydrology of the watershed, maintaining adequate flows during low flow periods and minimizing the frequency and magnitude of peak flows (e.g., stormwater);
- clean spawning gravels with limited fine sediment embeddness, and lacking toxic materials;
- sufficient pool area and frequency to support juvenile rearing and dispersal, and resting/staging areas for returning adults;
- in-stream large woody debris or other suitable in-stream cover that is of sufficient size given a stream's channel morphology and flow to provide cover, create pools, and provide habitat diversity;
- unobstructed migration for juveniles and adults to and from their stream of origin;
- riparian stands of sufficient height and breadth to provide cover, shade, LWD recruitment, and organic enrichment, ; and
- estuarine conditions that support the production of prey organisms for juvenile outmigrants as well as for rearing and returning adults.

Water chemistry, flow, and the physical attributes unique to each stream have helped shape the characteristics of each salmonid population in Washington's waters, including those that persist in the Okanogan watershed. These unique physical attributes resulted in distinct salmonid stocks for each salmonid species throughout their range. Stocks are considered "population units" of a species that do not extensively interbreed because of run timing specificity, or because of a stream's unique chemical and physical characteristics in a stocks natal spawning grounds. Spawning ground fidelity thereby minimizes the potential for genetic drift during reproduction, thus preserving the distinctiveness of each stock.

Salmonid stock survival requires that habitat needs are met for egg incubation, juvenile rearing, migration of juveniles to saltwater, estuary rearing, ocean rearing, adult migration to spawning areas, and spawning. These needs vary slightly by species and even by stock. The most critical components of salmonid habitat include water quality, water quantity and hydrology, basin geology, fluvial geomorphology, vegetation and riparian conditions. Changes in stream flows can alter water quality by affecting temperatures, decreasing the amount of available dissolved oxygen, sediment accumulation, and concentrating toxic materials. For example, water quality can be reduced by heavy sediment loads, which in turn can result in increased channel instability and decreased spawner success. The riparian zone interacts with the stream environment, providing nutrients and a food web base, woody debris for habitat and flow control (channel complexity), filtering runoff prior to surface water entry (water quality), and providing shade to aid in water temperature control. In turn, the riparian zone is affected by flows; thus, unnaturally dewatered reaches will, over time, be expected to have altered riparian habitats relative to their potential.

When adults return to spawn, they not only need adequate flows and water quality, but also unimpeded passage to natal grounds. They need pools with overhanging vegetative cover and instream structures such as root wads to provide for resting and shelter from predators. Successful spawning and incubation further requires clean, unimbedded gravel areas of appropriate patch size and diameter for each species. After entering freshwater, salmon have a limited time to migrate and spawn, sometimes as little as 2-3 weeks. Thus, delays may result in pre-spawn mortalities from disease or predation, or spawning in suboptimal locations.

During incubation floods can have great impacts on salmon populations by scouring and/embedding the gravel nests (redds) where salmon have deposited their eggs. Human activities have been shown to increase the amplitude and frequency of such flood flows whereas in undisturbed systems, upland vegetation stores water and shades snowpack slowing the rate of water runoff into the stream. A healthy river also has sinuosity with large pieces of wood contributed by an intact, mature riparian zone. The uplands and riparian areas both act to slow the speed of water downstream. Natural systems have access to floodplains where wetlands store flood water and later discharge this storage back to the river during lower flows. Under natural conditions, erosion and sediment transport are balanced to provide a constant supply of new gravel for spawning and incubation without increasing overall channel instability.

When the young fry emerge from the gravels, some species of salmonids such as chum, pink and 'ocean-type' chinook migrate quickly downstream toward the estuary while other species such as 'stream-type' chinook, coho and steelhead trout search for suitable rearing habitat within side channels and sloughs, tributaries, spring-fed "seep" areas, stream margins, or lakes (sockeye); the freshwater residency of these species may last for two years before smoltification. Quiet water margins and off channel areas are vital for early juvenile habitat. The presence of woody debris and overhead cover aid in food and nutrient inputs as well as provide protection from predators. As growth continues, the juvenile salmonids (parr) will move away from the quiet shallow areas into deeper, faster water.

During the winter, salmonids require habitat that will sustain growth and protect them from predators and harsh winter conditions. Habitat use is determined by behavior changes associated with declining temperatures in the fall and winter. Behavior changes vary by species and life stage (Bjornn and Reiser 1991). In a study of seasonal habitat use of juvenile chinook salmon and steelhead in the Wenatchee River (Don Chapman Consultants 1989) juveniles were located along the stream margin in boulder zones from October to March. During the day they hid in interstitial spaces among boulders; at night both species stationed on boulders and sand adjacent to their daytime habitat. When water temperatures dropped below 50° F (10° C), juveniles were not observed in the water column during the daytime, but remained in the substrate. Adult steelhead that overwinter in the upper-Columbia region are thought to generally seek refuge in the mainstem Columbia River. Some adults will also seek refuge in deep pools of the mainstem tributaries to the Columbia River (C. Peven, personal communication) but may return to the Columbia River if instream water temperatures become too harsh (L. Brown, personal communication).

The following spring, smolts begin their seaward migration. Flows, food and cover that provides protection from predators are critical. Once again the unique natural flow regime in each river that shaped the population's characteristics through adaptation over the last 10,000 years, plays an important role in the salmonids behavior and survival. In contrast to natural flow regimes, salmonids from the upper-Columbia region must migrate through a river system that has been highly altered by hydroelectric development. Hydropower dams converted the free-flowing Columbia River to a series of reservoirs upstream from the Bonneville Dam. Subyearling summer chinook salmon produced in upper-Columbia tributaries tend now to spend several weeks in the

reservoirs before they arrive at Priest Rapids Dam beginning in August (Chapman et al. 1994a). Delaying migration time can potentially increase mortality of juveniles salmonids or convert their life pattern from migratory to residual. Such residualism has been widely documented in Yakima river steelhead (Pearsons et al. 1996).

Once reaching the estuary, adequate natural habitat must exist to support the detritus-based food web upon which salmonids depend during the early portions of their marine life history. Habitat elements of greatest importance to juvenile salmonids in the marine environment include eelgrass beds, mudflats, and salt marshes. The processes that contribute nutrients and woody debris to these environments must be maintained to provide cover from predators and to sustain the food web. Common disruptions to these habitats include dikes, bulkheads, dredging and filling activities, pollution, and alteration of downstream components such as woody debris and sediment loads.

The distribution, seasonal abundance and migratory behavior of salmon and steelhead exiting the estuary for the nearshore and offshore ocean environment varies considerably (Groot and Margolis 1991; Chapman et al. 1994b). The movements of chinook at sea are more complicated than those of sockeye and pink salmon. Ocean residence for spring chinook last from 2-4 years compared to 3-4 years for summer/fall chinook. First-year chinook remain along the continental shelf north to the Gulf of Alaska more than other first-year salmon species (Chapman et al. 1995). In contrast, distribution of young steelhead differ in time and space from any salmon. Steelhead do not remain along the coastal belt but move directly seaward during their first ocean summer (Chapman et al. 1994b).

In addition to the relationships between various salmonid species and their habitats, there are also interactions between the species that have evolved over the last 10,000 years. These interactions represent a delicate balance affected by habitat quality and habitat quantity. In the Okanogan watershed, this relationship is complicated by the introduction of non-native salmonid and centrarchid species (e.g., brook trout, smallmouth bass), the introduction of salmonid hatchery stocks, and the extirpation of native coho and bull trout stocks. Salmonids exhibit a variety of life history patterns often as a result of their adaptability to a complex and fluctuating environment (Lestelle et al. 1996). Maintaining access to sufficient quantities of high quality habitat contributes to supporting multiple life history stages for all salmonid species, thereby increasing a population's resiliency to environmental change, whether that change was natural or human-caused.

Okanogan Watershed Characteristics and Conditions

Watershed Overview

The Okanogan River originates in British Columbia and flows through a series of four large lake systems or impoundments before reaching the United States (**Figure 2-1**). These lakes, from the headwaters progressing downstream include: Okanogan Lake, Skaha Lake, Lake Vaseaux and Lake Osoyoos. The river eventually flows into the Columbia River at Columbia River mile 533.5. The mainstem Okanogan River within Washington State, stretches some 79 miles from its confluence with the Columbia River to outlet of Lake Osoyoos (WDNR 1982). The watershed encompasses about 2,600 square miles within the state of Washington, and about 6,300 square miles within the Canadian province of British Columbia (WDOE 1995). Using a modified 5th field hydrologic unit scale (i.e., HUC 5), the watershed was delineated into 19 sub-watersheds for this LFA (Figure 2-2). Sub-watershed characteristics are described in Chapter 5.

The eastern and western boundaries of the mainstem Okanogan basin are steep, jagged ridgelines at elevations ranging from 1,500 feet to more than 6,000 feet above the basin floor (WDOE 1995). The average width of the drainage area for the mainstem is approximately 35 miles, and the floodplain of the Okanogan River valley averages about a mile in width. The mainstem's elevation descends from an elevation of about 920 feet at the international boundary to about 780 feet at the river's confluence with the Columbia River. Osoyoos Lake occupies the northernmost four miles of the Okanogan valley floor in Washington and extends several miles into Canada. Multiple natural terraces formed mostly of glacially deposited gravel rise locally as much as 500 feet above the valley floor to the foot of, and between, the lateral ridges.

Land Ownership and Use

The Okanogan/Similkameen watershed is the largest and most complex of the four mid-Columbia River tributaries: Entiat, Okanogan, Methow and Wenatchee. A large portion of the watershed within the U.S. is privately owned (**Figure 2-2**). The Colville Indian Reservation, located in the southeast part of the watershed, comprises about 25 percent of the watershed (OWC 2000). Public ownership comprises 41 percent of the watershed, including 21 percent owned by the USFS, 17 percent owned by the State of Washington, 3 percent owned by the Bureau of Land Management, and the rest owned by miscellaneous agencies (**Table 2-1**). The remaining 34 percent of the watershed is under private ownership (OWC 2000).

Land use in the Okanogan River watershed includes agriculture, range, timber, residential and recreation, and some industrial and commercial (**Table 2-2, Figure 2-3**). Forest and rangelands about equally dominate land use. The watershed contains approximately 36,000 to 40,000 acres of irrigated area. About 60 percent of that acreage (24,421 acres) is contained within irrigation districts or ditch companies (WDOE 1995): Okanogan Irrigation District represents about 20% of the irrigation district lands in the Okanogan River Basin. Timber production for the Okanogan National Forest increased from World War II until the mid-1960s (USFS 1997). Timber production since the 60's has declined somewhat.

Land Owners	Approximate Acres		
Department of Agriculture - Forest Service	357,000		
Department of the Interior			
Bureau of Land Management	48,000		
Fish and Wildlife Service	2,750		
Department of Defense	375		
Federal Subtotal	408,125		
Washington State			
Department of Natural Resources	245,000		
Department of Fish & Wildlife	29,873		
Department of Parks & Recreation	600		
State Subtotal	275,473		
County	300		
Municipal	2,900		
Total Public (federal, state, & local)	686,798		
Tribal	422,000		
Total Private	559,000		
Total Land Area	1,667,798		

Table 2-1. Okanogan Watershed Land Ownership

Source: USDA Natural Resources Conservation Service GIS data, unpublished

Land Use	Approximate Acres		
Forest	787,070		
Range	754,996		
Cropland	101,930		
Urban	5,737		
Other	18,065		
Total Land Area	1,667,798		

Table 2-2. Okanogan Watershed Land Cover and Use

Source: USDA Natural Resources Conservation Service GIS data, unpublished

Irrigation Districts

There are nine irrigation districts, reclamation districts and canal companies operating in the Okanogan Watershed (**Table 2-3**). These water providers comprise the bulk of irrigation water delivery from surface water sources to approximately 24,710 acres (OCD, 1989). **Table 2-4** displays information about surface and ground water rights in the basin.

 Table 2-3. Irrigation Districts of the Okanogan Watershed

Irrigation District	Source	Irrigated Acres	Length	Flow
Okanogan Irrigation District	Salmon Ck, Okanogan R.	5,032	50 mi. piped. 7.6 mi. lined canal	15,000 acre ft/yr
Oroville Tonasket Irrigation Project	Similkameen R., Lk Osoyoos, Okanogan R.	10,300	110 mi. pipe 10 mi. canal	41,200 ac ft/yr
Whitestone Irrigation and Power Company	Toats Coulee	3,000	16 mi. pipe 14 mi lined canal	45 cfs max
Pleasant Valley Irrigation Project	Loup Loup Creek, Okanogan River	2,000	3 mi. pipe 3 mi. canal	17 cfs max
Helensdale Irrigation District	Loup Loup Ck., Okanogan River	225	2 mi. pipe	
Brewster Flat Irrigation Project	Columbia River @ Chief Joseph Dam	2,832	28 mi. pipe	60 cfs max
Aeneas Lk. Irrigation District	Aeneas Lake	1400	4 mi. pipe	12 cfs
Alta Vista		40	1 mi. pipe	1 cfs
Black Bear	Sinlahekin Ck	105	2.5 mi. pipe	2 cfs

Table 2-4. Summary	y of Water Rights in the (Okanogan Watershed ((WDOE 1995)

Water Source	Number of permits	Quantity (acre feet)	Area (acres)	Percent used for Irrigation
Surface	470	105,414	67,443	98%
Ground	307	39,344	10,437	56%

Geology and Topography

The Okanogan River basin geology and geomorphology is influenced by the Cascade Range, Northern Rockies and Columbia Plateau Systems which border it on the west and south sides, respectively. During the Quaternary Period, glaciers sculpted the landscape below 5,000 feet, covering large areas with glacial drift and fluviolacustrine sediments. Small alpine glaciers were also active at higher elevations. Cascade volcanoes were active during the Pleistocene and into the Holocene. Deposits of volcanic ash from these eruptions occur within the area (Hansen 1998). Due to glacial activity, rock outcrops were exposed in many places and formed a complex pattern with the materials deposited by glaciation. Much of the bedrock has been weathered to shallow soils (SCS 1980).

The erosive action at the base of the glacial ice create unconsolidated and unsorted mixtures of silt, sand, gravel, and stones. Glacial fluvial meltwater streams carried large quantities of sand and gravel, creating thick deposits of sorted materials. In areas of low gradient or local impoundment, glacial meltwater created lacustrine deposits of clay soils. Some deposits of glacial drift are mantled by volcanic ash (SCS 1980).

Soils and Vegetation

Most Okanogan County soils are formed in materials derived mainly from volcanic ash and glaciation from the last 10,000 years (**Figure 2-4**). Those soils most influenced by ash are in the northern part, at elevations above 3,000 feet (SCS 1980). Because the Okanogan Valley is narrow with steep slopes, there is a high amount of runoff into the river. High rates of drainage are also attributed to streambank instability, which introduces a large amount of sedimentation. The most erosive soils along the Okanogan River are the Colville silt loams, and the Bosel fine sandy loams. Some factors that accelerate erosion are over grazing, mining sites, logging activities, roadwork and irrigation. The lack of woody vegetation on the streambanks along the Okanogan may be increasing erosion rates. Soils are slightly acid to alkaline, and originate from sandy loam to silt loam soils formed in volcanic ash, glacial materials, and weathered granite, schist, limestone, shale and gneiss.

A semiarid climate, with dry warm summers and moderately cold winters supports such native species as big sagebrush, rabbitbrush, and bitterbrush in the valleys and on terraces (SCS 1980). The climate is influenced by the barrier to marine air that the Cascade Mountain Range provides, as well as by the mountain and valley formations of the region. Precipitation in the watershed ranges from more than 40 inches in the western mountain region to approximately 8 inches at the confluence of the Okanogan and Columbia Rivers.

Where annual precipitation is 8 to 11 inches, grassland is the dominant type of vegetation. In areas where the annual precipitation is 11 to 14 inches (such as in the middle and lower reaches of the Salmon watershed), the importance of Idaho fescue and bluebunch wheatgrass in the plant community increases. Perennial grasses include bluebunch wheatgrass, and giant wildrye. Nonnative plant species include wheatgrass, Russian thistle, common mullein and wooley plantain. Forested lands comprise approximately 47% of the Okanogan watershed and receive approximately 75% of the total annual precipitation (Gullidge 1977) The density of the forest vegetation increases at elevations above 3,000 feet, where the annual precipitation is greater than 14 inches. Yellow pine (*Pinus ponderosa*) dominates in areas where the annual precipitation is 14 to 16 inches (e.g., the upper Salmon watershed). Douglas-fir (*Pseudotsuga douglasi*) is dominant in areas where the annual precipitation is 16 to 18 inches (SCS 1980).

Mean annual temperature for the Okanogan Watershed is 49^oF. The average temperature for January is 21^oF. and the July average is 73^oF. Wind velocities throughout the region are calm to moderate and generally originate from the north or south. Thunderstorms occur occasionally in the watershed during late spring and early summer. Summer months see approximately five cloudy days per month compared to winter months, which average approximately 20 cloudy days per month. On average, there are 150 frost-free days each year in the main Okanogan River

Valley. The number of frost-free days reaches only about 75 days in the surrounding hills and uplands (NOAA, 1994).

Water Quantity/Hydrology

Snowfall represents about 50-75% of the annual precipitation during the winter months. Rainfall and snowmelt runoff contribute approximately 3% to the average annual gauged streamflow of the Okanogan River at Mallot (USGS Gauge No. 12447200) with the remainder provided from Canadian contributions upstream (**Figure 2-5**). Average annual runoff for the Okanogan River as measured at Mallot is 2,220,000 acre-ft. With about 2,150,000 acre-ft contributed annually from the Canadian province of British Columbia and from the Similkameen tributary (OWC 2000). Annual runoff at Mallot has ranged between a minimum of 860,000 acre-ft and maximum of 4,000,000 acre-ft. Average annual flows on the Okanogan and Similkameen Rivers have not changed significantly since gauging began in 1911 (WDOE 1995). However, seasonal low streamflows are very much affected by water usage for irrigation, water supply, and other activities.

Peak annual flows occur usually occur during a two or three week period in late May and early June, but the timing of the peak can vary substantially based on snow pack. On average, these hydrographic peaks account for approximately one-half of the annual runoff volume into the watershed. Minimum annual flows occur in early fall to mid-winter (September through March). In arid climates such as the Okanogan valley, almost all precipitation occurring during the warm months either evaporates or is absorbed by the soil layer. Usually only a very small amount of precipitation directly contributes to streamflow from late June through October. However, isolated summer thunderstorms in discrete sub-watersheds can yield flash flooding, resulting in devastating consequences to riparian habitats and aquatic biota. Such flooding events are non-uniform in their distribution among tributary drainages, with occurrence intervals approximately every 2 years in the Okanogan watershed overall. These events play a highly significant role in shaping aquatic habitats in the Okanogan watershed, especially within its tributaries.

Watershed hydrology within the Okanogan watershed is affected by the road network and other impervious surfaces. According to GIS interpretations, there are 153 miles of Washington State highways, 1,774 miles of county roads, and 70 miles of railroad in Okanogan county. Relative to more urbanized counties, these estimates are low in proportion to the total watershed area encompassed by the Okanogan watershed. Notwithstanding, significant impacts to watershed hydrology are realized when total impervious surface area in a watershed approaches 10% (Booth and Jackson 1997).

Water Quality

Ecology's 1997 Section 303(d) list (Impaired and Threatened Waterbodies Requiring Additional Pollution Controls) includes the Okanogan River for "failure to meet water quality standards for temperature, dissolved oxygen, pH, and fecal coliform" (WDOE 1998). There is a "consistent late summer water temperature criteria violation (annual violations from 1983-1993) (**Table 2-5**). Fish within the watershed are subject to poor water quality and low flow conditions, as well as critically high water temperatures during summer months" (WDOE 1998). Temperature and flow listings pose the most significant problems to salmon recovery in the Okanogan watershed. WDOE is currently in the technical assessment phase of developing Total Maximum Daily Loads (TMDLs) for PCBs and DDT in the Okanogan watershed.

Water Body	Parameter
Okanogan River	Temperature, DO, pH, fecal coliform, PCB-1260,
	PCB-1254, 4,4'-DDE*, 4,4'-DDD
Similkameen River	Temperature, arsenic
Salmon Creek	Instream flow
NinemileCreek	DDT
Elgin Cr. ("unnamed")	DDT
Tallant Creek	DDT
Lake Osoyoos	4,4'-DDE*, 4,4'-DDD*

Table 2-5. Okanogan Watershed TMDL listings

*break-down products of DDT

Nitrogen

Detectable nitrogen in surface waters most often is measured in the form of nitrate, the final oxidized form of ammonia. By itself, nitrate is essentially non-toxic to aquatic life, but is indicative of nutrient enrichment that can lead to eutrophication and ultimately shift the distribution and abundance of aquatic life towards species more tolerant of nutrient rich systems. The nitrate values recorded on the Okanogan and Similkameen Rivers are well below any action level for health standards and thus acceptable for all Class A water uses. Common sources for nitrogen include on-site sewage disposal systems, discharges from municipal sewer treatment plants, irrigation system return flows, fertilizer applications for both agricultural and residential uses, waterfowl congregating on the waterbody, and atmospheric deposition.

Dissolved Oxygen

Dissolved oxygen concentrations below approximately 5 mg/L are considered stressful to salmonids and generally are not observed in fluvial environments where aeration should ensure adequate saturation (Fisher 2000). Saturation levels at altitudes and maximum temperatures seen in the Okanogan watershed (e.g., 1,000 ft and 75 degrees Farenheit) would approximate 8.4 mg/L. Dissolved oxygen (DO) concentrations in the Okanogan River system are generally at or above saturation levels at all sites, even during the summer months when the water temperatures are elevated. Dissolved oxygen concentrations in Malott have had the lowest saturation values detected. This is predictable, since the monitoring station is located downstream of the major municipalities in the basin, where sewage and stormwater releases increase the biological oxygen demand (BOD). In addition, there is very little turbulent water between the Okanogan monitoring station and the Malott station to facilitate reaeration. Backwaters from the Wells Pool will also limit the potential aeration of Okanogan mainstem waters in this reach.

Temperature

Okanogan River water temperatures have regularly exceeded lethal tolerance levels for salmonids in the mid-to-late summer. These exceedences are partly a result of natural conditions of low gradient and solar radiation on the natural upstream lakes, but are exacerbated by dam impoundments along the mainstem, sedimentation, and irrigation withdrawals that reduce baseflows. Temperatures of the mainstem are significantly elevated prior to entering Washington State. High water temperatures in late summer and fall often form a thermal barrier, effectively excluding juvenile salmon from rearing in most of the basin, except during the first few weeks after emergence (Chapman et al. 1994a). At times, high water temperatures in the lower Okanogan River have also blocked adult anadromous salmonid passage. For example, adult sockeye that are sometimes thermally blocked through the lower Okanogan River downstream of

Lake Osoyoos during late July and early August (Pratt et al. 1991). Thus, such water quality limitations represent passage barriers when they exist.

Water temperatures pose the most difficult problem for increasing survival of most ocean-type and stream-type salmonids in the watershed. Chapman et al. (1994a) plotted water temperature in the Okanogan River at Oroville and Tonasket, showing that mean mid-summer daily temperatures were frequently well over 70° F in 1986 and 1987. Hansen (1993) also confirmed temperatures in that range or higher near Zosel Dam and Lake Osoyoos during 1992. Hansen (1993) speculated that the alteration of flow regimes by the upstream dam in Lake Osoyoos have exacerbated the problem of thermal barriers.

pН

pH defines the measure of acidity in a solution. The pH values measured in Okanogan waters are routinely measured in the slightly to moderately alkaline range of 7.5 to 9 (C. Nelson, TAG), primarily as a result of the highly calcareous soils found over much of the region that exceed even those of the "limebelt region" (C. Nelson, TAG). Recorded pH values have risen approximately 0.3 points over the last 20-30 years, and, in some cases, are at the upper limits of the desired range for salmonid health. This alkaline condition may exert a stabilizing effect on the potential toxicity of some of the heavy metals released into the watershed by limiting their particles and sediments, and out of solution (WATERSHEDS 1997). Influences on the pH level include acid mine drainage, atmospheric deposition (acid rain), calcium, calcium carbonate, effluent water and land use practices. The effects of surface water withdrawals on pH values has not been fully evaluated, but could potentially result in a gradual elevation by concentrating alkaline solutes from groundwater contributions into surface waters.

Fecal coliform

Evidence of fecal coliform in surface waters are primarily indicative of sewage or livestock contamination, and can be used as a surrogate for nutrient enrichment. Direct effects of fecal coliform on salmonid health and abundance have not been established, so this metric only an indirect measure of water quality suitability for salmonids in the Okanogan watershed. Data collected from 1977 to 1997 indicate that fecal coliform is not a concern at most existing water quality monitoring sites. Currently, high counts of fecal coliform have been recorded from Bonaparte Creek for which a livestock source is suspected. The Malott station had 9 exceedances of water quality criteria in 163 recorded samples; the Okanogan station had 5 exceedences in 128 observations; and the Oroville stations had 0 exceedences out of 190 observations on the Okanogan, and 1 exceedence out of 208 observations on the Similkameen (WDOE 1997c). These results are all well below state water quality standards, which allow for up to 10% of the samples to exceed the published standard as long as the mean value of the samples is below 100 colonies per 100 ml.

Sedimentation

Sediment recruitment into the Okanogan mainstem and tributary systems is contributed from roads, logging, agricultural practices, and hydrological manipulations. When sediment recruitment into a stream channel exceeds the downstream sediment transport rate streambeds fill and spread, creating shallow water habitats more susceptible to thermal radiation and chronicly elevated temperatures. Unnaturally warmer waters, low velocities and heavy sedimentation in the mainstem favor non-anadromous species, which can outcompete native stocks. Sediments deposited on spawning gravels can entomb salmon redds and cause the direct mortality of eggs and larvae residing therein. Sediment deposition in riffle zones, normally cleared of fine

sediments by natural sediment transport processes, can reduce macroinvertebrate habitat quality, resulting in a shift towards species tolerant of disturbed habitats (e.g., Chironomidae) in lieu of species that require cleaner waters (e.g., Ephemeroptera, Tricoptera). Such shifts in macroinvertebrate abundance and diversity can indirectly affect salmonids by compromising food supplies needed by rearing salmonids.

Roads are likely the greatest contributing source of sediment to streams in the Okanogan watershed. Sedimentation is highest at road crossings over stream channels, along roads in close proximity to streams, along cut and fill slopes, and at roads and ditches that drain to stream channels. Private roads that access multiple parcels often do not have a coordinated maintenance program, leading to increased erosion and sedimentation. Roads affect streams by accelerating erosion and sediment delivery, altering channel morphology, and changing the runoff characteristics of watersheds (Furniss et al. 1991). Sediment delivery from roads also depends on factors such as distance from the slope, vegetation cover, and precipitation. In addition, noxious weeds tend to spread along roads because of the routinely disturbed habitat conditions found there that favor invasive species. Herbicide treatment of noxious weeds along roadsides can lead to contamination of nearby streams through accidental spills, direct runoff, or infiltration (USDA, USDI 2000).

Sediment delivery into streams is considered to be greater than natural erosion rates when road densities exceed 4 miles/sq.mile (Cederholm et al. 1981). Road density in most Okanogan subwatersheds in the basin exceeds 4 miles/sq. mile. For example, there are an estimated 6.38 miles of road/sq mile in the Omak Creek sub-watershed, a system with significant sedimentation issues. Other systems are less impacted by the road network (e.g., Salmon Creek 2.2 miles/sq. mile (USDA, unpublished data) Omak Creek 6.38 miles/sq.mile (NRCS 1995).

Streams are particularly vulnerable to road-derived sediments when roads are located within the riparian zone buffers of streams. Tables 2-6 and 2-7 provide estimates of road miles near or within the riparian corridors of the Okanogan mainstem and select tributaries.

Sub-watershed	Non-Forest Service	Closed Forest Service	Open Forest Service	Total
Bonaparte Creek	41.4	1.7	5.1	48.2
Mainstem Okanogan	56.0	4.7	1.5	62.2
NE Okanogan	52.4	2.4	10.7	65.5
SE Okanogan	25.4	0.9	0.7	27.0
SW Okanogan	31.1	0.1	0.7	31.9
Salmon Creek	19.6	6.6	19.9	46.1
Similkameen River	43.1	0.2	7.2	50.5

Table 2-6. Road Miles within 200 Feet of Streams in the Okanogan Basin

Source: Unpublished data from USFS

Table 2-7. Road Miles within 50 feet of Streams in the Okanogan Basin (USDA, USDI 2000)

Sub-watershed	Miles of road within 50 feet of stream	Road crossings over streams
Bonaparte Creek	2.9	47
NE Okanogan River	4.3	46
Okanogan mainstem	4.5	87
Salmon Creek	6.4	109
Similkameen River	0.5	16

Figure 2-1. The Okanogan River Basin. Showing the Canadian and US portion of the watershed. Source: Okanogan Water Quality Management Plan, OWC 2000)

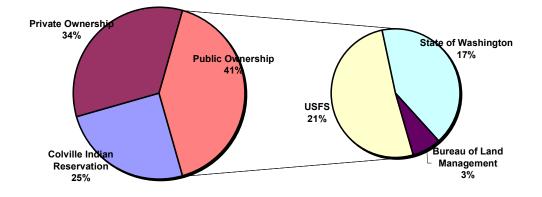
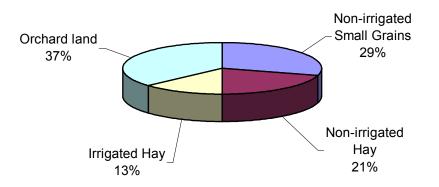



Figure 2-2. Land Ownership in the US portion of the Okanogan River Basin. Public ownership for federal and state are not listed if the percent acreage is less that 1%.

Figure 2-3: Major Crops of the Okanogan Basin (OWC 2000).

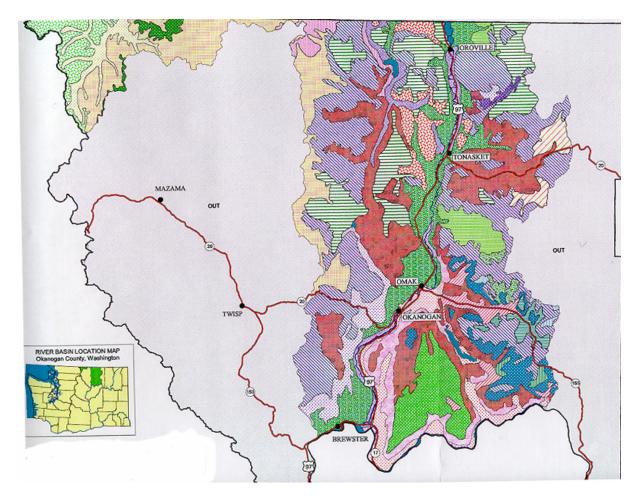


Figure 2-4. The soils found in the Okanogan River Basin. The soils are listed according to the USDA codes. Source: Okanogan Water Quality Management Plan, OWC 2000)

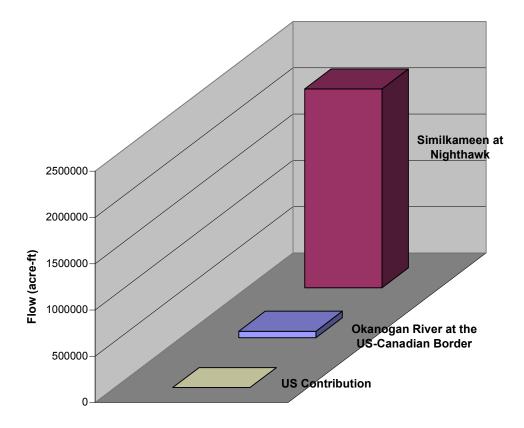


Figure 2-5. The USGS recording stations of annual flow for the Okanogan River. The contribution from each are calculated as the following:

Canada: Flow measured near the US/Canada border at Oroville, Washington Gage Station + flow measured on the Similkameen at Nighthawk, Washington.

US: Flow measured at Malott, Washington – Candadian calculated contribution.

Fish Distribution and Status

Fisheries Resources of the Okanogan River Watershed The Okanogan River represents the uppermost tributary of the Columbia River currently accessible to anadromous salmonids. The upper Columbia supports anadromous stocks of chinook and sockeve salmon, and steelhead trout (Figure A-1, A-2, A-3). Chinook salmon stocks of the Columbia River basin are differentiated as ocean-type or stream-type fish, based on juvenile life history out-migration strategies. Ocean-type chinook juveniles migrate to sea as subyearlings, spend most of their ocean life in coastal waters and return to freshwater as adults a few months prior to spawning. Stream-type chinook migrate to sea as yearlings, exhibit extensive offshore migrations, and return to freshwater many months before spawning (Healey 1991). Within the Columbia River Basin, stream-type chinook tend to occur in upper tributaries and ocean-type chinook are produced in mainstem areas and lower tributaries (Waknitz et al. 1995). Stocks are further classified by their adult migrational patterns as spring-run, summer-run, and fall-run. Sockeve salmon exhibit a summer-run migrational pattern only. Steelhead in the Columbia river are divided into winter-run and summer-run stocks, based primarily on their state of sexual maturity at the time they enter freshwater and the duration of their spawning migration. The Okanogan watershed of the Columbia system specifically supports anadromous fish runs of summer run chinook salmon, sockeye salmon (O. nerka), and a remnant run of summer steelhead. In addition, a variety of resident species occupy habitats upstream of anadromous barriers in the system.

Stock status information on Okanogan fisheries resources is detailed in **Table 3-1**, and further described below. Sub-watershed information on species' use and distribution is provided in the sub-watershed summaries in chapter 4.

	× ×		,		
Species and Subbasin	SASSI Stock Status	Stock Origin	ESA Status	Maximum Upriver Okanogan Distribution	Mean Escapement
Okanogan					
Spring Chinook	Depressed	Native	Endangered,	Considered	NA
			1999	Extirpated	
Summer Chinook	Depressed		Not listed	RM 26-77	363-2,300
	-				(1977-1991)
Sockeye	Healthy	Native	Not listed	RM 90-106	65,000-64,700

 Table 3-1. SASSI Stock Status and Escapement numbers for chinook, sockeye and steelhead (WDFW and WWTIT 1994).

Source: Washington State Salmon and Steelhead Stock Inventory, 1992.

Mixed

Depressed

Steelhead

Endangered,

1997

Not definitively

established

(1977 - 1991)

(1982 - 1991)

114-837

Chinook Salmon Stock Status and Distribution in the Okanogan Watershed

Chinook salmon currently using the Okanogan generally are considered a summer run stock. However, Utter (1993) was unable to ascertain a genetic distinction between summer and fall chinook populations above Wells Dam (includes all Methow and Okanogan chinook), and past spawning ground surveys have referenced the Okanogan chinook stock as a summer/fall run (Miller and Hillman 1996, 1997, 1998). Spring chinook are considered extirpated from the Okanogan River drainage, although historical records indicate that they occurred in at least three systems: (1) Salmon Creek, prior to construction of the irrigation diversion dam (Craig and Suomela 1941), (2) tributaries upstream of Lake Osoyoos (Chapman et al. 1995), and (3) possibly Omak Creek (Fulton 1968). The Similkameen River, the largest tributary to the Okanogan, also likely supported spring chinook, but there is no conclusive evidence to support this theory. There were probably several life history strategies that historically existed in the Similkameen Watershed, prior to construction of Enloe Dam in 1920, although there is no clear evidence that chinook salmon passed the natural falls on the lower Similkameen River. Fall-run chinook are not known to have ever utilized the Okanogan watershed, perhaps due to the long migration involved.

According to the most recent salmon and steelhead stock status inventory (SASSI) (WDFW & WWTIT 1994), the summer chinook in the Okanogan are considered "depressed" (**Table 3-1**), although they have not been formally listed under the Endangered Species Act by the National Marine Fisheries Service. Both hatchery origin and wild (naturally-derived) chinook spawn in the Okanogan and Similkameen drainages, but native stocks (i.e., completely lacking hatchery-strain genetics) are not known to persist in the system. No sub-watershed characterization of summerrun Chinook stocks in the Okanogan watershed was considered in the original SASSI report, and long term monitoring of population trends is inadequate in most Okanogan tributaries to draw strong conclusions regarding the trends of sub-watershed Chinook stocks in the watershed.

The overall run strength of summer chinook salmon declined slightly in the mainstem Okanogan River, and increased slightly in the Similkameen River (its largest tributary) in the 1970s and 1980s (Chapman et al. 1994a). Summer chinook run sizes in the Okanogan averaged 532 fish in 1977 and 617 in 1985 (WDOE 1995). In 1998, the Colville Indian Nation harvested 759 chinook from a total population of 4,560 fish available to spawn in the Methow and Okanogan (inc. Similkameen) rivers (Murdoch and Miller 1999). Miller and Hilman (1998) estimated that between 14-72% of the chinook that pass Wells dam spawned in the Methow and Okanogan systems between 1980 and 1997. In 1998 Murdoch and Miller (1999) observed 88 and 276 redds in the Okanogan and Similkameen Rivers, respectively, representing an estimated escapement to these spawning grounds of 317 and 994 chinook, respectively (escapement figures assume 3.6 fish/redd). Thus, the most recent escapement estimates to the Okanogan system identified for this LFA indicates approximately 1,300 chinook are spawning in the system. Carcass retrievals, a subsample of the total spawning population, revealed that 33 and 52% of the spawners in the Okanogan mainstem and Similkameen, respectively, are of hatchery origin.

Adults enter the Okanogan River from July through late September, and spawn from late September through early November, peaking in mid-October (Peven and Duree 1997, Murdoch and Miller 1999). Current chinook spawning occurs in spatially discontinuous areas from the town of Malott upstream to Zosel Dam, approximately RM 64 of the Okanogan River (Murdoch and Miller 1999). Usually 50% or more of spawning adults have a total age of 5 years, with the remainder predominantly 4 year old fish (Murdoch and Miller 1999). In the past, sporadic reports of chinook spawning above Lake Osoyoos have been recorded during sockeye salmon spawning ground surveys. Spawning ground data In the Similkameen River indicate that summer chinook spawn from Enloe Dam to Driscoll Island, a total distance of 14 km.

Emergence timing probably occurs from January through April, although specific data on emergence studies was not identified in reviews for this LFA. Juveniles generally emigrate to the ocean as subyearling fry, leaving the Okanogan River from one to four months after emergence. However, there is evidence that some fish undergo an extended residence period, with a protracted downstream migration. Many subyearlings rear in the mid-Columbia impoundments for various periods of time during their outmigration (Peven and Duree 1997).

Steelhead Stock Status and Distribution in the Okanogan Watershed

Only summer-run steelhead utilize the Okanogan watershed. Winter-run steelhead were not known to ever use this system, likely owing to the long migration involved. The summer run steelhead of the Okanogan are considered part of the upper Columbia summer steelhead ESU, and were listed as endangered on August 18, 1997. Upper Columbia steelhead in the Okanogan are considered depressed according to SASSI (WDFW & WWTIT 1994). Although the historical record for steelhead in the Okanogan Watershed is not complete, Mullan et al. (1992) asserts that few steelhead historically used the Okanogan River. Salmon Creek historically supported self-sustaining steelhead runs, but lack of flow currently restricts access in most years. Some evidence suggests that steelhead may also have historically used other tributaries in the Okanogan Basin (Chapman et al. 1994b). Current habitat conditions in the Okanogan basin are generally poor to support most life history requirements of steelhead.

Although steelhead were probably never abundant in the Okanogan River due to natural habitat limitations, an estimated half of the steelhead production may have been lost as a result of fish access restrictions to Salmon Creek by irrigation water withdrawals (WDF and WDFW 1993). In 1955-56, the escapement estimate to the Okanogan was about 50 fish, from a total run size of about 97 fish (WDFW 1990). Assuming a 50 percent loss in production from Salmon Creek since 1916, the average run-size prior to the extensive hydroelectric development in the mid-Columbia River reach is believed to have been about 200 fish. The estimated total run-size of naturally produced summer steelhead to the Okanogan Subbasin declined to between 4 and 34 fish, from 1977 to 1988 (WDFW 1990).

Given that stock status at the sub-watershed level has not been definitively established in the Okanogan, describing the relative importance of specific steelhead stocks throughout the Okanogan watershed has great uncertainty. Nevertheless, 19 adult summer steelhead were trapped in Omak Creek in 2001 (C. Fisher, TAG). When considered against a total escapement to the entire system of between 4 to 34 fish from 1977 to 1988 (WDFW 1990), such populations, although small, become disproportionately important. Regardless whether the 2001 Omak Creek steelhead returns originated from earlier smolt transplants from the Wells Hatchery into the system, the creek may be especially important for the reestablishment/recovery of the summerrun steelhead ESU within the Okanogan watershed. Similarly, as indicated in the preceding paragraph, steelhead production from Salmon Creek was estimated to represent roughly 50% of the native production throughout the watershed prior to the erection of Conconully Dam. Finally, habitat in the upper Similkameen drainage, the largest tributary of the Okanogan basin, is restricted by Enloe Dam, approximately 8.5 mi from its confluence with the mainstem Okanogan. Although it has not been established that steelhead historically were able to ascend Enloe Falls, enhancements to the Similkameen, could benefit this species' recovery. Access to habitat above Enloe Falls would provide miles of suitable habitat for steelhead, in addition to benefiting

chinook. Such an endeavor would need to consider potential species interactions with resident stocks upstream of Enloe Dam.

Sockeye Salmon

According to SASSI (1992), a "healthy" stock of sockeye salmon continues to use the Okanogan basin for spawning and rearing. The Okanogan sockeye are not currently listed under the ESA, but the population is limited by reduced rearing habitat in the North Basin of Lake Osoyoos (C. Fisher, TAG). Spawning population escapement estimates ranged from 20,202 to 34,679 fish in 1993, depending on the methodology used to calculate spawning population size (Hansen 1993).

Sockeye spawning in the Okanogan occurs in tributaries of Lake Osoyoos under high flow years, but predominantly in the mainstem of the Okanogan river, upstream of Lake Osoyoos. McIntyire Dam, 12.5 miles upstream of Lake Osoyoos, usually represents the upstream limit of spawning under typical flow years. Under high flow years sockeye may pass the dam and have been observed spawning up to Skaha Lake (Howie Wright, TAG). Spawning may occur as early as September 15, with timing tied tightly to water temperatures. Peak spawning activity in the Okanogan occurs at temperatures of approximately 11 degrees Celsius and lower (Hatch et al. 1993, as cited in Hansen 1993). In Hansen's study, approximately 58% of the spawning population was male and 42% female, 3,4 and 5 year old age classes represented. Four year old sockeye in the Okanogan spend either one or two years in freshwater residency before smoltification and sea-ward outmigration (Hansen 1993).

Resident Fish Species Stock Status and Distribution in the Okanogan Watershed Important resident species in the Okanogan watershed include mountain whitefish (*Prosopium willamsoni*), rainbow trout (*O. mykiss*), westslope cutthroat trout (*O. clarki clarki*) and Pacific lamprey (*Entosphenus tridentatus*). Stock status and distribution of resident salmonids is not fully understood and was not a primary focus of this LFA, but a brief summary is provided here. Bull trout are documented to have used only Salmon Creek and Loup Loup Creek in the Okanogan basin. Historically, bull trout were reported in creel census records from the 1940s and 1950s in the north fork of Salmon Creek (Ken Williams, WDFW retired, personal communication to Nance Wells, TAG). The 'distinct population segment' (DPS) for bull trout, incorporating the entire Columbia (i.e., upper and lower), was listed as endangered on June 20, 1999. An assessment of bull trout stock status on a watershed basis is currently under preparation, however, no such assessments are provided in SASSI (WDF &WWTIT 1994).

Resident rainbow trout, cutthroat trout and non-native brook trout occupy many of the waters above the anadromous zone in the Okanogan watershed. Stock status of these species is not known; however, it has been thought that the non-native brook trout occupy waters otherwise suitable for bull trout (Okanogan TAG). The extent to which such introductions may have displaced bull trout cannot be determined.

Fish Passage

Dams

There are 21 dams in the U.S. portion of the Okanogan watershed: 9 state, 7 private, 3 federal, and 1 PUD (**Table 3-2**). There are 13 Vertical Drop Structures on the Canadian side (NMFS 2000). Zosel Dam (RM 78) controls the levels of Osoyoos Lake. Reconstruction work in 1987 improved fish passage into the lake.

A diversion dam on the mainstem Okanogan River above Oliver, B.C. is the upper terminus to migratory fish. The Similkameen River is impassable to all anadromous salmonids at Enloe Dam, an abandoned power generation facility approximately 8.5 miles above the mouth. It blocks access to more than 95% of the fish habitat potentially available in the Similkameen River. Diversions in Loup Loup, Salmon Creek and Antoine Creek, prevent the full use of the habitat potentially available in these systems. Recently there has been interest in relicensing the Enloe Dam, and fish passage alternatives are being investigated.

Dam Name	Stream Name	Ownership	Year	Dam Length		Normal	Max
			Completed		Height	Storage	Storage
Fanchers Dam	Antoine Creek	Private	1926	450	68	500	600
Bonaparte Lake Dam	Bonaparte Creek	Private	1957	180	9	535	995
Stout Reservation Dam	Chiliwist Creek	Private	1958	250	25	18	24
Horse Spring Coulee Dam	Columbia River	Private	1924	650	67		7,000
Fish Lake Dam	Johnson Creek	State	1920	50	7	2,815	2,815
Schallow Lake Dam	Johnson Creek	State	1954	330	13	46	76
Osoyoos Lake Control	Okanogan River	State	1986	321	40	1,700	55,000
Dam							
Leader Lake Dam	Okanogan R & Tribs	Private	1910	300	53	5,900	6,750
Leader Lake Saddle Dam	Okanogan R & Tribs	Private	1910	650	11	1,000	1,850
Little Green Lake Dam	Okanogan R & Tribs	State	1959	88	11	400	730
Salmon Lake Dam	Okanogan R & Tribs	Federal	1921	1250	54	15,700	17,280
Sasse Reservoir Dam	Okanogan R & Tribs	State	1910	140	10	60	60
Spectacle Lake Dam	Okanogan R & Tribs	Federal	1969	1110	25	13,450	14,080
Whitestone Lake Dam	Okanogan R & Tribs	Private	1930	375	9	2,144	2,720
Conconully Dam	Salmon Creek	Federal	1910	1075	72	13,000	16,570
Enloe Dam	Similkameen River	PUD	1923	316	54	400	400
Blue Lake Dam	Similkameen R & Tribs	State	1923	1500	32	4,416	4,416
Sinlahekin Dam No. 1	Sinlahekin Creek	State	1949	180	14	175	333
Sinlahekin Dam No. 2	Sinlahekin Creek	State	1949	248	18	52	82
Sinlahekin Dam No. 3	Sinlahekin Creek	State	1950	285	9	304	593

Table 3-2. Summary of Water Impoundment Rights in the Okanogan Basin (WDOE 1995)

Methodology For Developing Habitat Limiting Factors Assessments By Subwatershed In The Okanogan Watershed

This chapter summarizes the methods used to characterize the habitat and its limitations for salmon production in each of the Okanogan subwatersheds south of the U.S.-Canada border. Results from these assessments are provided in chapter 5 of this document. Habitat conditions in the Canadian waters of the Okanogan, approximately 60% of the total watershed area, are summarized in Appendix A. The subwatersheds of WRIA 49 within the United States include: Chiliwist Creek, Dan Canyon, Felix Creek, Duley Lakes, Salmon Creek, Omak Creek, Wanacut Creek, Johnson Creek, Tunk Creek, Chewiliken Creek, Aeneas Creek, Whitestone Creek, Bonaparte Creek, Siwash Creek, Antoine Creek, Tonasket Creek, Osoyoos Lake and Ninemile Creek. The subwatershed boundaries delineated for this LFA for both the U.S. and Canadian subwatersheds are generally consistent with the USFS Hydrologic Unit Code (HUC) 5th field boundaries and with most of the subwatershed boundaries used in the Okanogan Watershed Water Quality Management Plan (OWC 2000). Sub-watershed maps, including fish distributions by species, are provided in Appendix B. At the end of each watershed section, a "Habitat Limiting Factors Assessment" is provided that describes how the current condition of the habitat affects salmonid performance within the watershed. The information presented in this chapter reflects field biologists' observations that may or may not have been published. The absence of

information for a stream does not necessarily imply that the stream is in good "health" but may instead indicate a lack of available information. All references to River Miles (RM) are approximate, based upon map-wheel projections recorded from USGS topographic maps of the area (1:100,000), or GIS interpretations (where indicated). Uncertainties in the subbasin analyses, data gaps, and action item recommendations are summarized for each subwatershed in chapter 5.

Habitat Rating Criteria Adopted For The Okanogan Watershed

Identifying the extent to which a habitat factor may be limiting salmonid productivity requires a set of habitat rating criteria. These criteria can then be used to assess the functioning condition of selected habitat factors. In turn, this information can be used to promote an understanding of the relative significance of different habitat factors and allow for consistency in evaluating habitat conditions in each WRIA throughout the state.

Twelve habitat criteria most likely to affect salmonid productivity in WRIA 49 were selected by the Okanogan TAG as most applicable for rating habitat conditions on the basis of existing data. Habitat criteria represent those environmental conditions that best describe the relationship between biological performance and the environment (Mobrand Biometrics 1999). The National Marine Fisheries Service recognizes these criteria as "indicators" of habitat quality (NMFS 1996). The 12 habitat criteria selected by the TAG for evaluating habitat conditions in the Okanogan were: 1) dissolved oxygen, 2) temperature, 3) turbidity, 4) suspended sediment, 5) chemical contamination/nutrients, 6) fine sediment (substrate), 7) large woody debris, 8) percent pool, 9) fish passage, 10) change in peak or base flows, 11) riparian, and 12) streambank stability. These habitat attributes were grouped into five categories according to their relationship to the physical environment: 1) Water Quality; 2) In-Channel Habitat; 3) Habitat Access; 4) Flow; and 5) Channel Conditions. These categories are consistent with the "pathways" considered relevant to sustaining salmonid productivity by the NMFS (1996).

Numeric and/or narrative standards of several agencies have been developed for the habitat criteria selected by the Okanogan TAG, and these were reviewed for their applicability in rating salmonid habitat conditions in the Okanogan watershed (**Table 4-1**). It was decided to rate habitat conditions for each criterion as "good", "fair" or "poor" in accordance with numeric qualifiers for the 12 criteria (**Table 4-1**). For habitat criteria that had wide agreement on how to rate habitat condition, an accepted and appropriate standard for the ecoregion was adopted by the Okanogan TAG for the purpose of the assessment exercise. Where local conditions warranted deviation from rating standards developed elsewhere, alternate criteria were used. These ratings were not, and are not intended to be used as thresholds for regulatory purposes, but as a coarse screen to identify the most significant habitat limiting factors in the WRIA. They provide a level of consistency between WRIAs that allows habitat conditions to be compared across the state.

The following criteria in **Table 4-1** were selected by the Okanogan TAG as acceptable for rating habitat elements on a reach and/or sub-watershed level in the Okanogan watershed (WRIA 49). These criteria are to be applied (based on) reviews of existing data sources, or, alternatively from the combined professional expertise of the TAG where data is unavailable or where analysis of data has not been conducted. It is assumed that both the interpretation of existing data sources and the application of professional knowledge to sub-watershed ratings will require best professional judgement. When using these criteria in the assessment process, the user will clarify whether quantitative studies or published reports or qualitative, professional knowledge was used for rating the habitat factors.

Pathway	Habitat Factor	Source of	Parameter/Unit	Parameter	Channel Type	Poor	Fair	Good
	(Indicator)	Criteria		Qualifiers				
Water Quality	Dissolved Oxygen (D.O.)	WAC173-201A		Evaluate % saturation to reflect altitude & temperature effects on dissolved oxygen levels. There are only Class A waters in the watershed.	Class A waters	D.O. < 7.0 mg/l, and/or < 80% saturation	D.O. 7.0-8.0 mg/l, and/or between 80 and 90% saturation	D.O. > 8.0 mg/ and/or > 95 % saturation
Water Quality	Temperature	WSP (= WAC 173- 201A)	Degrees Fahrenheit, (Celsius in Parens.).	Assumes 7 day average	Class A waters	°F ≥ 75 (23.9 °C)	64.4 ≤°F< 75 (18 ≤ °C< 23.9)	< 64.4 °F (<18 °C)
Water Quality	Turbidity	Assorted authors, (see text)	Measured in nephelometric units (NTUs)	Could be assessed visually if hard data do not exist.	All waters in watershed	Greater than 100 NTUs for extended durations (> 48 hours continuous)	20 to 100 NTUs for extended durations.	Less than 20 NTUs for extended durations.
Water Quality	рН	WAC 173-201A	Measured on unitless scale of 1 to 14, with a neutral reading of 7	Measured instantaneously, using field probes, or anayzed under lab conditions. Values above 7 are alkaline, below 7 acidic.	All waters in the watershed	Below 5.5 or above 9, human caused variation greater than 0.5.	5.5-6.5 or 8.5 to 9, human caused variation less than 0.5.	6.5 to 8.5, no human caused variation less than 0.5.

Table 4-1. Salmonid Habitat Rating Criteria Adopted by the Okanogan TAG

Pathway	Habitat Factor (Indicator)	Source of Criteria	Parameter/Unit	Parameter Qualifiers	Channel Type	Poor	Fair	Good
Water Quality	Suspended Sediment	See Newcomb and Jensen 1996 (N. American Journal of Fisheries Mngt.).	Suspended sediment measured in mg/L. Clays: < 2 um Silts: 2 to < 50 um Sand: 50 to 2000 um. (Most suspended particles are between 0.1 to ~ 200 um).	Use appropriate effects threshold for evaluating suspended sediment data. Or, model effect of conc. & exposure duration (Newcomb & Jensen 1996).	All waters in watershed	Suspended sediment concentrations exceed relevant risk thresholds frequently (e.g., 1- 2z/month, for extended durations)	Suspended sediment concentrations exceed relevant risk thresholds occasionally.	Suspended sediment concentrations and durations do not exceed relevant risk thresholds.
Water Quality	Chemical Contamination/ Nutrient Loading	a) Ecology pub. 97-14 (impaired and threatened surface waters requiring additional pollution controls)	Generally measured in mg/l (ppm) or ug/l (ppb) for water criteria.	/	watershed/	a) High levels of chemical contamination from agricultural and other sources. Greater than one 303(d) listing in sub-watershed (reach)	a) Moderate levels of chemical contamination from agricultural and other sources. One (1) 303(d) listing in sub- watershed (reach)	chemical contamination
		 b) WAC 173- 204 (Sediment Mngt. Standards) c) Summary of guidelines for contaminated freshwater sediments (WDOE 1995). 	Sediment criteria measured in mg/kg (ppm), ug/kg (ppb). Some criteria are normalized to (%) organic carbon. SMS criteria are for marine sediments, therefore other freshwater criteria [c] may be more applicable.			b) Sediment quality does not meet SQC and currently exceeds other accepted freshwater effects thresholds (see c).	b) Sediment quality currently meets SQC but has record of not meeting SQC or other accepted freshwater effects thresholds (see c).	b)Sediment quality meets SQC and other freshwater effects thresholds (see c).
In-Channel Habitat	Fine Sediment (Sedimentation)	NMFS	Fines < 0.85 mm in spawning gravel	Measured preferentially by:	All waters in watershed	> 20%	12-20%	< 12%

Pathway	Habitat Factor (Indicator)	Source of Criteria	Parameter/Unit	Parameter Qualifiers	Channel Type	Poor	Fair	Good
			(criteria to be applied to lower gradient reaches only, where spawning might naturally occur [1-3% gradient])	(1) core sample, or (2) surficial embeddedness evaluation.				
In-Channel Habitat	Large Wood Debris (LWD)*	NMFS (originally derived from PACFISH)	Pieces/mile >12" dia., and >35' length	Overton et al. (1995) provide LWD loading stratified to channel type, width, and geology. TAG members are encouraged to consider these criteria when NMFS criteria appear inappropriate.	All waters in watershed	Less than 20 LWD pieces per mile, and riparian reserves lack sufficient recruitment potential.	Greater than 20 LWD pieces per river mile, but riparian reserves lack sufficient recruitment potential	Greater than 20 LWD pieces per mile with sufficient recruitment potential from riparian stand for continued functioning.
In-Channel Habitat	Percent Pool	WSP/WSA	% pool, by surface area	P1a = WSA pool definition	Waters of <2% gradient & <15m wide	< 40%	40-55%	> 55%
In-Channel Habitat	(con.)		% pool, by surface area	P1b = USFS pool definition	Waters of 2-5% gradient & <15m wide	< 30%	30-40%	> 40%
In-Channel Habitat	(con.)		% pool, by surface area	P1c = Colville tribe . P2 = Prof. Judgement	Waters of greater than 5% gradient, with bankfull width less than 15m		20-30%	> 30%
Habitat Access	Fish Passage	NMFS (WDFW	Measure jump heights by inches, velocity in ft/seconds.	Passage restrictions will vary by species	All waters in watershed	Any artificial barriers present do not allow	Any artificial barriers present do not allow upstream and/or	Any artificial barriers present provide upstream

Pathway	Habitat Factor (Indicator)	Source of Criteria	Parameter/Unit	Parameter Qualifiers	Channel Type	Poor	Fair	Good
			Numeric criteria for passage through culverts from WDFW 1997b are found in the appendix to this document.	and between juvenile and adult stages.		upstream and/or downstream passage at all flows	downstream passage at low flows	and downstream passage at all flows
Flow	Resembles Natural Hydrograph	NMFS	Hydrograph change	Professional judgement required	All waters in watershed	Pronounced changes in peak flow, baseflow and/ or flow timing relative to an undisturbed reference watershed.		Watershed hydrograph indicates peak/ base flow and flow timing are comparable to an undisturbed reference watershed.
	Impervious Surface					Greater than 10% impervious surface.	From 3 to 10% impervious surface.	Less than 3% impervious surface.
Channel Condition	Riparian Vegetation	NMFS	A variety of metrics can be applied to address riparian condition. Interpretation should include aerial photograph and/or ground survey.			Riparian reserve system is fragmented, poorly connected, or provides inadequate protection of habitats and refugia for sensitive aquatic species (< 70% intact), and/or for grazing impacts:	There is a moderate loss of connectivity or function (shade, LWD recruitment, etc.) of riparian reserve system, or incomplete protection of habitats and refugia for sensitive aquatic species (~70-80% intact), and/or for grazing impacts:	The riparian provides adequate shade, LWD recruitment, and habitat protection and connectivity in all areas, and buffers include known refugia for sensitive aquatic species (>80% intact),

Pathway	Habitat Factor (Indicator)	Source of Criteria	Parameter/Unit	Parameter Qualifiers	Channel Type	Poor	Fair	Good
						percent similarity of riparian vegetation to the potential natural community/ composition <25%	riparian vegetation to the potential natural community composition is 25to50% or better.	and/or grazing impacts: percent similarity of riparian veg. to the pot. natural community/comp is > 50%
Channel Condition	Streambank Stability	NMFS	% of banks not actively eroding		All	<80% stable (>200 ft?)	80-90% stable	>90% stable
Channel Condition	Floodplain Connectivity	NMFS				Severe reduction in hydrologic connectivity between off- channel, wetland, floodplain and riparian areas; wet-land extent drastically reduced and riparian vegetation/ succession altered significantly	and riparian areas to main channel; overbank flows are reduced relative to historic frequency, as evidenced by moderate degradation	maintain wetland

NMFS = National Marine Fisheries Service, matrix of pathways and indicators, 1996

WSP = Wild Salmonid Policy (WDFW 1998)

WSA = Watershed Analysis (WDNR 1997)

WAC = Washington Administrative Code

*The TAG were unanimous in their discomfort with the LWD criteria indicated, but could not agree upon appropriate surrogate for the NMFS criteria indicated. Shrub-steppe habitats and arid conditions of the Okanogan cannot naturally achieve these loading conditions except in the most select locations in the watershed. Additional study is needed to define properly functioning wood loading conditions for Okanogan habitats. Loadings proposed by Overton et al. (1995) reflect channel type, width and flow from Idaho habitats perhaps more similar to those in the Okanogan. These wood loading conditions could represent a good starting point for initiating a study in the Okanogan region.

Role of Pathways and Indicators on Salmonid Health and Habitat

Water Quality.

A limited array of water quality parameters primarily dictate the suitability of aquatic habitats for salmonid fishes. The water quality indicators described below represent those considered most influential to salmonid health and habitat. In general, cool, well-oxygenated water is required. As stream temperatures rise, their dissolved oxygen content is reduced. Temperature increases and consequent reductions in bioavailable oxygen tend to have deleterious effects on fish and other organisms by: 1) inhibiting their growth and disrupting their metabolism; 2) amplifying the effects of toxic substances; 3) increasing susceptibility to diseases and pathogens; 4) encouraging an overgrowth of bacteria and algae which further consume available oxygen; 5) creating thermal barriers to fish passage, and 6) reducing available food organisms. In addition to temperature and dissolved oxygen, fine sediment, pH, nutrient loading, and toxicants can affect water quality to the point at which salmonid abundance and distribution are affected. The most common stream pollutants include nutrients such as nitrates and phosphates, fecal coliform bacteria, heavy metals (e.g. from mine wastes), and agricultural and industrial chemicals such as insecticides, herbicides, and petroleum-based hydrocarbons. The following discussion provides further detail on the water quality parameters of particular relevance to salmonid health and habitat in the Okanogan watershed.

Dissolved Oxygen

Dissolved oxygen is essential for fish survival. Requirements of salmonids vary by life stage, but are generally considered stressful to juvenile and adult salmonids at and below a concentration of approximately 5 mg/L, with lethality occurring at levels around 2-3mg/L. Growth rates may begin to be reduced at concentrations below 7 mg/L. Absolute requirements for dissolved oxygen in salmonids are greatest at the time of hatching (Alderdice et al. 1958). For example, it has been reported that Atlantic salmon eggs near hatching (at 10C) require dissolved oxygen levels of 7.5 mg/L, in comparison to post-hatch alevin (larval) requirements of 4.5 mg/L (Hays et al. 1951). Requirements in Pacific salmon will not substantively differ from those reported by Hays for the Atlantic salmon.

Dissolved oxygen saturation decreases with increasing temperature, altitude, and salinity. The absolute requirement for oxygen in fish is driven by the partial pressure differences between fish blood and the dissolved oxygen concentration in the water (Fisher 2000). Thus, fish use of dissolved oxygen is maximal and independent of environmental oxygen concentrations when the partial pressure of oxygen is sufficiently high. For steelhead and related salmonids, a minimum partial pressure of 118 mmHg in water is required to prevent hypoxia (Forteath 1988).

Temperature

This water quality indicator addresses high or low instream water temperatures that negatively affect salmonid migration or survival during any life history stage. Water temperature varies with time of day, season, and water depth. Although temperatures are particularly dependent on direct solar radiation, they are also influenced by water velocity, climate, elevation, location of stream in the watershed network, amount of streamside vegetation providing shade, water source, temperature and volume of groundwater input, the dimensions of the stream channel, and human impact. Water temperature strongly influences the composition of aquatic communities, with salmonids thriving or surviving only within a limited temperature range. Water temperatures of approximately 23-25°C (73-77°F) are lethal to salmon and steelhead (Theurer et al. 1985) and genetic abnormalities or mortality of salmonid eggs occurs above 11°C (51.8°F). Physiological

functions are commonly influenced by temperature, some behaviors are linked to temperature, and temperature is closely associated with many life cycle changes. Temperature indirectly influences oxygen solubility, nutrient availability, and the decomposition of organic matter; all of which affect the structure and function of biotic communities. As water warms, oxygen and nutrient availability decrease, whereas many physiological and material decomposition rates increase. These temperature-moderated processes can influence the spatial and temporal distribution of fish species and aquatic organisms (Bain and Stevenson 1999).

PH

The pH is a measure of the acidity of a solution and is reflective of the solute components dissolved within it. It is measured on a logarithmic scale such that a 1 point difference in pH reflects a 10-fold difference in acidity. Waters are considered acidic at pH values below 7 and alkaline at pH values above 7. As stated by Fisher (2000), "It (pH) is controlled by the carbonic acid cycle, the buffering capacity of the water, and the amount of carbon dioxide liberated into and out of the water via respiration and aeration, respectively in waters of inadequate buffering capacity, the production of carbon dioxide (from respiration) will drive the bicarbonate/ carbonate/carbonic acid cycle toward the production of carbonic acid, which will ultimately depress pH." Additional acidic contributions, such as nitric or sulphuric acid from acid precipitation, can also depress pH. At pH values below 5, aluminum, the most common element in the earth's crust, becomes bioavailable and toxic (Baker and Schofield 1982); other metals, in particular the divalent cations (e.g., copper) also become much more toxic at depressed pH values. In the Okanogan watershed, soil conditions are generally well buffered, and calcareous solutes generally result in alkaline waters. Indeed, waters in the region can be hyper-alkaline, exceeding conditions tolerated by salmonids (pH 9). At pH values in excess of 9, swimming can become erratic and blindness and/or mortality may result (Piper et al. 1982). Other constituents potentially found in surface waters such as ammonia become significantly more toxic at higher pH as their chemical equilibria shift towards unionized, bioavailable forms. Elevated pH coupled with high temperatures can be especially problematic in this regard.

Turbidity/Suspended Sediment

This water quality indicator addresses the potential impacts of turbidity and suspended sediments on fish health, behavior and food supply. As reviewed in Fisher (2000), sublethal effects of reduced growth, gill flaring, coughing, reduced prey capture efficiency and habitat displacement have been documented in salmonids at turbidities ranging from 20 to 265 nephelometric turbidity units (NTUs). These turbidity values would equate to suspended sediment concentrations of roughly 190 to 3,000 mg/L (Berg and Northcote 1985, Servizi 1988, Sigler 1988). Chronically elevated turbidities at and above approximately 20 NTUs can reduce the photosynthetic capacities of surface waters, ultimately depressing food supplies and feeding behaviors upon which salmonids directly depend (Gregory 1994).

A risk assessment methodology to address suspended sediment risks to aquatic biota has been recently completed that evaluates risks relative to exposure concentration, duration, particle size, and life stage sensitivity (Newcomb and Jensen 1996). As indicated by Newcomb and Jensen, specific tolerance values for suspended sediments vary greatly among fish species, salmonid life stage and particle size. This variation is largely reflective of the various environmental conditions under which salmonids are found in nature (e.g., glacial melt vs. spring fed streams). Within the Okanogan, no studies on salmonid tolerance levels to turbidity and suspended sediments have been conducted, therefore an interpretation of impacts to aquatic habitats from this water quality indicator is subject to the uncertainty inherent in the threshold criteria. A risk

assessment paradigm may be needed to fully ascertain risks to salmonid production in the Okanogan watershed from turbidity and/or suspended sediment. The application of such a paradigm could be used to back-calculate acceptable sediment loading into sub-watersheds, and subsequently address land use practices responsible for sediment delivery. In the interim, unless specific water quality data were available, rating of this indicator at the sub-watershed/reach level was largely subjective and based upon visual observation of recurrent incidents of turbid waters.

Nutrient/Contaminant Loading

Nutrients can alter the trophic structure of aquatic systems by enriching aspects unfavorable to salmonids. High nitrate and phosphate loading can lead to eutrophication, choking fluvial systems with aquatic vegetation and subsequently affecting physical parameters such as dissolved oxygen and temperature that have direct physiological implications on salmonid health. Chemical contaminants may lead to sub-lethal or lethal consequences in salmonids through a variety of direct and indirect mechanisms (e.g., immunosuppression, behavioral alterations, reproductive disorders, etc.). Collectively and/or individually, these elements can limit or preclude the use of habitat otherwise suitable to salmonids for spawning or rearing.

In-Channel Habitat

This pathway considers habitat indicators of stream channel integrity that contribute to habitat complexity. These elements in turn translate to an increased potential for density dependent salmonid productivity.

Fine Sediment (Sedimentation atop substrate)

This habitat indicator was selected to evaluate the impacts of fine sediments on rearing and spawning habitat. Substrate refers to the mineral and organic material forming the bed of a stream channel or waterbody. The composition and size of the substrate determines the roughness of stream channels, and the roughness, in turn, has a large influence on channel hydraulics (e.g., water depth, width, and current velocity) of stream habitat. Clean gravel-sized substrates provide the micro-conditions needed by salmonids for effective spawning and rearing (Bjornn and Reiser 1991).

An increase in fine sediment recruitment into a stream channel above the rate of sediment transport out of the system can reduce pool depth, alter substrate composition, reduce interstitial space, and cause streambank instability through channel aggradation. Fine sediment particles that settle atop and into salmon redds during incubation reduce water exchange, thereby lowering the amount of oxygen available to the embryos, increasing the concentration of embryo wastes (toxic ammonia), and delaying the emergence of fry. Fry that manage to survive and emerge from such incubation environments are often smaller than fry incubated under optimal conditions, or they exhibit abnormalities (Emadi 1973). Rearing juvenile salmon and steelhead have also been observed to use the interstitial spaces between boulders in the substrate (interstitial space) for cover from predators and during low instream temperatures (50° F/10° C; Don Chapman Consultants 1989). A high percent of fine sediment in a stream channel can fill the interstitial spaces, eliminating such rearing habitat and contributing to a decreased survivability.

Roads can affect streams directly by accelerating erosion and sediment loading, by altering channel morphology, and by changing the runoff characteristics of watersheds. These changes can later affect physical processes in streams, leading to changes in streamflow regimes, sediment transport and storage, channel bank and bed configurations, substrate composition and

stability of slopes adjacent to streams (Furniss et al. 1991). Sediment entering stream is delivered chiefly by mass soil movements and surface erosion processes (Swanson 1991). Failure of stream crossings, diversion of streams by roads, washout of road fills, and accelerated scour at culvert outlets are also important sources of sedimentation in streams within roaded watersheds (Furniss et al. 1991).

Large Woody Debris (LWD)

This habitat indicator addresses impacts resulting from the removal or the lack of LWD, and the decrease or the loss in LWD recruitment and/or recruitment potential. Large woody debris (LWD) provides important physical and biological functions in the wide variety of habitats used by all salmonids. Nelson (1998) states that the abundance of LWD is often associated with the abundance of salmonids and is thought to be the most important structural component of salmon habitat. The biological functions of LWD include predation and velocity refuge, and shade. The presence of LWD in the floodplain creates the diversity of habitat conditions that support multiple life stages of salmonids. LWD creates lateral channel migration and complexity. It sorts gravels, stores sediment and gravel, contributes to channel stabilization and energy dissipation and maintains floodplain connectivity. Large accumulations of LWD in the lower floodplain can direct flow into meander loops and result in formation of riverine ponds and other off-channel habitat features, providing for the recruitment of new LWD from these side channel areas. Large woody debris can also indirectly function as a formative factor in channel processes. When considering channel conditions in fish-bearing streams, the potential contribution or recruitment of LWD from non-fish-bearing tributaries is also an important factor. In small streams, LWD traps sediment, causes local bed and bank scour, and creates pools. Small channels are thus particularly dependent on in-channel woody debris structure for stability.

The anticipated location and size of LWD accumulations within a stream channel and its floodplain are a function of the stream's hydrology, its physical characteristics (geomorphology) and the surrounding physical/vegetative environment. Size standards and properly functioning criteria recommended for LWD loading have varied between agencies, largely in reflection of the natural conditions where their management actions are focused. For example, large woody debris east of the Cascades has been described as wood material greater than 12 in diameter and 35 ft long (NMFS 1996). Such criteria are not particularly relevant in the shrub-steppe habitats that predominant in the lower elevations of the Okanogan watershed, and they have not been validated for even the upper portions of many of the watershed's tributaries. In many locations, soil conditions and moisture are inadequate to achieve trees of this size, even in the absence of riparian disturbance (C. Nelson, TAG). For this reason, the TAG accepted the NMFS wood loading criteria for properly functioning conditions only by default (see Table 4-1 footnotes) and acknowledges that additional data are needed to accurately define natural potential wood loading conditions for the Okanogan watershed.

Percent Pool

Pools function to provide adult holding habitat, juvenile rearing habitat, and thermal refuge for both adults and juveniles. Pools are formed by the interaction of flow with solid and loose boundaries, such as LWD, boulders, bends, streambed and other flows (Nelson 1998). Pool formation primarily occurs during moderate to high flow events. The interaction of flow with these boundaries causes flow to converge and accelerate, increasing bed scour though increases in bed shear stress. Pools form around channel obstructions (i.e. boulders, bridge piers, culverts, LWD), at meander bends, and at tributary channel junctions (Nelson 1998). Sediment levels, LWD levels, and human-made channel obstructions can alter the pattern and frequency of pool development within the geologic and hydrologic confines of the channel. Pool area is a function of LWD and channel slope (Nelson 1991). Although there are several indices of pool quality, the areal estimate of 'percent pool' was selected by the TAG as the metric of pool quality which was the most appropriate given the paucity of data on pool conditions throughout the watershed, particularly in the sub-watersheds. Further investigations into the habitat conditions of Okanogan sub-watersheds could provide data on pool frequency and residual pool depth that will provide much needed information reflective of pool quality currently lacking.

Habitat Access

This pathway addresses the need to access existing habitat if salmonid production is to be maintained and enhanced. Throughout the historic range of the Salmonidae, barriers have been constructed that have restricted or prevented juvenile and adult fish from gaining access to formerly accessible spawning and rearing habitat. These barriers include dams and diversions with no passage facilities, culverts poorly installed or designed, and dikes that isolate floodplain off-channel habitat. Additional factors that can affect access include low stream flow or inhospitable temperature conditions that function as barriers during certain times of the year.

Changes in flow conditions can have a variety of effects on the accessibility to salmonid habitat; thus, evaluations of habitat access must also consider flow indicators (4.2.4). In general, spring spawning species (rainbow/steelhead) take advantage of high spring flows, accessing smaller tributaries, headwater streams and spring snowmelt-fed streams not accessible later in the year. Reproduction of late summer and fall-spawning species (spring chinook, summer chinook, and fluvial bull trout) occurs most frequently in alluvial reaches of larger streams and rivers where groundwater recharge strongly buffers local interstitial and surface water conditions from decreasing flows and increasing or decreasing water temperatures. Incubation of salmonid eggs and fry occurs within the interstitial spaces of gravels in the beds of cool, clean streams and rivers. Once emergence from the gravel is complete, young salmon are mobile, which increases their flexibility to cope with environmental variation by seeking suitable habitat conditions. Mobility is limited however, particularly for fry, so that suitable habitat and food resources must be available in proximity to spawning areas for successful first-year survival. Ideal rearing habitat affords low-velocity cover, a steady supply of small food particles, and refuge from larger predatory fishes, birds and mammals (Williams et al. 1996).

Flow

Stream flows are affected by the removal of surface waters for domestic, agricultural and municipal use, by groundwater withdrawals—particularly from shallow wells in direct connectivity with surface waters, and by impervious surfaces in a drainage basin that can alter groundwater recharge and surface water run-off rates. The impacts of reduced flows vary depending on a combination of fish use in the affected reach and the extent and duration of reduced flows. Decreased flows can reduce the availability of summer rearing habitat and contribute to temperature and access problems, while increased peak flows can scour or fill spawning redds. Other alterations to seasonal hydrology can strand fish or limit the availability of habitat at various life stages. Extended periods of low flows can delay the movement of adults into streams, draining their limited energy reserves, affecting upstream distribution and spawning success. High winter flows can cause egg mortalities by scouring and/or sedimentation of the spawning beds. Low winter flows can contribute to anchor ice formation and result in the freezing of eggs or stranding of fry. The overwinter survival of juvenile fish can be negatively affected by the reduction in the quantity and quality of winter rearing habitat as a result of low flows.

Stream flow is moderated by riparian vegetation as well as vegetative cover in the uplands. The removal of upland and riparian vegetation through timber harvest, road development, and through the conversion of land for agriculture and residential/urban use alters surface water runoff patterns and ground water storage patterns. Riparian areas, in particular, assist in regulating stream flow by intercepting rainfall, contributing to water infiltration, and using water via evapotranspiration. Plant roots increase soil permeability, and vegetation helps to trap water flowing on the surface, thereby aiding infiltration. Water stored in the subsurface sediments is later released to streams through subsurface flows. Through these processes, riparian and upland vegetation aid in moderating storm-related flows and reduce the magnitude of peak flows and the frequency of flooding.

Impervious Surface

This indicator reflects the impacts of impervious surfaces on the frequency and magnitude of high and low flows.

Resembles Natural Hydrograph

This habitat indicator addresses changes in peak or base flows and/or flow timing relative to what one would expect to see in an undisturbed watershed of similar area, geomorphology and climate (precipitation regime). The quantity of available water and the rate at which it reaches the stream channel and passes through the channel system are influenced by precipitation regimes, watershed size, vegetation cover, and certain topographic consideration (Swanston 1991). Altering the vegetative component of a watershed and diverting instream flows for out-ofstream uses can have a significant effect on the timing and magnitude of peak and low flows. Changes in percent cover, species composition, and/or stand age class can change interception, evapotranspiration and soil water retention rates. Timber harvest activities, conversion of land to agricultural and urban/residential use, and fire are all actions that have the potential to disturb the vegetative community of a drainage to the extent that there is a noticeable affect on the stream flow regime. High road densities, soil compaction associated with agricultural activities, timber harvest, and grazing all contribute to increased surface water runoff and decrease soil permeability and water retention. The diversion of instream flows have the potential to alter the magnitude and duration of low flows, affecting stream channel conditions and decreasing total wetted area.

Channel Condition

A stream channel represents the integration of physical processes occurring at the watershed level: hydrologic (i.e. precipitation, snow melt); erosional (i.e. debris flows); and tectonic processes (i.e. mass wasting events). The physical processes determine sediment, water, and LWD input to the channel. At the same time channel form or morphology is naturally constrained both laterally and vertically by valley form, riparian conditions and geology. The ability of the channel to transport and manage sediment, water and LWD is a function of the channel's morphology and roughness and the input of sediment and LWD (i.e. source, transport or response reaches; Montgomery and Buffington 1993). Channel form will change when any of these inputs are altered or when the channel is artificially confined or constrained.

Riprapping, originally installed for flood control, can reduce the river's ability to access its floodplain and migrate laterally, thereby dissipating high flow energy. Loss of floodplain access and opportunity for lateral channel migration can lead to channel downcutting that further reduces access to the floodplain (USFS Mainstem Wenatchee River Watershed Assessment

1999) and changes the sediment and LWD transport regimes of the river system. Riprapping and stream downcutting can also lead to accelerated bank erosion by diverting flow energies to opposite banks and weakening the toes of banks causing slumping.

Human land use activities within a watershed (i.e. road development, vegetation removal, water diversion) can alter the outcome of physical processes on channel formation and alter the ability of the channel to develop both laterally and vertically. For example, the quality and quantity of salmonid rearing and spawning habitat in a stream channel is controlled by the interaction of sediment and LWD with water and the transport of all three components through the channel network. Altering LWD levels or increasing sediment input can result in a decrease in the number and quality of pools, a decrease in the ability of the channel to retain sediment and organic matter, and an increasing width to depth ratio in low gradient reaches. Confining or constricting the stream channel can affect the rate and type of sediment, LWD, and water transport through the system. It is important to note that habitat conditions in fish-bearing streams are intimately influenced by contributions of sediment and LWD from non-fish-bearing streams within a watershed. In the Pacific Northwest, LWD has been found to have a significant influence on the formation of pools and channel form (Nelson 1998).

Agricultural practices and residential/urban development can also affect streams by accelerating erosion and sediment loading to streams and by changing the runoff characteristics of watersheds. Farmed fields left fallow (i.e. barren of vegetative cover) cause much surface erosion and sediment movement to streams as winter snow melts and runs off carrying soil into stream channels (Committee on Protection and Management of Pacific Northwest Anadromous Salmonids et al. 1996). This is particularly a problem where riparian vegetation has been removed and the land is farmed to the bank's edge. The conversion of riparian habitat to landscaped lawns has the same effect, removing bank stabilizing root mass thereby contributing to accelerated streambank erosion. Riparian vegetation naturally functions as a filter, captures sediment and buffers the flow of surface runoff into stream channels.

Riparian Vegetation

This channel condition indicator addresses factors that limit the ability of native riparian vegetation to provide shade, nutrients, bank stability, and a source for LWD into the active channel. Human impacts to riparian function include timber harvest, clearing for agriculture or development, and direct access of livestock to stream channels. The riparian ecosystem is a bridge between upland habitats and the aquatic environment and includes the land adjacent to streams that interacts with the aquatic environment. Riparian forest characteristics in ecologically healthy watersheds are strongly influenced by climate, channel geomorphology, and location of the channel in the drainage network. For example, fires, severe windstorms, and debris flows can dramatically alter riparian characteristics. The width of the riparian zone and the extent of the riparian zone's influence on the stream are strongly related to stream size and drainage basin morphology.

Riparian habitats include side channels which offer refuge from adverse winter conditions such as rain-on-snow events/flooding and icing, and often influence the water quality of adjacent aquatic systems. Riparian vegetation provides shade which shields the water from direct solar radiation thereby moderating extreme temperature fluctuations during summer and keeping streams from freezing during winter. Riparian vegetation helps stabilize banks by maintaining masses of living roots which reduce surface erosion, mass wasting of stream banks and consequently reducing sediment delivered to the stream channel (Platts 1991). Riparian vegetation also contributes to the recruitment of large woody debris (LWD). Large woody debris contributes to channel complexity, including pool development, and sediment storage. Riparian ecosystems act as reservoirs, storing run-off in soil spaces and wetland areas and diminishing erosive forces caused by high flow events. The presence of stream-side vegetation also reduces pollutants, such as phosphorous and nitrates through filtration and binding them to the soil. Riparian vegetation contributes nutrients to the stream channel from leaf litter and terrestrial insects, which fall into the water.

Riparian zones are impacted by all types of land use practices. Riparian forests can be completely removed, broken longitudinally by roads, and their widths can be reduced by land use practices. Further, species composition can be dramatically altered when native, old-growth, coniferous trees are harvested, allowing for the establishment of a younger seral stage of hardwood, deciduous tree species and young, smaller diameter conifers. Deciduous trees are typically of smaller diameter and shorter lived than coniferous species. They decompose faster than conifers so they do not persist as long in streams and are vulnerable to washing out from lower magnitude floods. Once impacted, the recovery of a riparian zone can take many decades as the forest cover reestablishes and matures and coniferous species colonize. In the more arid, narrower riparian zones common in the steep canyons of the lower Wenatchee basin watersheds, reestablishing conditions that support the regrowth of native riparian vegetation can be an even more difficult once the soil is disturbed.

Salmonids habitat requirements are met in part by healthy, functioning riparian habitat. For example: adequate stream flows must be present in order for fish to access and use pools and hiding cover provided by root wads and LWD positioned at the periphery of the stream channel. Microclimate, soil hydration, and groundwater influence stream flow; these factors are in turn influenced by riparian and upland vegetation. Vegetation and the humus layer intercept rainfall and surface flows. This moisture is later released in the form of humidity and gradual, metered outflow through groundwater where the geology supports the groundwater/surface water interaction. Through this process, stream flows may be maintained through periods of drought (Knutson and Naef 1997).

Streambank Stability

This channel condition indicator was selected to consider the role of the streambank in providing long-term stability to aquatic habitats needed by anadromous salmonids. Natural stream channel stability is achieved by allowing the river to develop a stable dimension, pattern, and profile such that over time, channel features are maintained and the stream system neither aggrades or degrades (Rosgen 1996; Leopold et al. 1992, Fluvial Processes in Geomorphology). For a stream to be stable it must be able to consistently transport its sediment load, both size and type (Rosgen 1996; Leopold et al. 1992). When the stream laterally migrates, but maintains its bankfull width and width/depth ratio, stability is achieved even though the river is considered to be an "active" and "dynamic" system (Rosgen 1996). Changes in discharge and sediment supply result in a limited number of possible channel adjustments, which vary with channel form and position within the stream network (Montgomery and Buffington 1993). Potential adjustments include changes in width, depth, velocity, slope, roughness and sediment size (Leopold et al. 1992). Channel instability occurs when, over a period of years, the scouring process leads to degradation (downcutting), or excessive sediment deposition results in aggradation.

Floodplain Connectivity.

This channel condition indicator was selected to evaluate the direct loss of aquatic habitat from human activities in floodplains (such as filling) and disconnection of main channels from

floodplains with dikes, levees, and revetments. Disconnection can also result from channel degradation (downcutting) caused by changes in hydrology or sediment inputs. Floodplains are relatively flat areas adjacent to larger streams and rivers that are periodically inundated during high flows. In a natural state, they allow for the development of productive aquatic habitats through lateral movement of the main channel. Floodplains also provide storage for floodwaters, sediment, and large woody debris. Floodplains often contain numerous sloughs, side channels, and other features that provide important spawning habitat, rearing habitat, and refugia during high flows.

The alluvial fans of floodplains are an important feature of the floodplain, dissipating flow energy and maintaining and creating suitable rearing and spawning habitat over a wide range of flows. Large woody debris in a floodplain creates conditions necessary for plant colonization within an alluvial plain. Large woody debris is a primary determinant of channel morphology, forming pools, creating low velocity zones, regulating the transport of sediment, gravel, organic matter and nutrients and providing habitat and cover for fish (Bisson et al. 1987).

There are two major types of human impacts to floodplain functions. First, channels are disconnected from their floodplain laterally as a result of the construction of dikes and levees, which often occur simultaneously with the construction of roads, and longitudinally as a result of the construction of road crossings. Riparian forests are typically reduced or eliminated as levees and dikes are constructed. Channels can also form artificial high velocities as a result of downcutting and incision (degrading of riparian vegetation) of the channel if there is no good input of LWD, decreased sediment supplies, and increased high flow events. Reduced overbank flooding resulting from increased entrenchment can reduce groundwater recharge and alter the flow regime (Naiman et al. 1992, as cited in USFS Mainstem Wenatchee River Watershed Assessment 1999).

The second major type of impact to floodplains results from a loss of natural riparian and upland vegetation. Conversion of mature vegetated cover to impervious surfaces, early-mid seral deciduous riparian stands, pasture, and farmed fields has occurred as floodplains have been converted to urban/residential and agricultural uses. This has: 1) eliminated off-channel habitats such as sloughs and side channels, 2) increased flow velocity during flood events due to the constriction of the channel, 3) reduced subsurface flows, and 4) simplified channels since LWD is lost and channels are often straightened when levees are constructed.

Elimination of off-channel habitats can result in the loss of important rearing habitats for juvenile salmonids such as sloughs and backwaters that function as overwintering habitat for spring chinook, steelhead and bull trout. The loss of LWD from channels reduces the amount of rearing habitat available for juveniles. Disconnection of the stream channels from their floodplain due to levee and dike construction increases water velocities, which in turn increases scour of the streambed. Salmon that spawn in these areas may have reduced egg to fry survival due to the scour. Removal of riparian zones can increase stream temperatures in channels, which can stress both adult and juvenile salmon. Sufficiently high temperatures can increase mortality.

Fisheries Resources and Habitat Limiting Factors Ratings by Subwatershed

The following subbasin assessments evaluate subwatersheds where salmon or steelhead are known to occur, or where habitat conditions in the stream(s) have the potential to degrade habitat downstream, in salmonid-bearing waters. Ratings of "Good", "Fair" or "Poor" were assigned

during the assessment using the Okanogan Watershed Habitat Rating Criteria outlined in chapter 4, (Table 4-1). The information upon which the assessments were based was derived from published sources, technical reports and the combined professional knowledge of the TAG participants. Therefore, each rating incorporates how biologist(s) judged the quality of habitat for the various stream reaches from available information. The number "1" assigned to the rating indicates quantitative studies or published reports exist to support the rating. The number "2" assigned to the rating indicates the professional knowledge of the TAG was used to rate the condition and data analysis, data, or published reports were not available. Where "DG" (Data Gap) appears in the table, there was so little information available on the habitat condition (published or professional knowledge) that the TAG members did not feel confident making even a qualitative determination of condition for the habitat criteria. The absence of a stream on the list does not necessarily indicate salmon or steelhead do not occur in the stream or imply that the stream is in good (or poor) condition. Summaries of some subwatershed are highly truncated because they have not been documented to support salmon or steelhead, or they have not been surveyed. Where possible, reach breakdowns were incorporated into the rating schema, reflecting geomorphic constraints or other logical boundaries for evaluating habitat conditions within a subwatershed.

This chapter provides assessments of the habitat conditions and fisheries resources in the US sub-watersheds of the Okanogan watershed. Rankings of habitat indicators utilize the methodology and numeric and/or narrative standards outlined in Chapter 4. Reaches are delineated where possible. Drainage area, stream order classifications, river miles, and impervious surface area estimates for each of the Okanogan River sub-watersheds south of the U.S.-Canada border examined in this LFA are provided in **Tables 5-1** and **5-2**. Photographic representation of habitat conditions around the mouths of most of these sub-watersheds is provided in Appendix C.

	U	
	Area (acres)	Tributary to:
Okanogan River – Interfluve	204,398	Columbia River
Nine Mile Creek	13,516	Okanogan River Interfluve
Tonasket Creek	37,874	Okanogan River Interfluve
Mosquito Creek ¹	6,093	Okanogan River Interfluve
Antoine Creek	46,690	Okanogan River Interfluve
Siwash Creek	31,032	Okanogan River Interfluve
Bonaparte Creek	97,877	Okanogan River Interfluve
Chewilken Creek	17,125	Okanogan River Interfluve
Tunk Creek	45,586	Okanogan River Interfluve
Wanacut Creek	12,595	Okanogan River Interfluve
Omak Creek	90,691	Okanogan River Interfluve
Chiliwist Creek	27,842	Okanogan River Interfluve
Loup Loup Creek	40,868	Okanogan River Interfluve
Tallant Creek ¹	9,832	Okanogan River Interfluve
Salmon Creek	98,625	Okanogan River Interfluve
Johnson Creek	28,694	Okanogan River Interfluve
Fish Lake Basin Area ¹	23,124	Self Contained Basin
North Fork Pine Creek ¹	23,841	Self Contained Basin
Aeneas Creek	6,890	Okanogan River Interfluve
Aeneas Lake ¹	21,246	Self Contained Basin
Whitestone Creek (Spectacle Lake)	27,333	Okanogan River Interfluve
Similkameen River	228,536	Okanogan River Interfluve

Table 5-1 Area and tributary status of Okanogan River sub-watersheds

	Area (acres)	Tributary to:
Sinlahekin Creek ¹	189,521	Similkameen River
Wanacut Lake ¹	13,853	Self Contained Basin
Omak Lake	68,685	Self Contained Basin
Duley Lakes/Joseph Flats Area	51,319	Self Contained Basin
Swamp Creek	64,158	Columbia River
Columbia River Interfluve - East	139,955	Columbia River
Total	1,667,798	

1: included within spatial boundaries of sub-watershed listed above it for the LFA. To calculate total area of LFA sub-watershed the totals must be added (e.g., total Loup Loup area, with Tallant Creek drainage area is 40,868 + 9,832 acres = 50,700 acres).

Table 5-2 Stream order, river and road miles, and estimate of impervious surface area of Okanogan watershed sub-watersheds.

Sub-watershed	Stream Order	Mainstem of Sub- watershed River Miles ¹	Mainstem w/Tributary River Miles ¹	Total Sub- watershed River Miles ^{1,2}	Total Road Miles ¹	Total Road Miles ³	Total Impervious Surface (acres) ^{1,4}	Percent Impervious Surface ⁵
Chiliwist	2	3.7	19.3	34.5	108.4	69.2	420.6	1.5
Dan Canyon	3	5.5	21.6	30.1	33.9	19.5	131.6	
Felix Creek	2	2.6	6.0	62.4	56.8	64.8	220.1	6.5
Duley Lakes	0	0.0	0.0	0.0	70.5	34.1	273.5	0.5
Loup-Loup	4	16.8	62.0	93.9	141.3	107.1	548.0	1.1
Tallant Creek ⁶	2	5.9	8.8	8.8				
Salmon	4	38.1	137.1	156.3	295.6	269.0	1146.7	1.2
Omak	4	22.4	155.4	273.8	264.6	183.4	1026.4	0.6
Wanacut	3	7.6	27.6	53.6	3.8	37.3	14.9	0.1
Tunk	3	3.7	67.5	76.4	96.5	87.6	374.2	0.8
Johnson	2	7.9	17.9	62.8	207.3	148.2	803.9	1.1
N/S Fk Pine Creek ⁶	2	13.3	13.3	13.3				
Chewiliken	2	10.9	84.7	252.3	57.8	49.9	224.2	1.3
Bonaparte	4	24.1	117.6	126.1	202.5	152.5	785.5	0.8
Aeneas	2	8.0	23.8	26.9	39.8	31.6	154.3	0.5
Whitestone	2	2.8	25.9	83.4	162.5	142.6	630.3	2.3
Siwash	3	20.8	38.1	42.5	76.7	60.2	297.6	1.0
Antoine	3	16.6	54.0	55.1	94.5	103.9	366.5	0.8
Tonasket	3	7.3	41.0	74.7	130.9	173.3	507.6	1.2
Ninemile	2	6.8	11.4	13.8	21.1	26.3	81.9	0.6
Osoyoos Lake	0	0.0	0.0	3.8	25.9	14.7	100.4	
Similkameen River		20.56				199.1		
Sinlahekin River		23.47					ata parformad thr	

¹ Data from map-wheel projections of USGS 1:100,000 scale quadrangles. Each estimate performed three times. Coefficient of variation of estimates was less than 10%. ² Includes stream channels within sub-watershed area unconnected (at the surface) to the principal stream in

² Includes stream channels within sub-watershed area unconnected (at the surface) to the principal stream in the sub-watershed (e.g., Chiliwist Creek sub-watershed also includes the independent drainage Sullivan Creek).

Creek). ³Golder, Associates GIS database of highway and county road measurements. High confidence in WSDOT highway interpretations, lower confidence in county road measurements.

4Average road width to calculate impervious surface estimate assumed to be 40ft. Estimate based on roads alone, and does not consider impervious surfaces created by buildings and other structures.

5 Calculated by dividing impervious surface acres by total sub-watershed acreage (see Table 5-1), and multiplying by 100.

⁶Considered within sub-basin boundary of adjacent watershed listed in directly above in Table.

Okanogan mainstem

Overview of Habitat Characteristics in Okanogan Mainstem

Mainstem conditions of the Okanogan watershed were described in detail in Section 2. The following discussion focuses specifically on the analysis of habitat factors within the mainstem that might limit anadromous salmonid production. For this analysis the mainstem Okanogan River was divided into four reaches. Reach one includes the extent of inundation from Wells Dam, from RM 0 - 17. Reach 2 runs from RM 17 to the outlet of Lake Osoyoos (RM 77.4). Reach 3 begins at the lower end of a series of large lakes (Lake Osoyoos), and ends at the current extent of anadromy at the base of McIntyre Dam (downstream of Vaseaux Lake). Reach 4 begins at the current extent of anadromy (McIntyre Dam), and ends at the historic extent of anadromy, the upper reaches of Okanogan Lake (RM).

Reach 1

Reach 1 of the Okanogan River is shaped by the Wells Dam on the Columbia River, which creates a lentic influence to the lowermost 17 miles of the Okanogan River for approximately 17 miles. Consequently, the majority of the reach is essentially an elongated pool. Water level fluctuates frequently due to operational changes (power generation, storage) at Wells Dam. The stream banks are rarely exposed to high energy flows and remain relatively intact, due to low gradient and storage influences. Substrate consists almost entirely of mud, silt, and sand. Riparian vegetation consists of a dense layer of shrubs and saplings, which further protect the banks from scouring and erosion. There are few mature trees.

Reach 2

Reach 2 is a broad, shallow, low gradient, channel with relatively homogenous habitat. There are few pools, and limited large woody debris. Sediment levels are high and substrate embeddedness is relatively widespread. There are highways on either side of the river for most of the length of Reach 2, and several communities along the river. Agricultural fields and residential areas are adjacent to the river.

Limiting Factors Assessment in Okanogan Mainstem Reaches

Table 5-3 Limiting Factors By Reach in Mainstem Okanogan River

Habitat Attribute and Indicator	Reach 1	Reach 2	Reach 3	Reach 4
	RM 0 - 17	RM 1 - 77.4	RM 77.4 -	<i>RM</i> -
	confluence to upper	end of inundation	Lake Osoyoos	Oka Falls to
	end of inundation	to Lake Osoyoos	outlet to Ok Falls	historic
	, , , , , , , , , , , , , , , , , , ,	outlet	(current extent of	extent of
			anadromy)	anadromy
Water Quality				
Dissolved Oxygen	G1	F1		
Stream Temperature	F1	F1		
Turbidity/Suspended Sediment	G2	P2		
Nutrient Loading	P1	P1		
In Channel Habitat				
Fine Sediment (substrate)	P2	P2		
Large Woody Debris	P2	P2		
Percent Pool	G1	P2		

Habitat Attribute and Indicator	Reach 1 RM 0 - 17 confluence to upper end of inundation	Reach 2 RM 1 - 77.4 end of inundation to Lake Osoyoos	Reach 3 RM 77.4 - Lake Osoyoos outlet to Ok Falls	
		outlet	(current extent of anadromy)	extent of anadromy
Habitat Access				
Fish Passage	G1	G1	F2	P2
Stream Flow				
Resembles Natural Hydrograph	P2	P2	P2	P2
Impervious Surface	P2	P2	P2	
Stream Corridor				
Riparian Vegetation	P2	P2		
Stream Bank Stability	G2	F2		
Floodplain Connectivity	P2	P2		

Support for Limiting Habitat Factors Ratings in Mainstem Reaches *Water Quality*

Reach 1

Dissolved oxygen (DO) was rated as Good in Reach 1. Data records from the WDOE monitoring site near the town of Monse, Washington, indicate adequate DO levels. Stream temperature was rated fair because the Okanogan River is on the WDOE 303d list for numerous water temperature measurements collected at Monse, which exceed Washington State water quality standards. Sediment sources along this reach are not extensive and relative to the rest of the basin considered good. The water level in Reach 1 is influenced by Wells Dam so high velocities are attenuated thus minimizing sediment input from stream banks. Reach 1 was rated poor for nutrient loading. The river is on the WDOE 303d list for fecal coliform, PCBs, and DDT. The presence of these toxins were found in fish tissues in a variety of data collections from 1983 through 1995.

Reach 2

The Okanogan River is on the State 303(d) list for dissolved oxygen, temperature, fecal coliform, and DDT based upon sampling conducted near the community of Okanogan, Washington. United States Geological Survey (USGS) collected water quality data near Malott, Washington. The instantaneous measurements were collected during the months of February, June, August, and October from 1990 – 1994. These data show late summer water temperatures in excess of 70° F in each year from 1990 – 1993. More recently water temperatures were measured in excess of 83°F (C. Fisher, Colville Confederate Tribes, unpublished data). Dissolved oxygen levels were always over 8 mg/L, and turbidity levels were always less than 25 NTUs. The river was rated Fair for DO and water temperature based on more current DOE data, and "poor" for nutrient loading. Turbidity was rated as "poor" based on observations (C. Fisher, Colville Confederate Tribes, personal communication). While five dams on the Okanogan River system act as sediment traps, the Okanogan River is still subject to elevated levels of suspended sediment during high spring flows and other rain events. (C. Fisher, Colville Confederated Tribes, personal communication).

Reach 3

Reach 4

In-Channel Habitat

Reach 1

The substrate in Reach 1 was rated "poor", as it is composed almost entirely fine sediments, silt, and mud (A. Murdoch, personal communication, 2001). Large woody debris (LWD) is virtually nonexistent in Reach 1 but rated "fair". However, although mature vegetation, mostly cottonwood, is limited along the banks of the Okanogan River, it is suspected all LWD deposited in the River would float and be carried downstream. Pool habitat was rated as fair due to the absence of hydrological complexity created by the influence Wells Dam. Pools in this reach are probably used by salmonids as holding areas during migration.

Reach 2

Reach 2 reach was rated "poor" for all three in-channel habitat attributes. Large woody debris and pool habitat are scarce, and fine sediments are abundant. Historic levels of woody debris and pool habitat are not known, but a low gradient system such as the Okanogan would accumulate large woody debris along the shoreline for extended periods of time.

Reach 3

Reach 4

Habitat Access

Reach 1

Reach 1 was rated "good" for habitat access as there are no barriers to fish passage.

Reach 2

Reach 2 was rated "good" for habitat access as there are no barriers to fish passage

Reach 3

Reach 3 was rated "poor" for habitat access. McIntyre Dam near the outlet of Vaseaux Lake is a barrier to migrating salmonids in virtually all years.

Reach 4

Reach 4 was rated "poor" for fish passage. At the outlet of Skaha Lake, a dam exists which provides added storage for irrigation and flood control. A fish way is incorporated at the structure but is not currently activated.

Stream Flow

Reach 1

Reach 1 does not resemble the natural hydrograph due to the influence of storage created by Wells Dam and consequently was rated "poor". Flow in this reach is dictated by operation of the dam. The reach was rated "fair" for impervious surfaces, as highways parallel the river on both sides in Reach 1. State highway 97 is periodically located within the floodplain on the east bank, and County Road 9155 lies beyond the floodplain on the west bank.

Reach 2

Stream flow in the Okanogan River, as well as most of the tributaries, has been altered for flood control, irrigation, and recreation activities. As a result the natural hydrograph has been severely altered and is rated "poor". Impervious surfaces within the floodplain of the mainstem include State Highway 20, State Highway 97, and County Roads #9437 and #9320, as well as pavement in the communities of Malott, Okanogan, Omak, Riverside, Tonasket and Oroville. The reach was rated "poor" for this attribute.

Reach 3

Reach 4

Stream Corridor

Reach 1

Reach 1 was rated as "poor" for riparian vegetation due to the scarcity of mature tree species. Stream bank stability was rated "good". A dense riparian shrub layer protects the bank from erosion, as does the attenuation of high flows caused by Wells Dam. Floodplain connectivity is "poor" due to the presence of Highway 97. In addition, in this reach the River is slightly entrenched and the control of the water level does not allow the channel to overflow its banks into the floodplain.

Reach 2

Riparian vegetation in Reach 2 was rated "poor". As in Reach 1, the climax species and mature age classes are scarce. There is little recruitment of large woody debris. Streambank stability was rated "fair" in this reach due to areas of eroding banks, where exposed mineral soil is easily delivered to the River. Floodplain connectivity was rated "poor" because flood control measures (dikes, levees) have isolated the channel from its floodplain. Since the high volumes of water (flood flows) cannot disperse and dissipate energy laterally, the result is incision or eroding of the streambed. Channel incision further separates the river from the floodplain.

Reach 3

Reach 4

Chiliwist Creek Watershed

Sub-watershed Overview.

The Chiliwist Creek sub-watershed comprises approximately 27,842 acres, representing approximately 1.7% of the Okanogan watershed (OWC 2000). It is located in the southwestern corner of the Okanogan watershed, and is the lowest Okanogan sub-watershed upstream of the Columbia River confluence that drains lands from the west (Figure B-1). Chiliwist Creek enters the Okanogan River on its western side at approximately RM 15.1 (WDNR 1982). The sub-watershed includes all the habitat along the southeast border of the sub-watershed (i.e., the western shore of the mainstem Okanogan) for approximately 27 km (before entering the Columbia. The principal stream within this sub-watershed area is Chiliwist Creek, a second order tributary of the Okanogan. However, the sub-watershed also includes Sulivan Creek, Smith Lake, and Starzman Lake. None of these other waters within the sub-watershed regularly convey surface waters to the Okanogan.

Land Use and Ownership.

Forestry, livestock grazing, and irrigated agriculture are the primary uses of the Chiliwist subwatershed (WDFW 1990). Forests account for roughly 61.6 percent of the basin (17,142 acres), rangeland comprises approximately 36.1 percent (10,053 acres), and the remaining lands are irrigated and non-irrigated cropland (632 acres) (OWC 2000). Apples are the main crop cultivated in the Chiliwist valley and lower Chiliwist Creek sub-watershed. The upper portion of the Chiliwist sub-watershed is part of the National Forest Service and offers a host of recreational activities, in addition to timber resources. The majority of the sub-watershed is owned by the Washington State Department of Natural Resources and the Washington Department of Fish and Wildlife.

Topography, Geology & Soils.

Glacial activity created the Chiliwist sub-watershed. The central portion of the sub-watershed forms a valley at approximately 500 ft that rises to 1000 ft around the western border of the sub-watershed. The Okanogan National Forest portion of the Chiliwist sub-watershed is part of the eastern slopes of the Cascade Range (LMEA 1997). Four mountains demarcate the sub-watershed's western and northern borders: Cook Mountain (1189 ft), Woody Mountain (1398 ft), Thrapp Mountain (1300 ft) and Dent Mountain (956 ft).

The lower Chiliwist sub-watershed is principally a quaternary alluvium with terrace deposits (USGS 1954). This strata is characterized by unconsolidated gravels, sand, silt and clay deposited by modern streams and by glacial melt. The central Chiliwist valley is principally composed of glacial till (granite, volcanic and sedimentary parent material) and bare bedrock. Within the Chiliwist Creek valley the bedrock surface is irregular and often exposed; however, unconsolidated glacial deposits overlying the bedrock may be up to 200 ft thick. In the upper portion of the basin above the Chiliwist valley the geology has been characterized as undifferentiated igneous and metamorphic rock which is generally non water bearing (USGS 1954).

Fluvial Geomorphology & In-Channel Habitat.

No formal studies were identified that quantified or otherwise characterized fluvial geomorphology or in-channel habitat conditions in the Chiliwist sub-watershed. The lower Chiliwist sub-watershed represents a small portion of the U-shaped unconfined alluvial valley through which the Okanogan River flows. The lower portion of the Okanogan River flows through sinuous, broad, low gradient channels depositing large accumulations of sediment into the alluvial fans of lower tributaries such as Chiliwist Creek (WDFW 1990).

Vegetation and Riparian Condition.

No formal studies were identified that quantified or otherwise characterized riparian condition in the Chiliwist sub-watershed. In the lower Chiliwist sub-watershed, along the Okanogan River, shrub/grass land dominate the plant community. Further upstream, in the Chiliwist valley, the soils and dry valley climate generate little vegetation and organic matter (WDFW 1990). Yellow pine and mountain alder dominates Okanogan National Forest lands in the upper basin.

Water Quantity/Hydrology

Surface Water

No gauges operating on Chiliwist Creek or Sullivan Creeks were identified in the review process for this LFA. During much of the growing season all surficial flows from lower Chiliwist Creek are diverted for irrigation (Walters 1974). Within and downstream of the Chiliwist valley the

flow in Chiliwist Creek becomes erratic and often subterranean. Surface flows measured sporadically in Chiliwist Creek between 1968 and 1970 ranged from 0.55 to 0.59 cfs in the upper basin above the Chiliwist valley (near center sec. 14, T. 32 N., R. 24 E; n = 5), 0.6 to 1.16 cfs in the mid-basin (NE ¹/₄ SW ¹/₄ sec.13, T. 32 N., R. 24 E.; n = 6) and 0.75 to 3.30 cfs (SE ¹/₄ SE ¹/₄ sec. 18, T. 32 N., R. 25 E., n = 4) under highway 97 approximately 0.5 km from the mouth (Walters 1974). Recent monthly measurements conducted by the Okanogan Conservation District between May and December of 2000 recorded a range of 0.037 to 0.987 cfs in the upper Chiliwist basin, and a range of 1.27 to 8.488 in the lower basin (T. Neslen, TAG, OCD unpublished data). These latter data represent the first year's results from a 3-year monitoring program recently undertaken by the OCD.

Much of Chiliwist creek downstream of the Chiliwist valley has been channelized, and flows have been directed through at least a dozen culverts (Figure B-1). There are at least five irrigation diversion dams in lower Chiliwist, downstream of the valley (<u>www.streamnet.com</u>).

No information on surface flows in Sullivan creek was reviewed for this LFA. This creek flows into the Chiliwist valley and then becomes subterranean. The contributions of this creek to recharging the valley aquifer and supplementing flows in lower Chiliwist Creek are not known.

Groundwater

Pumping records from 1969 recorded 80 million gallons (250 acre-feet) of groundwater withdrawn for irrigation for all land use (Walters 1974). Deep unconsolidated deposits within the Chiliwist valley may yield up to 300 gallons per minute of flow and the combined Chiliwist-Loup-Loup sub-watersheds were estimated to store approximately 35,000 acre-feet of water (Walters 1974). Current pumping records were not reviewed for this LFA.

The relationship between surface flows and groundwater recharge has not been formally investigated in Chiliwist Creek. According to MWG et al. 1995), there are 21 permitted surface water rights for a total withdrawal of 11.8 cfs (2,688 ac-ft/yr). There are an additional 66 surface water claims for 5.6 cfs (1,006 ac-ft/yr). There are 2 groundwater permits (560 gpm) and 11 additional groundwater claims (99 gpm).

Water Quality.

Historic data on conventional water quality or chemical pollutants in the Chiliwist sub-watershed were not identified. The Okanogan Conservation District (T. Neslen, TAG, unpublished OCD data) has conducted recent conventional water quality monitoring in upper and lower Chiliwist Creek. In monthly monitoring between mid-May and early July of 2000 in the upper Chiliwist, dissolved oxygen concentrations appear to be at or near saturation, ranging from 9.35 to 10.71 mg/L. The pH of the upper basin's surface waters in this period were alkaline, ranging from 8.34 to 9. Turbidity was low, ranging from 1.2 to 9.32 NTUs. Temperatures ranged from 14.2 to 15.5 degrees Celsius. Subsequent monitoring in the upper basin through the duration of the year could not be performed due to lack of flow.

In the lower Chiliwist basin, where flows permitted monthly monitoring through hydrologic year 2000, the OCD measured dissolved oxygen values between 9.86 and 14.53 mg/L, pH values of 8.35 to 8.92, turbidity ranging from 2.37 to 5.1 NTUs, temperatures of 1.4 to 14.5, and conductivity of 54 to 411 uS/cm (T. Neslen, TAG, unpublished OCD data). As expected, temperatures were highest and dissolved oxygen was lowest in August. These values are all within a range acceptable by salmonids for rearing and other life stage functions.

Data on nutrients and/or contaminants in the Chiliwist surface or groundwaters were not identified in review efforts for this LFA.

Fisheries Resources in Chiliwist Creek Sub-watershed

Only about the lower $\frac{1}{2}$ mile of Chiliwist Creek is accessible to anadromous salmonids (**Figure B-1**) because a natural gradient barrier likely prevents further access upstream (Okanogan TAG). The use of this area for juvenile rearing or refuge by chinook, steelhead and sockeye has not been formally determined. However, water quality in the lower basin would not preclude its use by any of the salmonid species in the basin for these functions. The cooler waters found within this tributary relative to the mainstem Okanogan suggest that it may be important in providing thermal staging during summer migrations of adult chinook, steelhead and sockeye, with permissible flows.

Sockeye salmon do not use the Chiliwist sub-watershed for spawning. No data are available on the use of Chiliwist Creek for spawning by steelhead, but it is very unlikely given the low run size in the Okanogan River, and the limited use of more suitable habitat elsewhere in the Okanogan watershed. Summer chinook do not spawn in the Chiliwist sub-watershed; the current chinook run spawn upstream of Mallott (Okanogan RM 16.9) to Zosel Dam (RM 78), with the majority near the confluence of Omak creek, and in the Similkameen region by the town of Oroville. Thus, no chinook redds were found in the Chiliwist sub-watershed, or mainstem portions of the Okanogan river downstream from the Chiliwist confluence in 1998 ground and aerial surveys (Murdoch and Miller 1999). The mainstem Okanogan River downstream of the Chiliwist Creek confluence is inundated with backwater from the Wells Dam hydroelectric project and therefore offers unsuitable habitat for mainstem spawning of all salmonid species.

Rankings of Habitat Limiting Factors in the Chiliwist Sub-watershed

Habitat condition ratings of the Chiliwist sub-watershed are provided in **Table 5-4**. The numeric standards used to evaluate existing habitat literature and/or professional judgment from the Chiliwist subbasin are provided in **Table 5-4**. Two reaches were considered for habitat ranking, an upper Chiliwist reach above the anadromous zone, and a lower Chiliwist reach, including all waters downstream of the first anadromous barrier in the system at approximately RM 0.5 from the Okanogan confluence.

Water Quality

With the exception of information on chemical contamination and nutrients, current information on the conventional water quality parameters known to affect fish health and distribution are favorable for salmonids. For this reason, the indicators of dissolved oxygen, turbidity and temperature were rated as "good" in both the upper and lower reaches of Chiliwist Creek. The pH values measured to date by the OCD are moderately alkaline and occasionally above the values considered good. pH values have not, however, exceeded 9.0. Thus, pH was ranked as "fair". Chemical contamination and nutrient impacts in the sub-watershed are not known, and are therefore indicated as data gaps for both reaches. Additional monitoring data forthcoming in 2002 and 2003 could alter these ratings; however, the standard deviation of the near-monthly measurements collected to date were minimal.

Habitat Pathway and Indicator*	Limiting Habitat Factor Ranking	Limiting Habitat Factor Ranking
-	Reach 1—Lower Chiliwist	Reach 2—Upper Chiliwist
	(RM 0-0.5)	
Water Quality		
Dissolved Oxygen	G1	G1
Stream Temperature	G1	G1
pH	F1	F1
Turbidity/Suspended Sediment	G1	G1
Chemical Contamination/	DG	DG
Nutrient Loading		
In Channel Habitat		
Fine Sediment (substrate)	DG	DG
Large Woody Debris	DG	DG
Percent Pool by Area	DG	DG
Habitat Access		
Fish Passage	G2	DG
Stream Flow		
Resembles Natural	P1	P1
Hydrograph		
Impervious Surface	F1	F1
Stream Corridor		
Riparian Vegetation	DG	DG
Stream Bank Stability	DG	DG
Floodplain Connectivity	DG	DG

Table 5-4: Chiliwist Creek Limiting Factors Assessment

Support for Limiting Habitat Factor Rankings in Chiliwist Creek Sub-watershed

In-Channel Habitat

Because no formal habitat studies have been conducted in the Chiliwist basin, in-channel habitat conditions could not be rated, and the indicators of habitat pathways considered for this LFA were listed as 'data gaps'.

Habitat Access

Below the dam at RM 0.5 there are no passage barriers recognized, hence, the lower Chiliwist reach received a rating of good. The passage barrier at river mile 0.5 remains to be officially investigated and it is not known whether some flow conditions in the creek might pass anadromous fish. Data from Streamnet reveal numerous culverts and diversions in the upper Chiliwist sub-watershed (Figure B-1). These water manipulations have not been formally evaluated, to our knowledge, for their ability to pass fish. For this reason, it was conservatively assumed that fish migrations within the upper basin may be compromised, as historic culvert placements did not regard juvenile fish passage criteria. Since data have not been fully evaluated, however, a ranking of F was supported. A qualifier of ½ indicates both data and professional judgement were considered in the ranking.

Stream Flow

Upstream water withdrawals allocate all surface flows from this drainage, thereby affecting potential rearing of all fish species over the entire basin area downstream of the withdrawals. While natural conditions also contribute to dewatering, current data support the rankings of poor for streamflow indicators (normal hydrograph) in both the upper and lower reach.

Estimates of impervious surface area (Table 5.1) indicate a 'fair' rating based upon numeric qualifiers provided in Table 4.1

Floodplain Connectivity

No data are available with which to evaluate the functionality of floodplain indicators relative to the numeric and narrative qualifiers of Table 4.1. For this reason, the indicators of floodplain connectivity in both the upper and lower reaches of Chiliwist Creek were listed as 'data gaps'.

Indian Dan Canyon Watershed Description

Sub-watershed Overview

Dan Canyon is an intermittent, third-order tributary to the Okanogan River located entirely on the southwest plateau of the Colville Indian Reservation (Figure B-2). The southwest plateau also incorporates the Duley Lakes and Felix Creek sub-watersheds that have been delineated for this LFA. The Dan Canyon sub-watershed covers 9,081 acres and drains to the west. Dan Canyon enters the eastern side of the Okanogan River at approximately RM 5, although surface flows from Dan Canyon rarely (if ever) reach the Okanogan River. The watershed is a dense network of small, Type 4 and 5 intermittent streams, with a total stream length of 40.4 miles.

Land Use and Ownership

Rangeland, and crop production are the primary land uses in Dan Canyon (CCT 2001). No data were reviewed to provide a more refined percentage breakdown of land use activities. Dan Canyon drains lands owned entirely by the Confederated Tribes of the Colville Reservation.

Topography, Geology and Soils

Dan Canyon is part of the southwest plateau portion of the Colville Reservation that also includes the Felix Creek and Duley Lakes sub-watersheds. The sub-watershed's elevation ranges from 820 feet at the Okanogan River confluence to 2,620 feet (USGS 1954, CCT 2001). From the river, slopes rise moderately until leveling out at the top of the southwestern plateau. The plateau is an area of mid-elevation rangeland located in the southern portion of the Colville Reservation.

The upper portion of the sub-watershed is composed of undifferentiated igneous and metamorphic rocks with low water bearing potential (USGS 1954), and the lower portion of the basin adjacent to the river is comprised principally of a quaternary alluvium with terrace deposits. The plateau area is composed chiefly of range soils formed in basaltic glacial till and material weathered from basalt, with a mantle or component of loess. Most soils in the northwest part of the plateau escarpment derive from glacial till, weathered granite, and loess. Soils were principally formed in glacial outwash and eolian sand with a component of loess occur at lower elevations on terraces, terrace escarpments, and dunes, along the Columbia and Okanogan Rivers. Most of the area was glaciated over a layer of basalt, which probably accounts for the many isolated lakes (CCT 1997). Soil erosion potential is low.

Fluvial Geomorphology & In-Channel Habitat

No quantitative or qualitative studies on channel morphology and habitat were found in reviews conducted for this LFA. Moderate to low channel gradients (0-10%) prevail in the lower basin. Channel complexity is likely low due to the sparse tree layer naturally available to recruit wood (large or small) into the stream network. Intensive grazing pressure in the sub-watershed may

have exacerbated this situation. The potential may exist for off-channel habitat at the confluence of Dan Canyon, although this has not been confirmed.

Vegetation and Riparian Habitat

No quantitative or qualitative studies have been conducted on the vegetative communities in the Dan Canyon sub-watershed. Sagebrush-steppe probably dominated the area historically. Riparian areas were historically dominated by deciduous vegetation (cottonwood and willow), with a very minor conifer component at the uppermost elevations. Presently, the area is heavily grazed (CCT 1997).

Water Quantity/Hydrology

A series of potholes dotting the landscape along the upper (eastern) margin of the Dan Canyon sub-watershed are the principal water sources in the sub-watershed. No formal studies have been conducted to determine the storage capacity of these waters, or to ascertain the link between groundwater and surface water flows. These potholes are fed by intermittent streams and groundwater, and hold water seasonally or year-round. The potholes may recharge groundwater that is ultimately conveyed towards the Okanogan River as Dan Canyon surface water, however, this scenario has not been confirmed with field study. Most of the plateau does not have surface flows to the Okanogan River.

There are no surface water permits in Indian Dan Canyon, but 20 surface water claims that could account for a withdrawal of 1 cfs (158 ac-ft/yr) (MWG et al. 1995).

Water Quality

No studies were identified for this LFA that formally documented water quality in Dan Canyon's lentic or lotic waters. They are generally known to be highly alkaline, with high summer temperatures generally outside of the range acceptable to salmonids (CCT 2001).

Fisheries Resources in Dan Canyon Sub-watershed

Fish presence in this area is minimal, as most streams are intermittent, and most lakes are highly alkaline or saline. Productivity in the pothole lakes is limited currently and historically by the alkaline waters condition, high water temperatures, and the fact that most of the lakes have no outlet, so no flushing can occur (CCT 2001). There are no anadromous species in the streams of the southwest plateau, including Dan Canyon (**Figure B-2**). There is no historical information on fish presence, but anecdotal reports suggest that the creek may never have supported fish (CCT 2001).

The Colville Tribe used the Unified Watershed Assessment Categories (UWAC), a part of the EPA Clean Water Action Plan Criteria (EPA 1998) to characterize the condition of the watersheds on the reservation. Dan Canyon received a Category I rating, indicating that the sub-watershed does not meet clean water and other natural resource goals, and needs restoration. This rating was based on general knowledge of the area, and should be field checked (CCT 2001).

Habitat Limiting Factors Assessment of the Dan Canyon Sub-watershed

No assessment was done, as there are no anadromous fish presently or historically in Dan Canyon. Dan Canyon rarely if ever has an impact on the Okanogan River, because its flow does not reach the river. The primary habitat concern in Dan Canyon is flow alteration caused by natural conditions, agricultural practices and the road construction.

Loup-Loup Watershed Description

Subwatershed Overview

Loup Loup Creek enters the Okanogan River at RM 16.9, in the small community of Malott, WA (**Figure B-3**). Nearly the entire watershed (40,868 acres) is categorized as forested (86.5%). Peak elevation in the sub-watershed is approximately 6,100 feet (Buck Mt.), with several other peaks nearing 5,000 ft. Land ownership includes the Bureau of Land Management (BLM), Washington Department of Natural Resources (WDNR), United States Forest Service (USFS) and private owners, with WDNR responsible for managing 31,506 acres.

Land Use and Ownership

The Loup Loup Creek watershed (40,868 acres) contains a variety of land uses including forestry, rangeland, non-irrigated pasture, irrigated orchard, urban and open water. However, the majority of the land use is forest (86.5%). Land ownership is primarily privately owned and managed by the Washington Department of Natural Resources (31,506 acres (C. Dibble personal communication). However, there are smaller parcels of public land managed by the Bureau of Land Management (BLM) and United States Forest Service (USFS).

Included in this watershed is the unincorporated community of Malott, Washington located adjacent to the confluence of Loup Loup Creek and the Okanogan River. According to the 2000 census the population of the voting precinct is 712 and approximately 83 within the city limits (T. Murray personal communication). The lowermost area of the watershed is primarily urban development and orchards. The mid-range area of the watershed consists of range land-type and the uppermost is forested. Two lakes, Leader and Buzzard, are destination points in the watershed with the former noted for trout fishing.

Water Quantity/Hydrology

Waters in Loup Loup creek and the sub-watershed are heavily diverted and used for irrigation. There are a total 3 groundwater permits and 5 groundwater claims. The permits specify a total withdrawal of 350 gpm (18-acre-ft/yr) while the claims could support a withdrawal of 45 gpm (MWG et al. 1995). Surface water withdrawals permitted account for only 0.1 cfs, but claims amount to 2,366.9 cfs (473,168 ac-ft/yr). The system is over allocated and is usually dry in its lower reaches in the summer, preventing its use by salmonids.

Fisheries Resources in Loup Loup Creek Sub-watershed

Historically, cutthroat trout likely existed in the upper reaches of Loup Loup Creek, and reliable anecdotal evidence of bull trout presence in the upper drainage reaches have also been reported (K. Williams, WDFS [retired], personal communication to N. Wells [Okanogan TAG]). Anadromous and resident forms of rainbow trout existed in Loup Loup Creek. The anadromous forms of rainbow trout (i.e. steelhead) migrated as far as the falls (approximately RM 2.5) (**Figure B-3**). Currently fish species in Loup Loup Creek include rainbow trout and brook trout. The rainbow trout are likely remnants of a historical anadromous form. Eastern brook trout were planted by the Washington Department of Fish & Wildlife and have either hybridized or outcompeted the native bull trout. Today, the range of anadromous flows. The lowermost barrier is a perched culvert at approximately RM .1. At ~ RM 2.0 water is diverted for irrigation. Typically the lower reach becomes dry during early summer (June/July), thus voiding all possible natural reproduction.

Leader Lake in the Loup Loup sub-watershed is a popular recreational sport fishery. Washington Department of Fish and Wildlife (WDFW) stock the Lake annually with 25,000 rainbow trout fry. During 1998 the WDFW rehabilitated Leader Lake to remove largemouth bass introduced by an unauthorized planting. Species known to exist in the upper reaches of the basin include rainbow and brook trout. There have been accounts of large fish utilizing the lower reaches of Loup Creek and are presumed to be steelhead.

Habitat Limiting Factors Assessment for Loup Loup Sub-watershed

For this analysis two reaches were evaluated in Loup Loup Creek (**Table 5-5**). The lower reach extends from the confluence with the Okanogan mainstem to the base of a pair of falls approximately 12 feet high at ~ RM 2.5. These falls were likely the extent of the historical range of steelhead in Loup Loup Creek. The upper reach extends from the falls to the headwaters of Loup Loup Creek. The source of habitat and water quality information provided for this analysis of Loup Loup Creek was from reconnaissance-level surveys by the Colville Confederated Tribes Fish and Wildlife staff, data collection by Okanogan Conservation District (T. Neslen, OCD [Okanogan TAG]), or personal communication with Ken Williams, formerly regional fish biologist for Washington Department of Fish and Wildlife.

Habitat Pathway and Indicator*	Limiting Habitat Factor RankingsReach 1 RM 0 to 2.5	Limiting Habitat Factor RankingsReach 2 RM 2.5 to 19.8	
Water Quality			
Dissolved Oxygen	G1	G1	
Stream Temperature	G1	G1	
Turbidity/Suspended Sediment	F2	G1	
pH	F1	G1	
Chemical	P1**	G1	
Contamination/Nutrient Loading			
In Channel Habitat			
Fine Sediment (substrate)	F2	DG	
Large Woody Debris	P2	DG	
Percent Pool	P2	DG	
Habitat Access			
Fish Passage	P1	DG	
Stream Flow			
Resembles Natural Hydrograph	P1	P1	
Impervious Surface	G2	G2	
Stream Corridor			
Riparian Vegetation	F2	F2	
Stream Bank Stability	F2	F2	
Floodplain Connectivity	F2	G2	

Table 5-5: Loup-Loup Creek Habitat Limiting Factors Assessment Rating

*pathways are emboldened, indicators in plain type

**Due to Tallant Creek DDT water quality exceedance

Support for Limiting Habitat Factor Rankings in the Loup Loup Creek Sub-watershed

Water Quality Reach 1

Water quality data were provided by the Okanogan Conservation District from their ongoing monitoring of Okanogan tributary monitoring. The data were collected at monthly intervals from May 17 through July 5, 2000 and from January 17 to May 16, 2001. From August 9 through December 20, 2000 the lower reach of Loup Loup Creek was dry, which therefore prevented rating all water quality indicators at that time. Thus, as with all sub-watershed assessments, ratings were performed on the basis of the existing data alone. (Flow limitations are reflected in the ranking of the streamflow criteria).

When flows were present, dissolved oxygen averaged 11.05 mg/L and ranged from 9.79 to 13.79 mg/l. Thus, this indicator was rated good in reach 1.

Water temperature was never recorded above 58.1° F. However, flows were discontinued in this reach by August 9, 2000, when elevated water temperatures could possibly occur. However, data which do not exist could not be rated. Thus, temperature received a rating of good, based on the existing data.

Turbidity was evaluated 8 times during the period from May 17, 2000 to May 16, 2001. NTUs's varied from 0.3 to 5.69. These measurements all fall within the good range adopted for rating this habitat indicator by the Okanogan TAG. Reduced flows during typical peak spring runoff may be the reason for reduced turbidity found in the lower reaches of this stream. Furthermore, total suspended solids have exceeded 144 mg/L for 4 of 7 measurements taken by the OCD. These higher recordings were measured when flows continued after a 5-month absence. The higher total dissolved solid measurements could possibly be attributed to increased levels of calcium carbonate due to the discontinuation of flow during the previous 5 months (T. Neslen personal communication). These collective data support a rating of fair, based on professional opinion.

The pH in reach 1 in monitoring conducted to date has routinely exceeded 8.5 (range 8.19 - 8.84, average 8.59). Thus, this habitat indicator was rated as fair.

Tallant Creek is a small, perennial independent tributary within the boundaries of the Loup Loup sub-watershed area that also conveys surface waters to the Okanogan River (Figure B-3). The use of Tallant Creek by anadromous salmonids is not known, but thought minimal, if used at all. If habitat is used, it is that near the confluence, hence, it is described within Reach 1 of the Loup Loup drainage. Notwithstanding, the Washington Department of Ecology conducted a 1995 study to assess DDT in tributaries in the Okanogan River (Johnson et al., 1997) and found concentrations substantially exceeded the state's chronic surface water quality standard of 0.001 ug/L (parts per billion) in Tallant Creek (range: 0.19 - 0.50). These levels also exceed concentrations found in other drainages where DDT was historically applied. Currently the Washington Department of Ecology is sampling for DDT and PCBs throughout the Okanogan River watershed to better identify sources. This sampling is part of a TMDL investigation for the Okanogan River.

Reach 2

Water quality measurements, in the upper reach were taken upstream of the diversion to Leader Lake (~ RM 11.6) on the same dates as monitoring was conducted in reach 1 (T. Neslen, OCD unpublished data [Okanogan TAG]).

Dissolved oxygen has not been measured at levels that would be detrimental to salmonid populations, ranging from 9.28 to 13.49 mg/l (T. Neslen TAG, OCD unpublished data). Based upon grab samples, water temperatures in Loup Loup Creek are conducive to salmonids. Water temperatures ranged from 32.5° F to 54.0° F (T. Neslen TAG, personal communication). Turbidity samples were very low, ranging from 0.4 to 2.3 NTUs. Suspended sediment measured 8 times from June 7, 2000 to May 16, 2001, ranged from 20 to 119 ppm. These low levels of turbidity and total dissolved solids suggest that erosion is not excessive in the upper watershed. However, habitat surveys in Loup Loup tributaries suggest that fine sediment delivery into the streambed is greater than that which can be flushed out of the system, based on the amount of fin sediments deposited in the streambed (see channel condition summary).

The pH in upper Loup Loup creek is closer to neutral than the moderately alkaline conditions measured downstream. The pH measured (when flows were present) from 5/17/00 to 1/17/01, ranged from 7.56 to 8.2, and averaged 7.99. These data support a good rating for this indicator.

In-Channel Habitat

Reach 1

Information regarding in-channel habitat in Loup Loup Creek is limited to reconnaissance-level surveys conducted by this author. This lower reach of Loup Loup Creek lies amongst orchards and the rural community of Malott, Washington. Where adjacent to orchards, the stream is largely channelized. Streambanks are typically grass covered and no actively eroding banks were observed. Fine sediment is less than expected possibly due to altered hydrology (i.e., flow discontinued or reduced throughout most of the year). During surveys, no large wood was observed in the lower reach. Due to development and bordering orchards, large wood is likely in lower amounts than was historically. Although not measured, pool frequency is expected to be substantially less than historical conditions due to channelization and the lack of pool forming material (i.e. large woody debris). Further data collection is required, however, reconnaissance level observations support poor ratings for both LWD and pool area, and a fair rating for fine sediments.

Reach 2

Environmental education workshops have been conducted on Rock Creek, a tributary of Loup Loup Creek, since 1997. Pebble counts on Rock Creek have indicated that fine sediment was found in frequencies greater than 50%. Possible sources of sediment could be roads into area lakes (Rock, Buzzard), logging roads and private drives. Also, there are areas that indicate concentrated cattle use along the stream and tributaries. It is not known if large wood debris surveys have been conducted along Loup Loup Creek or connected tributaries. It is suspected that large wood recruitment is lacking along certain reaches because of rural and recreational development. The amount of pool habitat in Loup Loup Creek is unknown. Based upon extremely limited information collected along Rock Creek, pool habitat in that tributary appears adequate. However, since no observations specific to the mainstem channel of Loup Loup Creek channel conditions have been recorded to our knowledge. Flow withdrawals from upper Loup Loup have likely had profound effects on riparian integrity in Loup Loup Creek which, in turn, would effect wood loading, pool area and fine sediment recruitment and distribution. Until further data collection or modeling or conducted, ranking these indicators as data gaps is prudent.

Habitat Access

Reach 1

Currently, three barriers to anadromous fish passage exist on the mainstem of Loup Loup Creek. The lowermost two barriers are culverts and the uppermost barrier (~ RM 2.5) is a set of falls. The first culvert is located within the city limits of Malott, Washington and is approximately 1/8th mile upstream from the confluence. This culvert is perched approximately 30" above the water surface and would impede adult steelhead from accessing habitat upstream. The second culvert is located approximately ¹/₄ mile upstream from the confluence. This culvert routes Loup Loup Creek under Old Highway 97. This culvert is approximately 100 feet in length and has an estimated gradient of 1 to 2%, and is likely limits passage by adult steelhead due to increased velocities. Finally, a pair of falls, approximately each 12 feet high, exist at ~ RM 2.5. These falls are the historical extent of anadromous fish in Loup Loup Creek. These artificial passage barriers justify a ranking of poor for this habitat indicator.

Reach 2

From approximately RM 2.5 (natural falls) to the headwaters there are no known barriers to fish passage. However, there are no known surveys conducted to assess fish passage upstream of RM 2.5. Thus, fish passage in reach 2 has been ranked as a data gap.

Stream Flow

Reach 1

Resembles Natural Hydrograph—The natural hydrology in Loup Loup Creek has been severely altered since the early 1900's. Flows are reduced in lower Loup Loup Creek from a diversion located in upper Loup Loup at approximately RM 11.6. This diversion routes approximately 3,472 acre-feet of water from Loup Loup Creek to Leader Lake from October 1st to May 1st each year. This water is used for irrigation during the following year. The water right connected to this diversion has been in existence since 1913 (Water Claim Right No. 33138). In addition another diversion exists at ~ RM 2.0, and is also for the purpose of irrigation. Typically flows are non-existent downstream of RM 2.0 by mid-July. Currently, the altered hydrology of Loup Loup Creek impedes access by adult steelhead and without the reestablishment of flows this system offers no effective advantage to perpetuate or enhancing the species in the Okanogan watershed.

Impervious Surface—Estimates of impervious surface area rate the reach as 'good' (Table 5.2).

Reach 2

Resembles Natural Hydrograph—Approximately 3,500 acre-feet of Loup Loup Creek is annually diverted into Leader Lake, a storage reservoir used for irrigation. This water is diverted to Leader Lake at approximately RM 11.6, from October 1st to May 1st during the calendar year. Typically, due to water withdrawals, the lower reach of Loup Loup Creek is dry by mid-summer, and baseflows in the upper reach are also reduced. As for reach 1, withdrawals limit the ability for this creek to support anadromous or resident salmonids throughout the year. Reduced wintertime flows may limit juvenile salmonid survival by reducing habitat increasing the likelihood of anchor ice to form.

Impervious Surface—Road densities may have an effect on changes in peak run off and base flows. However, estimates of impervious surface area conducted for this LFA rate the reach as 'good' for this indicator (Table 5.2). Road densities, as of 1997, within WDNR managed lands in the basin were 1.9 miles/sq. mile and 2.7 miles/sq. mile on privately-owned lands (C. Dibble, WDNR, personal communication). Higher road density on a limited amount of private land, suggests there is a higher percentage of impervious surface in this area (southeast) of the watershed. Further data collection are required to confirm this speculation, so the rating of good for this indicator is justified for the present.

Channel Condition

Reach 1

Riparian vegetation along the lower 2.5 miles of Loup Loup Creek is altered and fragmented. Canopy closure is reduced, because riparian vegetation was noticeably removed where orchards are adjacent to the stream channel. Because of discontinuous flows, the current riparian vegetation is compromised in quantity and quality when compared to historical conditions, but still provides fair functionality.

Bank stability has not been evaluated in Loup Loup Creek. However, based upon reconnaissance-level surveys actively eroding banks were not observed along Loup Loup Creek. Grasses cover much of the streambanks and interrupted flows eliminate much of the erosive nature from spring run-off events.

Floodplain connectivity is limited in the lower 2.5.miles of Loup Loup Creek. Due to the apparent channelization of the lower reach of Loup Loup Creek the floodplain connectivity is absent. However, based upon the nearby landform it appears that Loup Loup Creek was naturally a relatively high-gradient stream. Therefore, although the floodplain connectivity is currently non-existent, it is likely that because of the high gradient the floodplain was never extensive.

Reach 2

Like the lower reach, there are sections within the upper reach that are visually absent of riparian vegetation. Exploratory surveys point towards rural development and concentrated livestock use as the cause of reduced canopy closure. As in the lower reach, Loup Loup Creek is a high gradient stream with little floodplain development. Some minimal reduction in floodplain connectivity exists, primarily from loss of riparian vegetation. The incision or bedload movement is reduced due to attenuated peak flows by water being diverted for irrigation.

Duley Lake/Joseph Flats Watershed Description

Sub-watershed Overview

The Duley Lakes/Joseph Flats sub-watershed covers 51,000 acres, and is located in the southwest plateau of the Colville Indian Reservation, in the southeastern corner of the Okanogan River watershed (Figure B-4). This area covers about 51,000 acres. Pothole lakes and ponds make up over 1300 acres of open water and there are no surface water connections to the Okanogan River from this sub-watershed.

Land Use and Ownership

Most of the basin is low-elevation mixed rangeland and shrub rangeland. Livestock grazing occurs on 90% of the land in the basin. About 6% of the land area is in non-irrigated small grain production. There are less than 300 acres of forest in the basin, and some timber harvest occurs. There is no rural development in the basin. Dirt roads parallel many of the lakes and ponds (OWC 2000).

Topography, Geology and Soils

The entire portion of the Duley Lakes/Joseph Flats sub-watershed rests atop the southwestern plateau of the Colville Indian Reservation, in the southeastern edge of the Okanogan watershed. Atop the plateau, there is minimal variation in topography relative to many of the other Okanogan sub-watersheds, with elevations ranging from about 2,000 ft to 2,600 ft. Much of the sub-watershed is composed of tertiary volcanic rocks, which range from a dark-gray to a reddishbrown basalt. Pockets of quaternary alluvium and terrace deposits left over from glacial activity can also be found in this sub-watershed. Soils are generally alkaline, rocky, and limited to grazing.

Vegetation and Riparian Condition

Vegetation is similar to the shrub-steppe and mixed rangeland found in Dan Canyon, although there is a slight increase in conifers, owing to the generally higher elevations found there. Cattle have access to the banks of the lakes, resulting in siltation and sedimentation, nutrient loading, and loss of riparian habitat. Formal studies of the degree of riparian damage were not identified in the review for this LFA.

Water Quantity/Hydrology

The potholes that dot the landscape in this sub-watershed are fed by intermittent streams and groundwater, and hold water seasonally or year round. They are more abundant in this sub-watershed than found in the adjacent Dan Canyon or Felix Creek sub-watersheds. No surface flows from the sub-watershed convey waters to the Okanogan River. Based upon map-wheel projections.

Water Quality

Waters in the sub-watershed are known to be highly alkaline (CCT 1997). The high alkalinity of the lakes in the sub-watershed likely limits their productivity, along with extreme summer and winter temperatures, nutrient loading, and lack of flushing most of the lakes have no outlet, so no flushing can occur (CCT 1997). For example, Duley Lake is eutrophic, probably due to both natural causes and nutrient loading (OWC 2000). The Colville Tribe used the Unified Watershed Assessment Categories (UWAC), a part of the EPA Clean Water Action Plan Criteria (EPA 1998), to characterize the condition of the watersheds on the reservation. Duley Lake received a Category I rating, indicating that the watershed does not meet clean water and other natural resource goals, and needs restoration.

Fisheries Resources in the Duley Lake Sub-watershed

There are no anadromous species in the streams of the plateau (**Figure B-4**). Resident fish presence in this sub-watershed is minimal as most lakes are highly alkaline or saline. Carp are likely the only fish species in Duley Lake. Rainbow trout and largemouth bass have been planted in the past, but are no longer present. The lake is alkaline and does not support most species of fish. This is true of most of the lakes in the area. Little Goose Lake, north of Duley Lake, is relatively deep, and does support a population of stocked rainbow trout (J. Marco, personal communication, 2001).

Habitat Limiting Factors Assessment in the Duley Lake/Joseph Flats Sub-watershed

No limiting factors assessment was done for Duley Lake/Joseph Flats sub-watershed because there is no anadromous fish use, and the basin is self-contained. The sub-watershed's water quality is heavily impacted by livestock grazing. The Duley Lake sub-watershed's numerous pothole lakes may affect overall basin hydrology by providing a source of groundwater to perennial and/or ephemeral streams outside of the sub-watershed's boundaries.

Felix Creek Watershed Description

Sub-watershed Overview

The Felix Creek sub-watershed comprises a variety of intermittent tributaries to the Okanogan River that drain the southwestern plateau of the Colville Indian Reservation on the eastern side of the Okanogan River. The sub-watershed is adjacent and north of the Dan Canyon sub-watershed (**Figure B-5**). Felix Creek, a second-order stream for which the sub-watershed has been named, is the largest of the Okanogan tributaries within the sub-watershed and no others have been named. Felix Creek enters the Okanogan River along the eastern side at approximately RM 24.

Surface flows from Felix Creek rarely reach the Okanogan River. The mainstem of Felix Creek is 2.9 miles long, and, based on USGS map-wheel projects, there are approximately 6 miles of stream channel in Felix Creek when its tributaries are included. Within the sub-watershed as a whole, a total of 56 miles of stream channel have been identified from the USGS, although most of these channels are generally dry or ephemeral.

The Felix Creek sub-watershed area is 3,405 acres, and elevation ranges from 820 feet at the mouth, to approximately 3,120 feet at the edge of the plateau from which surface waters could convey to the creek. (CCT 2001). A series of potholes dot the landscape in the Felix Creek sub-watershed, the largest of which is Soap Lake. The potholes in the basin are fed by intermittent streams and groundwater, and hold water seasonally or year round. Fish presence in this area is presumed minimal to non-existent, as most streams are intermittent, and most lakes are highly alkaline or saline.

Land Use and Ownership

Land cover includes deciduous forest along the Okanogan River, crop, pasture and range lands at low to mid elevations, and mixed forests at upper elevations. Agriculture is the dominant land use in the watershed. Crop production and pastureland dominate the lower part of the watershed. The mid to high elevations are used for livestock grazing, and limited timber harvest occurs in the forested area at the upper elevations as well (OWC 2000). All lands within the Felix Creek sub-watershed lie within the Colville Indian Reservation.

Topography, Geology and Soils

The southwestern plateau portion of the of the Colville Reservation that includes the Felix Creek sub-watershed is mostly mid-elevation rangeland located in the southern portion of the Okanogan watershed. The geology is dominated by undifferentiated igneous and metamorphic rocks (USGS 1954). The plateau is composed chiefly of range soils formed in basaltic glacial till and material weathered from basalt, with a mantle or component of loess. Most soils in the northwest part of the plateau escarpment derive from glacial till, weathered granite, and loess. Soils formed in glacial outwash and eolian sand with a component of loess occur at lower elevations on terraces, terrace escarpments, and dunes, along the Columbia and Okanogan Rivers. Most of the area was glaciated over a layer of basalt, which probably accounts for the many isolated lakes (CCT 1997).

Fluvial Geomorphology & In-Channel Habitat

No quantitative or qualitative studies have been conducted on the drainages in the Felix Creek sub-watershed that characterized stream channel geomorphology or in-channel habitat.

Vegetation and Riparian Conditions

No quantitative or qualitative studies were reviewed for this LFA that characterized vegetation communities or riparian conditions in the Felix Creek sub-watershed. Sagebrush-steppe probably dominated the area historically. Riparian areas were historically dominated by deciduous vegetation, with a very minor conifer component at upper elevations. Presently, the area is heavily grazed (CCT 2001).

Water Quantity/Hydrology

Felix Creek is an intermittent tributary that does not flow into the Okanogan River for most of the year. Stream flow measurements taken from March through September, 1998, were less than 1 cfs throughout the season (CCT 2000). The hydrology of the basin has been altered by timber harvest and livestock grazing practices, and by road construction, and the historic flow regime is not known. There are no water rights on Felix Creek, but there is one instance of illegal withdrawal currently under investigation. In the past, all flow was diverted from the channel for agricultural use (Trevino, personal communication, 2001).

Water Quality

Felix Creek has water quality impairments due to agricultural and grazing practices (CCT 2001). The Colville Tribe used the Unified Watershed Assessment Categories (UWAC), a part of the EPA Clean Water Action Plan Criteria (EPA 1998) to characterize the condition of the watersheds on the reservation. Felix Canyon received a Category I rating, indicating that the watershed does not meet clean water and other natural resource goals, and needs restoration. This rating was based on general knowledge of the area, and should be field checked (CCT 2001). Grazing pressures likely contribute fecal coliform and nutrients into the tributaries of the subwatershed.

Fisheries Resources in the Felix Creek Sub-watershed

No anadromous species are known to utilize any of the streams in the Felix Creek sub-watershed (**Figure B-6**). However, presence/absence has not been recently confirmed in formal studies, and there is no historical information on fish presence (CCT, 2001). Access would appear to be prevented by naturally inadequate flows under most conditions.

Productivity in the lakes of the Felix Creek subbasin are limited presently and historically by the alkaline condition, high water temperatures, and the fact that most of the lakes have no outlet, preventing flushing from occurring (OWC 2000).

Habitat Limiting Factors Assessment in the Felix Creek Sub-watershed

This limiting factors assessment is based on observations by tribal personnel and water quality data collected since 1995 by the Colville Tribe at approximately river mile 1.5 (CCT 2001) (**Table 5-6**). Felix Creek has minimal impact on the Okanogan River because the stream rarely flows to the river during most of the year. Thus, only one reach was evaluated, the lowermost 1.5 miles.

Habitat Pathway and Indicator*	Habitat Limiting Factor Ranking (RM 0-1.3)
Water Quality	
Dissolved Oxygen	F1
Stream Temperature	F1
Turbidity/Suspended Sediment	G1/F2
рН	DG
Nutrient Loading	DG
In Channel Habitat	
Fine Sediment (substrate)	DG
Large Woody Debris	DG
Percent Pool	DG
Habitat Access	
Fish Passage	P2
Stream Flow	
Resembles Natural Hydrograph	P2
Impervious Surface	DG
Stream Corridor	
Riparian Vegetation	DG
Stream Bank Stability	DG
Floodplain Connectivity	DG

 Table 5-6: Felix Creek Limiting Factors Assessment

Support for Limiting Habitat Factor Rankings in the Felix Creek Sub-watershed

Water Quality

Dissolved Oxygen—Three dissolved oxygen (DO) values were collected by the CCT in 1998 monitoring. Dissolved oxygen recorded in March, May, and August of 1998 measured 11.6. 10.4 and 7.8 mg/L, respectively. These data suggest that saturation during the summer months may be slightly below saturation. Felix Creek was given a 'fair' rating for DO, although further monitoring could support an upgrade of this ranking.

Temperature—Stream temperatures ranged from 4.5 to 20.9 degrees C. Summer water temperatures were generally over 15 degrees, and the stream was given a rating of 'fair'.

Turbidity—Turbidity levels ranged from 1 to 77 NTUs, and were generally below 10 NTUs. On this basis, turbidity in Felix Creek was rated as 'good'. Specific information on suspended sediment loads was not available.

pH—No data were available from which to rate pH, although alkaline conditions are expected, consistent with water quality through much of the Okanogan watershed.

Nutrient Loading/Chemical Contamination—There is a data gap in regards to nutrient loading. Agriculture and range activity in the basin probably contributes nutrients to the stream. Felix Creek is not on the Washington State 303(d) list (Hunner, CCT, Personal Communication to C. Fisher [Okanogan TAG] 2001).

In-Channel Habitat

There are no data on fine sediment, large woody debris, or percent pool area from the streams in the sub-watershed, thus, these habitat indicators were listed as 'data gaps' (DG).

Habitat Access

The existing habitat is limited by dewatering in the lower end of the stream during summer months as previously described. Fish passage was therefore rated as 'poor'.

Streamflow

Stream flows measured 0.54 to .70 cfs in monitoring conducted by the CCT from (Hunner, personal communication to C. Fisher, CCT [Okanogan TAG]). The natural hydrograph is assumed to have been affected by water withdrawal as well as land use practices. Felix Creek was therefore rated as 'poor' for this habitat indicator.

There are roads adjacent to stream channels in the Felix Creek drainage, but there are no quantitative data available. Extrapolations from map-wheel projections suggest the road network occupies 6.5% of the watershed area (Table 5.2), and therefore the impervious surface area rating was listed as 'fair'.

Stream Corridor

There is a data gap in regards to the habitat indicators of stream corridor condition evaluated in this LFA for this sub-watershed.

Omak Creek Watershed Description

Sub-watershed Overview

Omak Creek is a fourth order tributary of the Okanogan River that flows into the mainstem at RM 31. Of the 90,683 acres in this watershed, 73,029 acres are owned and managed by the Colville Confederated Tribes (CCT) (NRCS 1995). The climate of the sub-watershed varies from arid to mountain, with an average annual precipitation of 12 inches in the lower elevations to over 45 inches at Moses Mountain. Average daily temperatures range from 23° F in winter to 70° F in the summer. The average growing-season in the watershed lasts 120 days.

Approximately 8,112 (~9%) of the 90,683 acres within the Omak Creek watershed were burned or affected by the St. Mary's fire complex during August of 2001. The misapplication of fireretardant chemicals inadvertently applied to Omak Creek and its riparian habitat resulted in a total fish kill from RM 8.4 to RM 2.9. A partial fish kill continued to nearly the confluence of the creek with the Okanogan River (RM 2.9 to RM 1.2). Over this length of creek, an estimated 10,400 fish were killed, principally resident rainbow trout, sculpin, and brook trout (Fisher and Fisher 2001). It is presumed that all offspring from the steelhead that successfully spawned in the creek in the spring of 2001 were also killed from the retardant. Trout densities recorded upstream of the spill zone yet within the burn zone (1.12/m) were higher than the highest density of trout recorded in surveys of 25 arid-mountain streams of Owyhee county Oregon (1.05/m) (Allen et al. 1998). These data indicated the loss of trout within and downstream of the retardant spill zone were attributed to the retardant and not other fire-related effects.

Land Use and Ownership

The Omak Creek watershed has 63,565 acres of commercial forest managed by the CCT (NRCS 1995). Past logging practices and fire suppression have changed the forest species composition,

structure and density. These practices have led to over-stocked forest stands throughout the watershed that are susceptible to disease, insects and fire. Current logging practices include prescribed burning, pre-commercial thinning, and harvest of disease-stricken trees. Livestock producers utilize most of the forest and range areas in the watershed. Sixty percent of the rangeland in the watershed currently supports a heavy concentration of livestock, and excessive grazing along riparian areas has significantly degraded riparian conditions in some areas. Fifteen percent of the rangeland is in fair condition and only 25 percent is in either good or excellent condition (NRCS 1995). Water distribution in the uplands is inadequate to meet most agricultural and rangeland needs (NRCS 1995).

Topography, Geology and Soils

Omak creek drains lands from the east of the Okanogan river, descending from its headwaters at approximately 4,000 ft to its confluence with the Okanogan river at elevation 860 ft.. The highest peaks within the sub-watershed area drain into tributaries of Omak Creek and include Moses Mountain at the northeastern edge of the sub-watershed (6,753 ft.) and Omak Mt to the north (5,729 ft.). The riverbed and riparian areas are composed principally of quaternary alluvium and terrace deposits (Walters 1974), with adjacent hill slopes and drainage areas composed of undifferentiated igneous and metamorphic rocks. Soils are primarily derived from glacial till and material weathered from granitic rock. The soils have a mantle or component of volcanic ash or loess. Terrace soils developed in glacial outwash, eolian sand, and glacial lake sediments Soils in the watershed have a moderately low erosion potential (CCT 2001).

Fluvial Geomorphology & In-Channel Habitat

Physical habitat conditions within the Omak Creek watershed are being addressed recently through restoration practices implemented by the Colville Confederated Tribes and Natural Resource Conservation Service. Improvements have included a reduction in road density, removing two fish passage barriers, installing instream structures, planting riparian vegetation and implementing livestock management practices.

Vegetation and Riparian Condition

Riparian area vegetation in the watershed is estimated to be 54% deciduous and 46% coniferous. Riparian vegetation along the lower 5.1 miles of Omak Creek is fragmented. Lack of spring developments and inadequate fencing allows livestock access to stream corridors. This results in severe over-use of riparian vegetation and streambank failure (NRCS 1995). Reconnaissancelevel and quantitative surveys have been conducted within the lower reaches of Omak Creek, identifying several lengths of eroding stream bank. Often the cause of the eroding banks was loss of riparian vegetation due to over-grazing by livestock.

Water Quantity/Hydrology

According to MWG et al. (1995) there are only 4 surface water permits on Omak Creek, amounting to a total potential withdrawal of 1 cfs or 243 acre-ft/yr. There are an additional 18 surface water claims, which could yield a withdrawal of 1.8 cfs or 332 acre-ft/yr. In addition to these surface water uses, there are 7 groundwater claims, which could account for a withdrawal of 135 gpm (0.3 cfs) or 48 acre-ft/yr. There is only 1 currently permitted groundwater withdrawal from the sub-watershed for 5 gpm.

A crest gauge maintained on a tributary to Omak Creek at Disautel (Omak Creek RM recorded annual peak flows of 1 to 13 cfs between 1956 and 1965 (Walters 1974). In an analysis of streamflows in sub-watersheds of the Colville Indian Reservation, Osborne (2000) estimated the

2 yr, 50 yr and 100 yr daily flows of 367, 897, and 1020 cfs. In that same study, the peak discharge for those flow intervals were estimated at 403, 1080, and 1200 cfs. Based upon channel measurements, (W. Trihey, ENTRIX, Inc.[Okanogan TAG]) bankfull flows in Omak Creek were estimated at 225 cfs, and the 25 yr flood flow was estimated at 790 cfs. Relative to historic conditions, flooding beyond bankfull widths has increased in recent years in the Omak Creek sub-watershed.

An extensive road transportation system exists throughout the sub-watershed as identified in WSDOT and county records (Table 5.2). Roads have been identified as a significant source of sediment (NRCS 1995) and are likely contribute to the streams "flashy" discharge via the impervious surfaces they have created. It has been estimated that there are more than 900 miles of roads within the watershed, although only approximately 265 miles of these roads in the sub-watershed are paved (Table 5-2). The Omak Creek sub-watershed inherent sensitivity has been ranked as low, and the current sensitivity rating is moderate (CCT 1996); these ratings reflect surface erosion potential. The current increase in sensitivity is considered the result of adverse road-related impacts (CCT 1996).

Water Quality

Water quality has been regularly evaluated by CCT-Environmental Trust in Omak Creek for several years (W. Hunter, personal communication, 2001). This monitoring has indicated dissolved oxygen levels appropriate for salmonid species (see Table 4.1).

Recorded temperatures can be stressful in the lower Omak Creek basin during the warmer months, exceeding both values suitable for optimal growth (Fisher 2000) and even survival (Brett 1952). All locations examined in Omak Creek and its tributaries received habitat quality index ratings of moderate to poor for temperature in previous studies (CCT 1996). Temperature information continues to be collected and tribal restoration efforts are directed towards reaches that contribute to warm water conditions.

Accelerated sediment yields from uplands and streambanks was identified as one of the main factors affecting water quality in Omak Creek (NRCS 1995).

Fisheries Resources in Omak Creek

The Omak Creek watershed supports a variety of fish species, including resident rainbow and brook trout, and the federally endangered anadromous steelhead trout. Other species (e.g., Cottis sp., Prosopium williamsoni) also inhabit the creek, particularly in its lower reaches. In an effort to reestablish a locally adapted steelhead stock the CCT Fish and Wildlife Department, in a coordinated effort with Washington Department of Fish and Wildlife, has been stocking steelhead smolts in Omak Creek since 1980. The CCT has also recently embarked upon the re-introduction of spring chinook salmon into the creek, and some 100,000 fry and 40,000 smolts were released into the upper watershed in the spring of 2001. (The National Marine Fisheries Service has considered spring chinook to be extinct in the upper Columbia for many years). Historically, Omak Creek supported steelhead and chinook salmon which were culturally important to the members of the Colville Confederated Tribes. It is presumed that steelhead utilized most of the perennial stream channels within the watershed, although Mission Falls (RM 8) was likely an effective barrier to Chinook salmon.

Habitat Limiting Factors Assessment of the Omak Sub-watershed

For this analysis two reaches were evaluated in Omak Creek (**Table 5-7**). The lower reach extends from the confluence to the base of Mission Falls (~ RM 5.1). Mission Falls was likely the extent of the historical range of Chinook salmon in Omak Creek. The upper reach extends from Mission Falls to the upper end of Omak Creek. The source of habitat and water quality information provided for this analysis of Omak Creek and associated tributaries was from surveys conducted by the Colville Confederated Tribes Fish and Wildlife staff or Environmental Trust and the Natural Resources Conservation Service.

Habitat Pathway and Indicator*	0.0 to 5.1 Reach1	5.1 to 25.0 Reach 2
Water Quality		
Dissolved Oxygen	F2	G2
Stream Temperature	P1	F1
Turbidity/Suspended Sediment	P1	P1
рН	F2	F1
Nutrient Loading	F1	F1
In Channel Habitat		
Fine Sediment (substrate)	P1	F2
Large Woody Debris	F1	F1
Percent Pool	G1	F1
Habitat Access		
Fish Passage	G1	F1
Streamflow		
Resembles Natural Hydrograph	P2	P2
Impervious Surface	F2	F2
Stream Corridor		
Riparian Vegetation	P1	F2
Streambank Stability	P1	F2
Floodplain Connectivity	P2	F2

Table 5-7: Omak Creek Limiting Factors Assessment

*Pathway in bold, indicator in plain type

Additional Support for Limiting Factors Assessment Ratings in the Omak Creek Sub-watershed

Water Quality

Reach 1

Dissolved oxygen has not been identified as problematic in the lower reach, but was rated as 'fair' because of high nutrient loading in this reach that likely reduces saturation through elevated biological oxygen demand (BOD).

Water temperature has exceeded lethal levels for steelhead (75° F; Bell 1986) and is marginal for chinook salmon (79° F; Brett 1952) in the lower reaches of Omak Creek in the summer months (78° F, 1997; 79.9° F, 1998; 78° F, 1999; 75.5° F, 2000, CCT, unpublished data). For this reason, temperature was listed as 'poor' in reach 1.

Turbidity was evaluated twice during an 8-day period in 1990. NTUs's varied from 24.0 to 39.0 NTUs. Most of the year (10 months) value is less than 20 NTUs, but some samples (13) have exceeded 100 NTUs and several have been between 20 and 100 NTUs but only during the months of April and May (W. Hunter, CCT – Environmental Trust, unpublished data). It is

suspected that the major source of turbidity originates in the watershed from upstream of Mission Falls. Total suspended solids have exceeded 130 mg/l during April and May, corresponding with peak spawning times for steelhead (W. Hunter, CCT – Environmental Trust, unpublished data).

No data were reviewed from which to rate pH values in reach 1; however, measurements upstream of reach 1 have exceeded 8.5, and it is not expected that conditions would likely differ in the upper portion of the stream with respect to alkaline contributions and conditions. For this reason, pH was rated as fair in reach 2.

Besides thermal and turbidity impairments, fecal coliform was detected in high concentrations and found to be the cause of water quality standard non-compliance (NRCS 1995). Fecal coliform, nutrients (nitrate, phosphate) and ammonia have been recorded in lower and upper reaches of Omak Creek, primarily from livestock and also septic tanks (W. Hunter, CCT – Environmental Trust, unpublished data). In August of 2001 reach 1 of Omak Creek also received an excessive "dose" of fire retardant accidentally applied to the creek during fire suppression activities in reach 2. The active ingredient of the retardant, ammonium polyphosphate, resulted in a complete fish kill for the majority of waters captured by reach 1, and the lower portion of reach 2. The impacts of this spill have been described in detail elsewhere (Fisher and Fisher 2001), but it is noted here that a significant amount of retardant landed within the riparian corridor and atop stream bed sediments outside the wetted perimeter, but within the bankfull width of the stream. Although the retardant that landed in the creek was diluted rapidly due its soluble chemical formulation, the residual contamination of the riparian zone and shoreline habitats will likely serve as a source of recontamination, and thereby increase the nutrient enrichment for some time. For this reason, the nutrients/contaminants habitat indicator was rated as 'fair', recognizing that the system is at risk from elevated nutrients, and that a more complete data set is needed to establish potential effects on habitat function for salmonids.

Reach 2

Dissolved oxygen - has not been measured by the CCT at levels that would be detrimental to salmonid performance (See reach 1). For this reason, it was rated as good.

Water temperature - data has been collected at four locations (Disautel, Haley Creek confluence, Stapaloop Creek, Trail Creek) within this reach since 1999. Water temperatures exceeding 70° F during the 2-year time period were recorded in Stapaloop Creek during 1999 and at the Haley Creek confluence during both years. For this reason, reach 2 was rated fair for temperature.

Turbidity - samples were collected on May 14, 1990 ranged from 18 (Hwy 155 bridge near Trail Creek) to 42 (Disautel). On May 23, 1990 turbidity samples ranged from 4 NTUs in Stapaloop Creek to 21 NTUs at Haley Creek. During April 23, 1990 turbidity was sampled and ranged from 50 NTUs at Hwy 155 to 29 NTUs at Haley Creek (See reach 1). Sampling the volume of sediment in pools (V*) was conducted during August 2000. Although the collected data has not been analyzed, depths within an upstream reach often exceeded 2 feet, indicating a high amount sediment delivered to Omak Creek. These data support a rating of poor for this indicator. Based upon an observation of approximately 6" of sediment deposited there is evidence that suspended sediment may, at times, exceed levels appropriate for salmonid health and habitat.

pH was measured in excess of 8.5 during field investigations of the retardant-induced fish kill in Omak Creek during August 2001. For this reason, the pH was rated as "fair". Other monitoring by the CCT prior to the spill has also measured pH values in excess of 8.5. Values in excess of 9.0 have not been recorded to our knowledge.

In-Channel Habitat

Reach 1

A fish spawning substrate evaluation was conducted by CCT - Fish and Wildlife staff during 1989. The results of this study found fine sediment tightly packed around the larger materials and it was causing a cementing effect in the downstream reaches. Percent fines averaged 14.2% across two sample sites in this reach. This percentage appears relatively low, however, sampling occurred in riffles, or areas of fast flowing water. Thus areas of lower stream velocities and preferred spawning sites by salmonids (pool tail-out) are likely to have greater amount of fine sediment.

A Timber Fish and Wildlife (TFW) Ambient Monitoring Stream Survey was conducted by CCT-Fish and Wildlife Department personnel during 1992. The survey was divided into 5 segments (based on valley form) and conducted over 12.2 miles of Omak Creek. For the habitat survey large wood was counted if it exceeded 2 meters in length and a diameter of at least 10 cm. The frequency of large woody debris was not recorded within the lower 3 reaches (RM 0.0 to 5.1). However, it is suspected that there is a deficiency in the frequency of large wood when compared to historical conditions. During the 1920's a railroad was routed along Omak Creek and is a likely cause of the current deficiency of large woody debris. Beaver dams were also identified as one of the main factors contributing to pool formation, which may also be a cause to the deficiency in LWD in Omak Creek. However, LWD, as defined by these criteria, may not be as critical a factor in Omak Creek. Channel bedform created as much as 38% of the pools in one segment. Rootwads and roots of standing trees also contributed to creating pools. However, Omak Creek is considered to have sufficient amount of large wood and is properly functioning (i.e., 'good') for this parameter but may be deficient compared to what may have been present historically. Because of the reduced recruitment potential, the large wood loading conditions were rated as fair

Percent pool habitat was measured as good (\geq 50% of habitat) for both segments (55.4%, 51.6%) in this reach (CCT 1992). Ruggles (1966) and Platts et al. (1983) considered a stream with 50% pools is generally considered to possess good habitat attributes. The main factors contributing to pool formation in both segments were beaver dams and channel bedform. The prevalence of beaver is likely a contributing factor to limited large woody debris in the lower reach.

Reach 2

Again as stated earlier, sediment yield models indicated overland erosion was one of the main factors affecting water quality in Omak Creek (NRCS 1995). A fish spawning substrate evaluation found fines averaged 18.3% across 6 sample sites upstream of Mission Falls (J. Hansen, CCT, 1992). This percentage appears relatively low, however, sampling occurred in riffles, or areas of fast flowing water. Thus areas of lower stream velocities and preferred spawning sites by salmonids (pool tail-out) are likely to have greater amount of fine sediment. Also, the percentage of fine sediment was determined by weight. Therefore, there was likely a large amount of fine sediment to equal 18.3% by weight. More recently, V* (V star) sampling was conducted along 2 reaches of Omak Creek upstream of Mission Falls. One reach, near the confluence of Trail Creek, revealed depths of sediment often exceeding 2 ft. (C. Fisher, CCT, unpublished data).

A likely source of sediment in this reach is from roads. Approximately 900 miles of road were recognized within the Omak Creek watershed (141.7 square miles). However, it is known that more than 900 miles of road exist in the watershed.

During 1995 a habitat survey was conducted in Trail Creek, a perennial tributary of Omak Creek with its source from Moses Mountain. Large woody debris was in abundance within the lower three reaches of Trail Creek (156, 270 and 218 pieces/mile). However this was likely an overestimate because pieces with lengths over 6 feet were recorded (CCT, unpublished data). Based upon reconnaissance level surveys it appears that woody debris occurs in Trail Creek in sufficient frequency to provide adequate habitat complexity (pool formation, fish cover, nutrient input, etc.) and bank stability. During a 1992 survey LWD was evaluated upstream of Mission Falls for 4 miles. The frequency of large wood was 16 and 31 pieces per mile for diameters > 20 cm and > 10 cm, respectively.

In two reaches (4.0 and 3.2 miles) upstream of Mission Falls pool area was estimated at 31.3% and 35.8%.

Habitat Access

Reach 1

Formerly two barriers to anadromous fish passage existed on the mainstem of Omak Creek. The lowermost barrier was created by a timber mill, which routed Omak Creek through approximately 1600 feet of corrugated metal pipe (cmp). This barrier was virtually impassable for both steelhead and Chinook salmon. Omak Creek was relocated in an open channel approximately 100 feet away from the mill site during the spring of 1999. The second barrier, at ~ RM 5.1, was created from the rubble and cribbing used in the construction of a rail system along Omak Creek during the 1920's. This railroad material was deposited into the canyon at Mission Falls and made the upstream reach inaccessible to anadromous salmonids. During the fall of 1998, approximately 28,000 cubic yards of rubble and cribbing material was removed from Mission Falls. Currently, the Mission Falls reach is being evaluated for fish passage by steelhead. Because of the gradient (approximately 12%) and reduced streamflow during June and July, it is assumed that Mission Falls was always impassable to spring Chinook salmon.

Reach 2

One barrier to fish passage is a culvert, which routes Stapaloop Creek, a perennial tributary to Omak Creek, under Highway 155. This culvert exists at approximately RM 0.5 and prevents access to about 4 miles of Stapaloop Creek. Currently, it is unknown if other artificial barriers exist which prevent anadromous fish access to habitat in upstream reaches.

Flow

Reaches 1 & 2

During 1998, peak flows, in response to mild air temperatures and spring rains, have been of short duration and have exceeded bank full discharge. This peak flow response was known to occur three times during the spring of 1998 and indicates the natural hydrograph is impaired. The pronounced changes in timing and discharge (e.g., multiple peak flows) suggest that alterations and disturbances exist which modified the hydrological characteristics in the basin from its natural hydrograph. Thus, both reaches were rated as poor, although additional data collection to support this rating are needed.

Based upon map wheel projections from USGS 1:100,000 maps, and GIS interpretations, the paved road network meets the 'good' criteria. However, because this estimate does not include non-paved roads that may bring this total to (at least) 900 miles this habitat indicator of hydrology was rated as 'fair', with the qualifier of professional judgement (i.e., '2').

Channel Condition Reach 1

Canopy closure was evaluated at random sites downstream of Mission Falls (C. Fisher, CCT, unpublished data). The survey indicated riparian vegetation was scarce along this 2-mile reach and likely caused by poor livestock management. Along the lowermost 2-miles riparian vegetation is minimal. This reach contains approximately 0.5 miles of newly-constructed stream channel where riparian vegetation is being established and the remaining 1.5 miles is channelized with limited riparian vegetation.

Bank stability has not been evaluated in Omak Creek. However, in the Omak Creek Watershed Plan/Environmental Assessment (NRCS 1995) bank stability measures were identified. Recent observations indicate bank erosion occurring along several isolated reaches. Again, downstream of Mission Falls several areas of vertical bank cutting are actively eroding. The most common cause of this erosion appears from poor livestock management. The reduction of woody plant species and the associated root systems have also caused banks to become unstable. Within the lowermost 2 miles, severe erosion is occurring along 0.5 mile reach that was constructed during the winter of 1998. This severe erosion is due to poor lateral channel stability. Surveys along the stream have allowed for estimates of 80% of the bank vegetated and stable. Parts of the Omak Creek Watershed Plan/Environmental Assessment are being implemented and include grazing management practices, which will allow the over-utilized areas to become reestablished with woody vegetation. Professional judgment considers the current condition for bank stability to be functioning at risk.

Floodplain connectivity is limited in the lower 5.1 miles of Omak Creek. Floodplain connectivity is absent along an approximately 3-mile reach downstream of Mission Falls where severe bank erosion exists. However, where bank erosion is not evident and gradient is not high (> 2%), floodplain connectivity does exist. Restoration efforts are being directed to improve bank stability, reduce erosion and reestablish floodplain connectivity.

Reach 2

As in the lower reach, there are areas in the upper reach that are obviously absent of riparian vegetation. Canopy closure, which was 46 and 57% along two stream segments, substantiates this condition (TFW 1992).

Where vegetation is absent, bank stability is poor. Several reaches containing actively eroding banks have been observed near the community of Disautel (~ RM 16.0). Upstream of Mission Falls (RM 5.1), particularly near the community of Disautel, Omak Creek has been disconnected from the floodplain. The cause appears to be from loss of riparian vegetation and residential development that drained most of the adjacent wetlands.

Salmon Creek Watershed Description

Sub-watershed Overview

Salmon Creek is a perennial tributary of the Okanogan River with a total watershed area of about 167 square miles. It enters the Okanogan River at the town of Okanogan. Mountains surround Salmon Creek forming its hydrologic divides. The basin is generally oriented on a northwest-southeast axis, with a broad upper watershed about 8 to 10 miles wide and 12 to 15 miles long. The North Fork, West Fork, and South Fork of Salmon Creek converge at Conconully draining the 119 square-mile upper Salmon watershed. This portion of watershed is inaccessible to anadromous fish because of Conconully Dam and Reservoir. Conconully Dam is approximately

15 miles upstream from the mouth of Salmon Creek. Although data or written references are unavailable to define historic use of the upper watershed by anadromous salmonids, professional opinion is that it was probably limited to less than three miles above the damsite.

The Okanogan Irrigation District (OID) manages Conconully Reservoir to serve District lands east of the watershed. Controlled releases for irrigation deliveries are made from Conconully Reservoir between April and October. These releases are conveyed through 11 miles of natural and modified stream channel (referred to as the middle reach of Salmon Creek) to the OID diversion dam, located 4.3 stream miles above the mouth of Salmon Creek. For more than eighty years, the 4.3 miles of Salmon Creek downstream of the OID diversion dam (referred to as lower Salmon Creek), have been dewatered, except during snowmelt events that result in uncontrolled spill at the OID diversion dam.

Land Use and Ownership

Land use within this semi-arid region has been, and continues to be, tied directly to water use including: transportation, mineral exploration, irrigation, domestic use, livestock, and recreation. In 1886 mining activities began. Mining in the Salmon Creek area continued until 1983; most notably from 1937 through 1939, and from 1958 through 1964 (USFS 1997). Also, in 1886 water was diverted for irrigation. Water diversions increased until 1921 and resulted in the construction of two dams: Conconully in 1908 and Salmon Lake Dam in 1921. Extensive Livestock grazing throughout the watershed began in the late 1800s and continued through the early 1900s. Generally during this time period, cattle grazed the lower elevations while sheep were driven into the higher ranges (Bennett 1979, USFS 1997).

Present land ownership and use in the upper Salmon watershed is dominated by the USFS (80 percent), with a minor area (2 percent) managed by the Bureau of Land Management (USFS 1997). Land ownership in the middle and lower reaches is primarily private. However, some state and local lands exist in riparian areas, such as near the OID dam and Watercress Springs.

Topography, Geology & Soils

Elevations of the upper Salmon watershed range from 2,318 feet at Conconully to 8,242 feet at Tiffany Mountain (USFS 1997). The valley floor along the middle reach decreases from about 2,200 feet at Conconully dam to 1,350 feet at the OID dam. Ridge elevations along the west and east watershed divides are about 4,900 and 3,700 feet, respectively. The elevation of Salmon Creek at its confluence with the Okanogan River is about 800 feet.

Three major geologic events have played a leading role in shaping the topography and soil characteristics of the Salmon Creek watershed: granitic uplifting during the Cretaceous period, glacial activity during the Quaternary period, and post-glacial volcanic activity (USFS 1997).

The higher elevations in the upper watershed are dominated by cirque headlands and basins, which flow outward to form glacial troughs and valleys. Pleistocene glaciation and ice-margin streams carved the valleys of the upper watershed. Soils are close to bedrock and extensive rock outcrops exist. The lower sideslopes and foothills are dominated by deep glacial deposits that have been influenced and affected to some degree by mixed colluvium and alluvium deposition that followed the retreat of the glaciers about 10 to 15 thousand years ago (USFS 1997).

The Salmon Creek valley gradually widens downstream of Conconully Dam and becomes underlain by clay, sand, gravel, and boulders. Thick deposits of glacial till and outwash occur; particularly along the lower 2 miles of Salmon Creek.

Water Quantity/Hydrology

Water supply

Annual average precipitation in the upper Salmon watershed ranges from about 15 inches near Conconully to 30 inches in the mountains along the western edge of the watershed. Annual precipitation in the middle and lower portions of the watershed averages 12 to 15 inches. Near the confluence of Salmon Creek with the Okanogan River (800 ft msl), precipitation in the form of snowfall typically occurs from November to March. Trace amounts of snowfall may occur in October and April. At elevations above 1,500 feet, snowfall is two to four times greater than that occurring at lower elevations. Rainfall between May and September is low, generally less than 1.5 inches.

Annual runoff from the Salmon Creek basin is highly variable. This variability is so extreme that although all surface runoff from the upper watershed flows into Conconully Reservoir or Salmon Lake, it has often been insufficient to fill the reservoirs. Conconully reservoir has seen everything from record floods to extended dry periods. The longest dry period extended from 1917 until 1938 (Yates 1968).

Municipal water use in the vicinity of Salmon Creek is limited to the City of Okanogan, which relies principally on groundwater wells. However, the municipal water supply is supplemented by extraction from Watercress Springs located along Salmon Creek about 2 miles upstream from its mouth. Groundwater also provides domestic water for of the residents of Conconully and other valley residents. According to MWG et al. (1995) there are a total of 190 groundwater claims and 39 confirmed permits. Permitted withdrawals could account for 9,134 gpm of water (20.36 cfs). Additional groundwater claims could account for the additive withdrawal of 7,056 gpm (15.7) if exercised. There are an additional 5 applications pending for which another 845 gpm could be permitted.

Today, a substantial portion of Salmon Creek flows are diverted and/or stored (e.g., Conconully Dam). In addition, direct withdrawal for irrigation and home use is permitted within the basin. There are 89 permits for surface water withdrawals currently granted on Salmon Creek, which could yield a total 2.9 cfs (MWG et al. 1995). In addition, there are another 137 claims for a total of 408 cfs.

Streamflow

Salmon Creek contributes about 2% to the average annual streamflow of the Okanogan River at Malott (WDOE 1995). Prior to regulation by impoundment (1904-1909) the annual average discharge of Salmon Creek was recorded as being from 35 to 80 cfs, and averaged 49 cfs (35,500 acre-feet per year) (WDOE 1976). Monthly discharge ranged from about 15 cfs August through March to approximately 114 cfs April through July (Walters 1974).

It is important to note that streamflow data recorded prior to construction of Conconully Dam represent a period of record containing only average and above average water years (as compared to the full 1904-1998 period of record). For the long-term period of record (1904-1998), the average annual runoff is 21,700 acre-feet (30 cfs) or 63% less than the 1904 to 1909 average.

August through March flows range between 5 and 10 cfs rather than near the 15 cfs reported in the early 1900 record (Dames and Moore 1999).

There is a general tendency for streamflow gain between Conconully Reservoir and the OID diversion, and for streamflow loss between the OID diversion and the mouth of Salmon Creek. The loss of streamflow was first documented by Monk and Fisher (1998) then confirmed by Trihey and Mahacek (Dames and Moore 1999). The 24 percent loss measured by Monk and Fisher in April 1998 during a 19.8 cfs spill at the OID diversion dam is of a similar magnitude as the 31 percent loss measured during a 19.2 cfs release in March 1999.

It is expected that antecedent moisture conditions and weather patterns have a significant influence on streamflow losses in lower Salmon Creek. Antecedent moisture conditions affect groundwater contributions to baseflow, and are likely to vary between months and between water year types. The 1999 study was conducted in the spring following two relatively high precipitation years. The 1998 study was also conducted in the spring following a relatively high precipitation year. Therefore, the stream flow losses measured in 1998 and 1999 may be significantly less than what would be measured in late fall or during drier years. However, it is possible that returning permanent streamflow to Salmon Creek below the OID diversion dam would eventually recharge the streambed and reach losses would become less than the measured values.

Fisheries Resources in Salmon Creek

There are three races/demes of chinook salmon in the Columbia River basin: spring, summer, and fall; and two races of steelhead: summer and winter. Steelhead runs in the Columbia River upstream of the Deschutes River (including the Snake River) are exclusively summer-run fish (Peven 1990). However, there are two subgroups of summer-run steelhead that are differentiated by their time of entry into the Columbia River. The "A" group enters the river in June and July, where as the "B" group enters the river during August and September. The mid-and upper Columbia River steelhead, that could potentially enter Salmon Creek, belong to the "A" group (Chrisp and Bjornn 1978).

Anadromous Salmonids known to have historically occurred in Salmon Creek include spring chinook (*Oncorhynchus tshawytscha*) and summer steelhead (*O. mykiss*). Before the construction of Conconully Dam in 1910, these anadromous fish may have utilized the north, west and south forks of Salmon Creek for two or three miles above the dam site. Both spring chinook and summer steelhead have recently been listed as "endangered" under the Endangered Species Act. Spring chinook are thought to be extirpated from Salmon Creek. Summer steelhead are occasionally observed in the creek during high water years (**Figure B-7**).

NMFS considers all Columbia River steelhead returning to spawning areas upstream of the Yakima river confluence as belonging to the same ESU (NMFS 1997). This ESU is currently listed as "endangered," and includes the Wenatchee, Entiat, Methow, and Okanogan watersheds. The Wells Hatchery steelhead stock is also included in this ESU because it is considered essential for the recovery of the natural population.

Habitat Limiting Factors Assessment of the Salmon Creek Sub-watershed

For purposes of this limiting factor assessment, the 15 mile (approximate) segment of Salmon Creek between Conconully Dam and the Okanogan river has been divided into three reaches (**Table 5-8**). These reaches are necessary because of significant differences in streamflow above

and below the OID diversion dam that dramatically affect the character of the stream channel and the availability and quality of salmonid habitats. Past and present land use practices are also an important factor influencing stream corridor conditions and salmonid habitats but the adverse effects of these practices are small relative to the adverse influence of streamflow alterations.

Reach 1 begins at the mouth of Salmon Creek and extends upstream 1.75 miles to below Watercress Springs. Reach 2 is 2.55 miles in length and extends from the lower end of Watercress Springs to the OID Diversion Dam RM 4.3. Reach 3 extends from the OID diversion dam upstream 11 miles to Conconully Dam a distance of eleven miles.

Habitat Pathway and Indicator*	Limiting Habitat Factor Ranking by Reach				
	Okanogan River Reach 1 Mouth to 1.75 miles	OID Diversion Dam and Watercress Springs Reach 2 1.75-4.30 miles	Conconully Dam Reach 3 4.30-15.3 miles		
Water Quality	=				
Dissolved Oxygen	DG	DG	DG		
Stream Temperature	DG	DG	P1		
Turbidity/Suspended Sediment	P2	P2	P2		
pН	DG	DG	DG		
Nutrient Loading	DG	DG	DG		
In Channel Habitat					
Fine Sediment	P2	P2	P2		
(sedimentation)					
Large Woody Debris	P2	P2	P2		
Percent Pool	P1	P1	P1		
Habitat Access					
Fish Passage	P1	P1	P2		
Streamflow					
Resembles Natural	P1	P1	P1		
Hydrograph					
Impervious Surface	G2	G2	G2		
<u>Stream Corridor</u>					
Riparian Vegetation	P1	P1	P1		
Streambank Stability	P1	P1	P1		
Floodplain	P1	P1	P1		
Connectivity					

Table 5-8. Salmon Creek Limiting Factors Assessment.

*pathway in bold, indicator in plain type

Additional Support for Limiting Factors Assessment Ratings in the Salmon Creek Sub-watershed

Reach 1

Nearly all stream corridor attributes considered in Reach 1 are poor. Most notable in Reach 1 is the absence of riparian vegetation and persistence of an incised and unstable stream channel. Both are attributable to the prolonged absence of base streamflow and the periodic occurrence of flood events (i.e. large uncontrolled spills at Conconully Dam).

When observed at moderate streamflow levels (15 to 30 cfs) this reach provided poor to fair adult passage because of excessive channel width and lack of pool habitat for resting area. However, the complexity of the boulder/cobble channel boundary and associated hydraulic conditions provided excellent potential living space for juvenile salmonids.

At moderate streamflows (15 to 30 cfs) streambanks were not eroding and water clarity was good. At high streamflows such as would occur during snowmelt runoff water clarity is expected to be fair or poor due to surface runoff above Danker Cutoff Road and streambank erosion between RM 0.75 and RM 1.75.

Reach 2

When streamflow exceeding 10 cfs is present in Reach 2, dissolved oxygen and stream temperature are probably adequate to support salmonids. However, data should be collected to verify or correct this impression. Watercress springs, at the lower end of Reach 2, should provide water of nearly uniform temperature throughout the year and hot temperature should be very close to the mean annual air temperature.

Suspended sediment concentrations or turbidity levels have not been cited in prior assessments as being of concern. Data are not available and observations have not been made by this author to support informed judgement. An initial opinion is that elevated turbidity and suspended sediment levels probably occur with snowmelt runoff events. The degree to which these events might adversely affect fish or fish habitat is unknown. Most sand sized and larger particles originating in Segment 3 are captured by the sand traps at OID's diversion dam. Thus, most coarse grained suspended sediment and fine grained bedload present in Reach 2 would have to originate in this reach. Fine grained suspended sediment, that which influences turbidity, could originate in either Reach 3 or Reach 2. Hansen (1995) and Fisher and Fedderson (1998) reported undesirably high amounts of fine sediment in spawning gravel in Reach 3.

Informal observations by this author indicate that small discontinuous patches of usable spawning gravel exist in Reach 2 but, in general, spawning habitat is limited in quantity and quality by substrate size or percent fines. Substrate is generally large and clean enough in the vicinity of Danker cutoff road and watercress springs to provide good cover for juvenile salmonids.

Large woody debris is typically absent from the channel. The absence of LWD is probably as attributable to landowner behavior as it is to poor recruitment potential.

Channel complexity is fair between the OID diversion dam and Danker cutoff. Run, riffle and pool habitats exist but habitat quality is suppressed by very low streamflow. At moderate streamflow this sub reach is dominated by good quality riffle and run habitats. From Danker cutoff to Watercress Springs channel complexity improves considerably due to substrate composition. This sub reach is dominated by large bed element, riffle run and pocket water habitats. The quality of these habitats is typically suppressed by very low streamflow. However at moderate streamflows excellent rearing habitat exists in this reach.

If streamflow exists in Reach 2 it is present because of spill at the OID diversion dam. Thus streamflow in Reach 2 can be described as seasonal, sporadic and unreliable. In wet years seepage, leakage and shallow groundwater inflow maintains a wet channel with isolated shallow pools for a mile or so below the diversion dam. Watercress springs contributes to a wet channel

in that area but continuous streamflow seldom exists year round in Reach 2. As a result, fish passage and habitat conditions are typically poor throughout the reach.

Riparian vegetation in Segment 2 ranges from poor to good. Good conditions exist near Watercress Springs. Elsewhere the condition of riparian vegetation is quite poor; possibly being fair in a few small areas. Flood plain function is uniformly poor due to land use practices.

Reach 3

Neither dissolved oxygen or water temperature have been suggested as being problematic in prior studies (albeit data are very limited).

Data have not been collected on dissolved oxygen but the visual appearances of the reach do not suggest low oxygen levels are likely to be of concern (e.g., good aeration). It is possible for low level releases from Conconully Dam to have a low oxygen content but the steep channel gradient and large bed material would likely result in streamflow being oxygenated within a couple miles. The collection of seasonal dissolved oxygen profiles near the outlet from Conconully lake would indicate whether dissolved oxygen data should be collected in Salmon Creek.

Stream temperature data collected by CCT fisheries staff during 1997 and 1998 indicate that the temperature of Reach 3 did not exceed 68°F (Fisher & Fedderson 1998).

The Okanogan Watershed Water Quality Plan (OWC 2000) does not identify suspended sediment concentrations (or turbidity) as being of concern in Salmon Creek. This author's observation of the general condition of the Salmon Creek corridor in Reach 3 indicate that elevated turbidity, suspended sediment and BOD loading is likely during April and May due to snowmelt runoff from agricultural lands in the flood plain. Whether or not these inputs are high enough to be harmful to fish or their habitats in this reach is unknown. Data would need to be collected before an informed opinion will exist.

The most extensive survey of stream morphology and associated habitat conditions was conducted in 1999 by Barry Sutherland (NRCS 1999).

Construction and operation of Conconully Reservoir has altered the shape of the natural hydrograph in Reach 3 but, as described below, it is unlikely that the nature or magnitude of these alterations are detrimental to the utilization of this reach by salmonids. Both Conconully Reservoir and Conconully Lake (Salmon Lake) are operated as irrigation storage reservoirs. Decisions are made each spring by the Okanogan Irrigation District regarding reservoir operation during the snowmelt runoff season. However no formal agreement exists regarding reservoir operation for flood control. Although efforts are made to provide storage during the anticipated period of peak runoff, the reservoirs fill and spill during normal and above normal snowpack years. The timing, duration and magnitude of spill is strongly influenced by water year type. During the irrigation season (April - October) Reach 3 of Salmon Creek conveys water released from Conconully Dam for irrigation delivery. Stream flows during May and June are substantially lower than what would occur naturally; and they are notably higher during August, September and October. Streamflow conditions for Spring Chinook and Summer Steelhead migration, spawning and rearing are considered good. Winter streamflows (November – March) may be about the same or somewhat lower than natural. This is a topic area yet to be investigated.

In general, riparian vegetation and flood plain function varies from good to poor depending upon location with in the reach. The stream corridor is too inaccessible, narrow, and steep within the 4 miles below Conconully Dam to support extensive utilization of the stream corridor by man. Thus, the general condition of its riparian vegetation and floodplain function is quite good. Between the former town of Ruby and the OID diversion dam, a distance of approximately six miles, the stream corridor is extensively utilized for livestock, pasture, or hay, wheat, and barley fields. In some locations the stream appears to have been moved from its natural water course. The general condition of riparian vegetation and flood plain varies from good to poor depending upon location. The general condition of the riparian vegetation and degree of flood plain development undoubtedly has a negative effect (albeit unquantified) on streambank stability and sediment/BOD loading from overland and rill flow. The general condition of riparian vegetation in Segment 3 may have some negative influence on stream temperature, oloconous input, benthic production and cover. However, this author's observation of Reach 3 would suggest that more than half of this 11 mile stream reach has good riparian shade and potential for oloconous input.

Wanacut Creek Watershed Description

Sub-watershed Overview

Wanacut Creek is a third order intermittent tributary to the Okanogan River located on the Colville Indian Reservation immediately north of the Omak Creek sub-watershed. Wanacut Creek flows westward, entering the eastern side of the Okanogan River at approximately RM 30, (CCT 2001). The total area of the Wanacut Creek sub-watershed is 12,595 acres, representing 0.76% of the total Okanogan watershed (OWC 2000). The Wanacut Creek mainstem is approximately 7.6 miles long, with a total of approximately 38.7 miles of stream channel in the sub-watershed (Table 5.2).

Land Use and Ownership

Land use in the Wanacut drainage includes timber harvest, livestock grazing and pastureland, industry, and residential development. The lower portion of the Wanacut watershed is used for crop production and pasture. The uplands consist of rangeland and residential development. According to the OCD (2000), 44.5 % (5,599 acres) of the sub-watershed is in forest production, 52.3 % is in rangeland (6,586 acres), 3.2% (411 acres) is in crop production—primarily irrigated hay and non-irrigated pasture. At higher elevations, mixed rangeland, mixed forest, and coniferous forest dominate (CCT 2001). See **Table 5-9** for land use types percentages.

 Table 5-9: Land Use/Types in the Wanacut Creek Watershed by Acreage and Percentage of Total Watershed Area (OWC, 2000)

Land Use/Land Type	Acreage	Percentage
Range	6586	52%
Forest	5598	49%
Irrigated hay	317.7	2.5%
Non-irrigated pasture,	92.8	0.7%
hay or feedlots		

Topography, Geology and Soils

Elevations within the sub-watershed range from 860 feet at the Okanogan River confluence, to 5749 feet, the summit of Omak Mountain. On the basis of USGS 1:100,000 scale mapping, the main channel headwaters of the sub-watershed begin at an elevation of approximately 4,250 ft.,

yielding an average elevation drop in Wanacut Creek is 446 feet/mile. The average drainage gradient is thus approximately 8.5%.

Geology in the Wanacut Creek sub-watershed is composed primarily of undifferentiated igneous and metamorphic rocks of various ages that do not generally bear water (USGS 1954). Soils are primarily derived from glacial till and material weathered from granitic rock. The soils have a mantle or component of volcanic ash or loess. Terrace soils developed in glacial outwash, eolian sand, and glacial lake sediments Soils in the watershed have a moderately low erosion potential (CCT 2001).

Fluvial Geomorphology & In-Channel Habitat

No formal studies were reviewed that quantified or otherwise characterized fluvial geomorphology or in-channel habitat conditions in the Wanacut Creek sub-watershed.

Vegetation and Riparian Condition

No formal studies were reviewed that quantified or otherwise characterized riparian condition in the Chiliwist sub-watershed. Vegetation communities within the Wanacut sub-watershed are presumed similar to those found within the adjacent Omak Creek sub-watershed.

Water Quantity/Hydrology

Wanacut Creek is an intermittent stream, but may have flowed year round historically. Average annual precipitation in the sub-watershed is 16 inches. The hydrology in the basin has been altered by timber harvest, road construction, livestock grazing, and other land use practices in the uplands and riparian corridor, but unlike many of the other sub-watersheds, surface and groundwater withdrawals are minimal. One irrigator in the drainage has a water right claim in the sub-watershed for a 10th of a cfs (MWG et al. 1995. This water is apparently diverted from the Okanogan River. Another instance of illegal water withdrawal from Wanacut Creek is currently under investigation (Trevino, personal communication, 2001). Groundwater claims amount to only 9 gpm (MWG et al. 1995). Presently the creek usually does not flow year round in the lower reaches (Hunner, CCT, personal communication, 2001). Base flows at the water quality monitoring station near the mouth of Wanacut Creek are less than 1 cfs. The highest recorded flow at this station is 26 cfs (CCT 2000.)

Water Quality

Wanacut Creek has water quality impairments due to livestock grazing, residential and industrial development, removal of riparian vegetation and grazing practices. The effect of these impairments on water quality in the mainstem Okanogan River has not been established. The Colville Tribe used the Unified Watershed Assessment Categories (UWAC), a part of the EPA Clean Water Action Plan Criteria (EPA 1998) to characterize the condition of the watersheds on the reservation. Wanacut Creek received a Category I rating, indicating that the watershed does not meet clean water and other natural resource goals, and needs restoration.

Fisheries Resources in Wanacut Creek

Brook trout, an introduced species, is the only fish species recorded in Wanacut Creek, both currently and historically (CCT 1997). There may be rainbow trout in the upper reaches (**Figure B-8**) (Marco, personal communication, 2001). The stream is not currently stocked, but the presence of brook trout suggests that it was stocked in the past. There are several culverts in the

lower reaches, some of which may be passage barriers to fish (Marco, personal communication, 2001).

Habitat Limiting Factors Assessment of the Wanacut Creek Sub-watershed

The following limiting factors analysis is based primarily on water quality data collected from 1992 to the present (CCT 2000) and observations made by tribal personnel (**Table 5-10**). There are no anadromous species using the drainage, and there are no historical records of anadromy. There are 5 to 10 miles of road adjacent to stream channels in the watershed.

Habitat Pathway and Indicator*		
Water Quality		
Dissolved Oxygen	F1	
Stream Temperature	F1	
Turbidity/Suspended Sediment	F2	
pH	F2	
Nutrient Loading/Chemical Contamination	P1	
In Channel Habitat		
Fine Sediment (substrate)	F2	
Large Woody Debris	DG	
Percent Pool	DG	
Habitat Access		
Fish Passage	P2	
Stream Flow		
Resembles Natural	P2	
Hydrograph		
Impervious Surface	DG	
<u>Stream Corridor</u>		
Riparian Vegetation	DG	
Stream Bank Stability	DG	
Floodplain Connectivity	DG	

Table 5-10: Limiting Factors Assessment for Wanacut Creek (Reach I: 0.0 - 0.75)

Support for Limiting Habitat Factor Rankings in the Wanacut Creek Sub-watershed

Water Quality

Dissolved oxygen (DO) values ranged from 7.62 to 14.46 mg/l. Because DO levels during summer months occasionally dropped below 8.0, the creek was rated 'fair' for DO. Stream temperatures ranged from 0.2 to 26.8 degrees C, with the average summer temperatures over 14 degrees C. The creek was rated Fair for this parameter because 7-day average values did not reach the poor criteria.

Turbidity levels ranged from 0 to 103 NTUs, but turbidities at the upper end of this range were not of long duration. Values were generally less than 20 NTUs, which would qualify the stream as 'good'. Suspended sediment levels are elevated during peak flows (Hunner, CCT. personal communication, 2001). Because of the uncertainty in the duration of events that yield turbidities above 20, the stream was rated as fair for this indicator until further data collection supports altering this rating.

Agriculture and range activity in the basin contribute nutrients to the stream. Wanacut Creek is not on the Washington State 303(d) list.

In-Channel Habitat (fine sediment, large woody debris, percent pools)

There is a data gap in regards to in-channel habitat condition indicators. There are qualitative observations recorded that sediment levels are elevated. There is no data on large woody debris quantities or pool habitat. Rangeland dominates the lower elevations in the watershed, and upper elevations are dominated by dry, sparse forest. Large woody debris levels are likely to be naturally low.

Fish Passage

Habitat access is limited by dewatering in the lower end of the stream during summer months (Hunner, Personal Communication, 2001). Also, as stated above, some culverts in the lower reaches may be passage barriers to fish.

StreamFlow

Land use practices as well as water withdrawal have affected stream flow. Stream flow ranged from 0.1 to 16.6 cfs and average summer flow was below 5 cfs. There are 5-10 miles of road adjacent to streams in the Wanacut watershed.

Channel Condition (riparian habitat, streambank stability, floodplain connectivity) There is a data gap in regards to stream corridor habitat conditions. Further study of the conditions in this sub-watershed are warranted.

Johnson Creek Watershed Description

Sub-watershed Overview

The Johnson Creek sub-watershed area delineated for this LFA includes the self-contained basins of Fish Lake and Pine Creek (Table 5-1) that do not flow into the Okanogan River (Figure B-10). The Johnson Creek sub-watershed, independent of Fish Lake and Pine Creek, comprises approximately 28,694 acres. When these basins are included, the sub-watershed area comprises 75,659 acres. It is located on the western portion of the Okanogan Watershed with the Okanogan River as its eastern boundary, the Sinlahekin State Wildlife Recreation Area as its northwest boundary, and the Salmon Creek sub-watershed to southwest (Figure B-9). Johnson Creek joins the Okanogan River along its western shore at approximately RM 35, just south of town of Riverside. The Johnson Creek sub-watershed runs parallel to the Okanogan River for about 11 miles. There is a series of 21 lakes found in the south-central terraced region of this sub-watershed (USGS 1984).

The climate within the Johnson Creek valley is semiarid. The highest mountain reaches change to a subhumid, but most of the sub-watershed topography is below 800 m. There are large seasonal temperature extremes and daily temperature and precipitation variations. For example, temperature can range annually between 112°F - -31°F in the valley. Annual precipitation is less than 12.5 inches in the main valley (MWG et al. 1995).

Land Use and Ownership

The majority of land in the Johnson Creek sub-watershed is used for agricultural crops such as apple, cherry or other fruit orchards and hay crops (NWPPC 2001). There is also some

rangeland and timber harvesting done in the area. The population of Riverside along the Okanogan in the Johnson Creek sub-watershed has increased 63.7% between 1990 and 1998 (an increase of 223-365 residents; NWPPC 2001).

The majority of land in the Johnson Creek sub-watershed is privately owned agricultural land. In the northwest corner of the sub-watershed approximately 11 mi² is WDFW land (the Sinlahekin State Wildlife Recreation Area; USGS 1984).

Topography, Geology & Soils

The Johnson Creek sub-watershed is primarily flat land in the Okanogan floodplain with limited topographic relief relative to the other sub-watersheds in the Okanogan. The highest elevation within the Johnson Creek drainage of the sub-watershed is Dunn Mt., at 5,559 ft, although the mainstem channel of Johnson Creek originates at only about 1,500 ft. Within the forested terrace that supports the 21 lakes, altitudes vary minimally between about 2,300 and 2,500 ft. The altitudes of the sub-watershed overall range from 1,635 to 2,452 ft., up to 3,270 ft in the northern reaches, and 4,087 ft in a western pocket of the Fish Lake area (USGS 1984). Carter Mountain, in the northeast quadrant of the Pine Creek drainage reaches a height of approximately 3,008 ft. The largest portion of woodland is in the lakes area and lies at a consistent terrace of 750 ft (USGS 1984).

The soils in the Okanogan Basin are formed from glacial activity 10,000 years ago with the Cordilleran ice sheet. The bedrock is primarily granitic andesitic, metamorphosed sedimentary and basaltic rocks. As the glacier melted, it deposited a series of silt, sand, gravel and cobbles (NWPPC 2001). Some tributaries have taken the glacial deposits and deposited them as sand and gravel terraces and plains (MWG et al. 1995). The Johnson Creek sub-watershed is an example of the terraces formed during these processes. Valley soils are comprised of course and well drained glacial soils, which contributes to the leaching into the Okanogan from agricultural lands (USDA 1995). The valley and terrace soils are moderately deep and deep loam, silt loam and sandy loam from glacial outwash, alluvium and lake sediments (NWPPC 2001). Higher elevations are made up of volcanic ash that hold moisture but erode very easily (USDA 1995).

Fluvial Geomorphology & In-Channel Habitat

No formal studies were reviewed that quantified or otherwise characterized fluvial geomorphology or in-channel habitat conditions in the Johnson Creek sub-watershed. The Okanogan Valley and Johnson Creek tributary is broad and flat, except for the lower most 2 - 2 ¹/₂ miles where the gradient is very high (NWPPC 2001). This creates large meanders in the river and a mosaic of grass-forbs, shrub thickets, and deciduous trees where agriculture crops and pasturelands have not altered the riparian habitat (NWPPC 2001).

Vegetation and Riparian Condition

No formal studies were reviewed that quantified or otherwise characterized riparian condition in the Johnson Creek sub-watershed. Common native vegetation communities potentially found along the stream-side in the Johnson Creek valley are black cottonwood, quaking aspen, willow spp., maple, cedar and birch (NWPPC 2001). The construction of highways and roads following the river has permanently destroyed stream-side vegetation and created more erosion and runoff.

As a result of these extreme climate shifts, the vegetation found within the valley is made up of a sage and grass community and a minor contribution of bitterbrush (Ecology 1995, NWPPC

2001). However, most of the native shrub-steppe communities have been removed for fruit orchards hay and pastureland (USDA 1995, NWPPC 2001).

Water Quantity/Hydrology

There are 94 surface water right claims within the Johnson Creek/Scotch Creek sub-watershed (Scotch Creek is tributary to Johnson Cr.), and another 91 in the self-contained Pine Creek portion of the sub-watershed. The Johnson Creek/Scotch surface water withdrawal permits amount to a total of 24.5 cfs, or 10,911 acre-ft per year (MWG et al. 1995). In addition to these surface water rights, there are 93 groundwater claims, and 36 permits in the Johnson Creek/Scotch Creek basin. The currently permitted withdrawals would yield 6,766 gallons per minute (15.1 cfs). Thus, there are a total of roughly 40 cfs of surface and ground water potentially removed from Johnson Creek for consumptive use.

No gauges operating on Johnson Creek were identified in the review process for this LFA. Flows at the gaging station closest to Johnson Creek in the mainstem record past flows of 2,907 cfs (2,101,100 ac-ft) at Tonasket. Minimum flows established by Ecology in the Okanogan mainstem near Johnson Creek (Mallott) range from 860 to 3,800 cfs (MWG et al. 1995). Snow melt is the primary source of surface and ground water in the Johnson Creek sub-watershed. Snow melts between May and June when streamflow and groundwater is at its peak (MWG et al. 1995).

Within Johnson Creek, flows have been recently measured by the OCD in monthly monitoring, (May to November 2000) and have ranged from 2.72 to 5.9 cfs in the lower basin near the mouth. In the upper basin, concurrent monitoring measured flows that ranged from 12.8 to 16.6 cfs, averaging 14.4 cfs. The large discrepancy between up-river flows and those near the mouth largely reflect the substantial water withdrawals from this basin.

Water Quality

Historic data on conventional water quality or chemical pollutants in the Chiliwist sub-watershed were not identified. Recent water data have been collected. The main problems associated with the section of the Okanogan, that runs east of the Johnson Creek sub-watershed, is water temperature and sedimentation. Sediment loads flowing from the Similkameen River and other northern reaches increase water temperature and degrade spawning and rearing habitat (MWG et al. 1995). Other sources of sedimentation influx is from irrigation runoff, agricultural activities, overgrazing and logging.

Fisheries Resources in Johnson Creek

All runs of summer/fall chinook, sockeye and summer steelhead occur in the mainstem Okanogan River (**Figure B-9**). No spawning, rearing or migratory activities are known to occur in the Johnson Creek tributary (Okanogan TAG). According to the 1998 study on the Methow and Okanogan Basins, the section of the Okanogan River that is in the vicinity of Johnson Creek contains the third highest density (0.8) of summer chinook redds within the Okanogan (Murdoch and Miller 1999). A total of 21 redds were documented in ground surveys, of the section between the Riverside Bridge and the Tonasket Bridge, completed during the study. There is no documentation of sockeye salmon spawning in this area.

The thermal barriers and irrigation diversions found along the length of the Okanogan adjacent to the Johnson Creek sub-watershed provide migration barriers that may decrease the number of returns. Sedimentation, cover, and high temperatures provide additional constraints to overall

survival and reproduction of the salmon population (MWG et al. 1995). Adult sockeye will not migrate in waters higher than 69-70°F (MWG et al. 1995).

The Johnson Creek sub-watershed has two dams within its network of waterways: Fish Lake Dam and Schallow Lake Dam (NWPPC 2001). Both dams are state-owned. The three main species of concern do not utilize tributaries within Johnson Creek, therefore these dams are not of direct concern.

Habitat Limiting Factors Assessment of the Johnson Sub-watershed

The following table (**Table 5-11**) and text discusses the factors affecting fish distribution in the Johnson Creek Sub-watershed. No reach delineations were considered for this draft of the LFA.

Habitat Pathway and Indicator*	Limiting Habitat Factor Condition
Water Quality	Condition
Dissolved Oxygen	G1
Stream Temperature	G1
Turbidity/Suspended Sediment	G1
pН	F1
Nutrient Loading/Chemical	DG
Contamination	
n Channel Habitat	
Fine Sediment (substrate)	DG
Large Woody Debris	DG
Percent Pool	DG
Habitat Access	
Fish Passage	DG
Stream Flow	
Resembles Natural Hydrograph	Р
Impervious Surface	G2
Stream Corridor	
Riparian Vegetation	DG
Stream Bank Stability	DG
Floodplain Connectivity	DG

Table 5-11: Johnson Creek Limiting Factors Assessment

* Pathway in bold, indicator in plain type

Support for Limiting Habitat Factor Rankings in the Johnson Creek Sub-watershed

Water Quality

Dissolved oxygen—The OCD has measured dissolved oxygen in monthly monitoring from lower Johnson Creek with measurements ranging from 9.07 to 12.02 between May 2000 and January 2001 (T. Neslen, OCD unpublished data, [Okanogan TAG]). Values recorded are at saturation, and within the nominal range to receive a good rating for this habitat indicator. The maximum temperature recorded over this time period, expectedly corresponding with the lowest dissolved oxygen reading, was 17.4 degrees, with an average of 11.6 degrees Celsius. Tubidity recorded during the monthly monitoring by the OCD averaged 3.39 NTUs, and did not exceed 5.26. No data have been collected for suspended sediment concentrations in the watershed to our knowledge, but total dissolved solids have ranged from 44 to 237 mg/L. Collectively, these data support good ratings for all the water quality indicators, except pH, which has received a fair rating because of one measurement recorded above 8.5 during the monthly monitoring of all the parameters.

	okanogan conservation District [OCD])						
Sample	Time	Dissolved	pН	Turbidity	Temperature	TDS	Conductivit
		mg/L	units	NTU	celsius	ppm	uS/cm
5/18/00	931	12.8	8.4	6.5	15.0		
6/12/00	1149	10.3	9.0	8.5	13.6	64.0	129.0
7/10/00	1255	9.8	8.9	3.6	12.1	46.0	94.0
8/10/00	928	9.6	8.9	3.6	18.1	*	*
9/21/00	955	10.5	8.9	4.4	11.8	*	*
10/19/00	831	10.7	8.7	3.9	7.8	*	*
11/30/00	838	12.3	8.3	4.4	3.2	255.0	512.0
12/21/00	845	#	#	#	#	#	#
1/18/01	833	14.0	8.7	2.2	0.7	267.0	537.0
	average	11.2	8.7	4.6	10.3	158.0	318.0
	st. dev.	1.6	0.3	2.0	6.0	119.3	239.1

Preliminary Water Quality Monitoring Data in lower Johnson Creek (courtesy of Okanogan Conservation District [OCD])

*meter not working; # creek frozen

In-Channel Habitat

In the lower, accessible reach of Johnson Creek the substrate has been reported as armored cobble with no sand or gravels (T. Neslen OCD, [Okanogan TAG]). This armoring may be reflective of the elevated pH in the system, a possible result of concentrated magnesium and carbonate salts from evaporation. The average depth observed by the OCD during the nine months of monitoring in 2000 (when not frozen) was only .270 feet. This depth would restrict the use of the habitat to juvenile salmonids. A quantitative habitat assessment is clearly needed in both upper and lower reaches of Johnson Creek, hence, all the habitat indicators reflective of the quality of in-channel habitat considered by the Okanogan TAG were listed as data gaps.

Habitat Access

The first barrier to Johnson Creek occurs at the culvert underlying highway 97, restricting fish use to the lowermost ¹/₂ mile of stream. A canyon reach leading along Conconully Rd may naturally restrict access upstream based on the gradient, although this has not been determined.

Stream Corridor

Habitat indicators of stream corridor integrity could not be rated due to lack of data. Notwithstanding, floodplain connectivity is compromised in several areas of the drainage.

Tunk Creek Watershed

Sub-watershed Overview

Tunk Creek is a 3rd order tributary of the Okanogan River with a total watershed area of approximately 45,585.7 acres (OWC 2000). The 3.7 mile creek (Table 5-2) enters the Okanogan River approximately 5 miles north of the town of Riverside, draining lands east of the river. The basin is generally oriented on an east-west axis. The watershed consists primarily of forest (40%) and rangeland (59.1%). Resource information regarding this sub-watershed is very limited. (OWC 2000).

Land Use and Ownership

There is rural development adjacent to the stream near the mouth, but no urban areas within the watershed. The main land use within the watershed is range, with areas of agricultural including non-irrigated pasture hay and/or feed lots, irrigated hay and orchards. The small acreage landowners allow livestock uncontrolled direct access to the creek. There are roads adjacent to the stream with steep cut banks.

Tunk Creek is a part of the sub-watershed network that includes Wanacut, Omak and Chewiliken Creeks that have a breakdown of grazing lands. Within this group BLM owns 600 acres, CCT owns 86,766 acres, DNR leased lands include 4,160 acres and DNR permit lands include 7,860 acres (NWPPC 2001).

Part of the Scotch Creek Wildlife Area (total acreage is 15,469) owned by WDFW crosses into the Tunk Creek sub-watershed. The Scotch Creek Wildlife Area is a refuge for sharp-tailed grouse. It was converted to cattle grounds and then restored with shrub planting, weed control and grassland seedings (NWPPC 2001). The southeastern portion of the sub-watershed lies within the Okanogan National Forest, approximately 18 mi². Half of the area to the southeast is within the Confederated Tribes of the Colville Reservation (USGS 1984).

Topography, Geology & Soils

The Tunk Creek sub-watershed rises gradually from the Okanogan River through a series of broad plateaus, with the headwaters of the main channel initially identifiable at approximately 4,900 ft. The streambed and riparian zones are consistent with much of the remainder of the Okanogan watershed's geology, in their composition of quaternary alluvium and terraced deposits that will include till, sand, silt and other glacially deposited substrates. Outside of the stream corridor, but within the sub-watershed area the geology is represented by undifferentiated igneous and metamorphic rocks (USGS Okanogan 1:250,000, 1954). The area is dominated by glacially deposited soils that do not tolerate much disturbance. This characteristic increases the potential risk to temperature, fecal coliform, and dissolved oxygen/nutrients, and a moderate risk to turbidity/sediment. The erosion rate within the Tunk Creek sub-watershed is 0.54 ac-ft/mi².

Fluvial Geomorphology & In-Channel Habitat

The mainstem stream channel of Tunk Creek is approximately 3.7 miles long (Table 5.2). Stream habitat in the lower mile consists of gravel/cobble substrate with adequate riparian vegetation. Impacts to stream habitat in the lower mile include a ford crossing at approximately 0.2 mile and 4-5 houses located within 15 feet of the OHWM, which pose risk to temperature, dissolved oxygen/nutrients, and turbidity/sediment as well as a limited risk to fecal coliform, instream flows, and toxicity (e.g., from land application of pesticides, etc).

Vegetation and Riparian Condition

Streams in the forested areas of the watershed are receiving good shade. Log skidding has been done in the intermittent streambeds in the sub-watershed. This causes some limited risk to temperature, dissolved oxygen/nutrients, and turbidity/sediment. Within the lower mile of Tunk Creek the riparian vegetation in somewhat intact and consists mostly of a cottonwood/willow overstory. Upstream, the riparian vegetation is interrupted by agricultural development and range use.

Water Quantity/Hydrology

There are 22 permitted surface withdrawals for a total of 1.6 cfs (168 ac-ft/yr). Additionally, there are another 112 surface water claims that could amount to an additional 8.8 cfs (1,554 ac-ft/yr) (MWG et al. 1995). Groundwater withdrawals permitted amount to an additional potential loss of water from the sub-watershed of 74 gpm; groundwater claims amount to a potential withdrawal of 1,728 gpm.

Local knowledge indicates that the lower half to 3/4 mile of the creek is dry throughout the late spring, summer and fall months. In general water is supplied through snowmelt and precipitation. Low flows occur from late summer through winter (NWPPC 2001).

Recent monitoring by the OCD in the upper Tunk Creek watershed measured flows ranging from 0.83 to 17.7 cfs, with peaks occurring in May or June (T. Neslen OCD, [Okanogan TAG]). Baseflows in the summer and fall appear to fluctuate between around 1 to 1.5 cfs. Data from the confluence area were not available.

Water Quality

Dissolved oxygen measurements in upper Tunk Creek between May 2000 and January 2001 ranged from 9.4 to 13.2 (T Neslen OCD, [Okanogan TAG]). Temperature values recorded in upper Tunk Creek reached a maximum of 15.9 degrees celsius in the July monitoring by the OCD. The pH values averaged 8.56, but did not exceed 9.0 in the upper basin. Turbidity recorded over these time points was maximal in May (9.8 NTU), and averaged just below 5 NTUs. These turbidity data, slightly above background, suggest there may be a potential problem with sediment recruitment into the system.

As depicted below, water quality in lower Tunk Creek reflects a slight decline in quality over that measured in the upper part of the basin. In particular, there was a slight increase in pH and turbidity.

Nutrient indicators of ammonia, nitrates and phosphates, as well as metal elements have been analyzed in the upper and lower Tunk Creek basin as well. None of the measurements recorded by the OCD exceeded the 'good' thresholds adopted by the TAG or other aquatic risk thresholds.

	,					
Sample	Dissolved	pН	Turbidity	Temp.	TDS	Conductivity
Date	Oxygen					
			Lower	Funk Creek	•	•
	mg/L	units	NTU	celsius	ppm	uS/cm
5/9/00	11.2	7.8	14.8	7.8	nr	nr
6/13/00	9.2	8.6	13.0	10.4	27.0	54.0
7/11/00	10.3	8.8	0.5	14.7	33.0	66.0
8/15/00	9.7	8.6	0.4	11.6	*	*
9/12/00	9.3	8.9	2.7	11.4	*	*
10/10/00	10.5	8.8	0.5	7.8	*	*
11/14/00	13.8	8.5	0.8	0.6	*	*
12/12/00	16.7	9.0	0.8	0.2	238.0	469.0
1/9/01	16.5	8.3	0.9	0.5	213.0	424.0
Average->	11.7	8.6	3.8	7.2	127.8	
St Dev->	3.0	0.4	5.8	5.5	113.4	224.0

Preliminary Water Quality Data from Lower Tunk Creek 2000/01 (OCD unpublished data)

Fisheries Resources in Tunk Creek

Two of the main species of concern (chinook and sockeye) do not migrate or spawn in Tunk Creek. Steelhead have a current distribution to McAllister Falls, approximately ³/₄ to 1 mile from the Okanogan confluence. The use of lower mile Tunk Creek below the falls is predicated upon adequate flows, thus, it is generally accessible to anadromous salmonids during the winter and spring months.

Resident rainbow trout occupy habitats upstream of the anadromous zone.

Habitat Limiting Factors Assessment of the Tunk Creek Sub-watershed

Table 5-12 following table discusses factors affecting salmonid fish distribution in the Tunk Creek sub-watershed (**Table 5-12**).

Habitat Pathway and Indicator	Limiting Habitat Factor Ranking	Limiting Habitat Factor Ranking	
	Reach 1—Mouth to McAllister Falls	Reach 2—Upstream of McAllister Falls	
Water Quality			
Dissolved Oxygen	G1	G1	
Stream Temperature	G1	G1	
Turbidity/Suspended Sediment	G1	G1	
pH	F1	F1	
Nutrient Loading/Chemical	G1	G1	
Contamination			
In Channel Habitat			
Fine Sediment (substrate)	DG	DG	
Large Woody Debris	DG	DG	
Percent Pool	DG	DG	
Habitat Access			
Fish Passage	G1	DG	
Stream Flow			
Resembles Natural Hydrograph	F2	F2	
Impervious Surface	G1	G1	
Stream Corridor			
Riparian Vegetation	DG	DG	
Stream Bank Stability	DG	DG	
Floodplain Connectivity	DG	DG	

Table 5-12: Tunk Creek Limiting Factors Assessment

Aeneas Creek Watershed Description

Sub-watershed Overview

Aeneas Creek, enters the Okanogan River along the west side at approximately river mile 50. The subwatershed comprises approximately 0.41% percent of the total Okanogan watershed (OWC 2000). Aeneas Creek flows in a southeasterly direction from the slopes of Aeneas Mountain (3,106.5 m el.) to the Okanogan River (approx. 900 ft el.). It has a total stream length of, and flows through an area referred to as the "lime belt region." The affect of this lime belt land-type region is evident by the accumulation of calcium carbonate along the streambed channel.

Land Use and Ownership

The majority of the 6,890 acre Aeneas Creek watershed is privately owned. Land use consists primarily of rural development, farming and ranching. Land type consists primarily of rangeland (66%) forested lands (26.5%), and cropland (6.6%) (OWC 2000). Most crops grown are hay or alfalfa. Ranching occurs at a relatively small scale, with approximately 400 head grazing within the watershed annually (L. Andrews, personal communication, 2001). Of the 400 head, approximately 300 cattle graze the lower elevation range during the spring (mid-April to June). The remaining 100 head graze within the basin throughout the year.

Topography, Geology and Soils

According to soils mapping conducted by the USDA NRCS, soils in the Aeneas Cr. sub-watershed are principally of the WA 346 type. (SCS 1980).

Fluvial Geomorphology and In-Channel Habitat

Based upon reconnaissance-level surveys conducted by the Colville Confederated Tribes in May of 1998, the channel condition from the Pine Creek road bridge (~ RM 2) downstream to the confluence is undisturbed except for isolated areas where the stream has been crossed by roads, driveways or routed through irrigation pipes.

Vegetation and Riparian Conditions

The majority of the vegetation type in the Aeneas sub-watershed is shrub-steppe. In the upper basin, a low density forest of Ponderosa pine is present.

Streambank erosion was evident in two major areas during summer 1998 surveys conducted by the Colville Confederated Tribes. The first section, approximately 1/8 of a mile of streambank, is located between the natural falls (~ RM 0.75) and Pine Creek road. The second section, a total length of approximately two river miles, is located from the Pine Creek Road crossing to near Lemanaski Lake. The cause of this erosion appears to be from overgrazing by livestock as depicted by the absence of riparian vegetation, hoof shear, and streambank collapse. Bank erosion between the falls and Pine Creek Road is currently being addressed through a fencing project funded in part by the local Regional Fisheries Enhancement Group. In areas not otherwise impacted, riparian habitat appears to be functionally representative of undisturbed conditions for the ecoregion.

Water Quantity/Hydrology

Aeneas Creek is primarily spring fed, thus there is little seasonal variation in the hydrograph relative to other Okanogan tributaries influenced primarily by snowmelt runoff. A weathered section of 100 ft of corrugated metal pipe currently conveys water in the lower one half mile of the creek, downstream of the highway 7 bridge (Tonasket:Oroville westside rd), but returns it to the creek. The presence of this pipe suggests that flows from Aeneas Creek were formerly used for irrigation.

Water Quality

Water temperature data indicates Aeneas Creek is contrastingly cooler compared to water temperature in the Okanogan River. In a long term water temperature monitoring study conducted by the Colville Confederated Tribes between 3/16/00 and 2/20/01 the maximum temperature recorded at the mouth of Aeneas Creek was 65.7 °F (18.7 °C) which compared to a maximum of 83 °F, (28 °C) recorded over the same period in the Okanogan River in Malott 23.31 (C. Fisher, unpublished data).

Turbidity increases rapidly in the creek following summer thunderstorms and rapid snow melt. The causes of this turbidity appear to be related to bank erosion of riparian habitat upstream of the falls, in the locations previously discussed .

There is no evidence to suggest that other conventional water quality parameters (e.g., dissolved oxygen, pH) are compromised from their natural conditions by land management in the sub-watershed.

No data were available to evaluate whether nutrient contributions or contaminants effect water or sediment quality in the sub-watershed to a degree that would affect the use of the sub-watershed by salmonids.

Anadromous Salmonid Fisheries Resources in Aeneas Creek Historical and existing stocks

Information regarding the aquatic resources of Aeneas Creek is limited. Most information that does exist originates from reconnaissance surveys and anecdotal observations (L. Hoffman 1998, C. Fisher 1998). A private trout farm once operated in the system upstream of the falls approximately 1 mile above the Pine Creek Rd bridge crossing (~ RM 3). It is not known whether this was simply a grow-out facility, or a complete hatchery operation.

Long-time resident of the basin, Jerry Jones, has stated cutthroat trout inhabit Aeneas creek upstream of the falls and a variety of size classes have been caught. Rainbow and eastern brook trout have been observed downstream of the falls (J. Jones, personal communication to C. Fisher, 4/6/01) (**Figure B-12**). The observation of multiple size classes suggests that natural reproduction is occurring within the basin. Evidence of cutthroat trout spawning in the basin supports the conclusion that water quality is adequate to support the spawning of other salmonid species, if other habitat factors (e.g., substrate size, etc.) were suitable. Recent concern has been raised by local landowners, however, that the cutthroat trout population is not as abundant as formerly thought.

Fish Passage and Habitat

Two adult fish passage barriers were identified during joint surveys conducted by the Colville Confederated Tribes and Washington Department of Fish Wildlife during the summer of 1998 (Okanogan TAG). The lowermost barrier is a concrete box culvert located approximately ¹/₄ mile upstream from the mouth. In 1998 this culvert was reviewed for possible replacement for fish passage by the WDFW hydraulic engineers participating in the summer survey (B. Heiner and L. Hoffman); at that time costs were considered prohibitive with respect to the potential habitat gained from the culvert replacement action. The second barrier is a natural falls located approximately 3/4 mile from the mouth. Although these barriers to adult fish passage also constitute barriers to juvenile fish, additional potential velocity and jump-height passage barriers to juvenile salmonids have not been addressed in the watershed.

During the spring of 2000 a picket-weir trap was installed near the mouth of Aeneas Creek and monitored for approximately 8 weeks to address the potential use of the this sub-watershed by

steelhead trout. During the sampling period no adult steelhead were collected. During 1999 adult sockeye salmon were implanted with radio-tags to determine travel time through the Okanogan River. Adult sockeye were located for short periods of time at the confluence of Aeneas Creek during the migration from the mouth of the Okanogan River to Lake Osoyoos (S. Bickford 2000). It was presumed adult sockeye salmon were utilizing the confluence area of Aeneas Creek as a thermal refuge during their migration up the Okanogan River.

Habitat Limiting Factors Assessment of the Aeneas Sub-watershed

The assessment of limiting factors in Aeneas Creek considered three distinct reaches as described below (**Table 5-14**). Habitat conditions were rated in each reach in accordance with the criteria developed by the TAG, as previously described.

Attribute Considered	0-0.25 miles	0.25-0.75 miles
	Reach 1	Reach 2
Water Quality		
Dissolved Oxygen	G1	G1
Stream Temperature	G1	G1
Turbidity/Suspended Sediment	G2	G2
Nutrient Loading	G2	G2
In Channel Habitat		
Fine Sediment (substrate)	F2	F2
Large Woody Debris	DG	DG
Percent Pool	DG	DG
Habitat Access		
Fish Passage	P1	DG
<u>Streamflow</u>		
Resembles Natural Hydrograph	G2	G2
Summer Flow Level	G2	G2
Winter Base Flow	G2	G2
Impervious Surface	G2	G2
<u>Stream Corridor</u>		
Riparian Vegetation	G2	F2
Streambank Stability	G2	F2
Floodplain Connectivity	G2	G2

 Table 5-14. Aeneas Creek Limiting Factors Assessment

Support for Limiting Habitat Factor Rankings in the Aeneas Creek Sub-watershed

Reach 1: RM 0 to ~0.25-mouth to impassable box culvert barrier underlying Tonasket-Oroville Rd $$\rm Rd$$

Water Quality

Water quality in this reach is affected by upstream influences nearly completely. Backwater from the Okanogan river could affect approximately the lowermost 100 ft of water quality in the creek. Turbidity and suspended sediment loads from upstream are visible for extended durations. Other conventional water quality parameters are presumed to be functioning properly because of the predominant groundwater influence in the system and naturally high alkalinity.

In-Channel Habitat

There are no quantitative data available to address substrate sedimentation, large woody debris, or percent pools in this reach.

Okanogan/Similkameen Subbasin Summary 162

Habitat Access

Within the reach access is not restricted until the upstream end of the reach (the impassable box culvert).

Flow

There is no evidence of hydrograph change in the sub-watershed with respect to either changes in peak flows, base flows or flow timing.

Channel Condition

Channel conditions in this reach are generally stable, with no evidence of streambank erosion or loss of floodplain connectivity. Riparian conditions exhibit a managed herb layer (grasses) which may be either mowed or otherwise controlled by herbicide application (plate 1). The shrub layer in this reach is sparse and the tree layer is effectively absent, thus, wood recruitment from riparian vegetation is not currently occurring in this reach.

Reach 2: ~ RM 0.25 to 0.75—impassable box culvert to natural falls

Water Quality

Water quality in this reach is affected by upstream influences, however, bank erosion within the reach is contributing sediments, causing visible turbidity. Although no quantitative data exist, other water quality parameters are thought to be functioning properly.

In-Channel Habitat

No data, data gap.

Habitat Access

There are no habitat access problems for adult fish within this reach. Passage for juvenile salmonids within this reach is not known.

Flow

There is no evidence of an altered hydrograph in this reach of the system. Groundwater dominance of flows buffers against impacts from altered channel conditions.

Channel Condition

Riparian conditions are generally intact except where overgrazing has impacted the stream corridor. Floodplain connectivity is not affected by channelization.

Reach 3: RM 0.75 to Source—all habitat upstream of the natural falls

Water Quality

Turbidity is generated in this reach by an extensive corridor of eroding banks. Other conventional water quality parameters are assumed to be functioning properly, but no formal data exist with which to compare to the criteria established by the TAG. Water quality in this reach is affected by overgrazing along riparian corridors, however, bank erosion within the reach is contributing sediments, causing visible turbidity. Although no quantitative data exist, excessive nutrients and contaminants in this sub-watershed are not known to be a problem.

In-Channel Habitat

No data, data gap.

Habitat Access

No data, data gap.

Flow No data, data gap.

Channel Condition

No data, data gap.

Reach 1

Aeneas Creek is a small stream, approximately a bankful width of 10 feet at the mouth. Two active beaver dams exist within Reach 1 downstream of the highway 7 bridge. It appears that one beaver pond was formerly utilized as a reservoir to withdrawal water for irrigation. Currently the pipe routes about 20% of the flow downstream approximately 50 feet where it spills back into the channel.

State highway 7 crosses Aeneas Creek at approximately 0.5 mile. Between the mouth and highway 7, an apple orchard exists along north side of the creek. Agriculture, along with the beaver activity, has likely influenced the limited riparian vegetation along both sides of Aeneas Creek downstream of the highway 7 bridge. At the downstream side of the highway 7 crossing there are rubble and spoils in the stream channel, likely from the concrete culvert installation. These spoils, along with the change in streambed elevation has created a barrier to upstream fish passage. Observation of the concrete boxed culvert indicates the culvert would likely be a velocity barrier to fish passage as well.

Between the highway bridge and the falls (approximately 0.5 mile), the riparian vegetation is mature and in areas virtually impenetrable. Human-induced effects in this area appear to be negligible.

Reach 2

Within Reach 2 the area is interspersed with private residences. Along this reach there are areas of concentrated livestock use. The livestock effects upon Aeneas Creek include hoof shear, bank collapse and loss of riparian vegetation. Along one reach there is a livestock feeding area. This reach is approximately 300 feet long and is basically absent of all riparian vegetation. area where there is a limestone area. There are also isolated areas where farming (hay, alfalfa, etc.) are being conducted and reducing bank stability and riparian vegetation.

Several springs contribute to the flow of Aeneas Creek. These springs provide a constant cold-water source to Aeneas Creek, so much so that formerly there was a fish hatchery located near the headwaters of Aeneas Creek, which raised trout.

Whitestone Creek Watershed Description

Sub-watershed Overview

The Whitestone Creek Watershed encompasses six main bodies of water (from north to south): Blue Lake, Wanacut Lake, Spectacle Lake, Whitestone Creek, Whitestone Lake, and Stevens Lake (DOI 1976). The Okanogan River flows along its eastern border, running 33.1 km along the subbasin from Oroville to Tonasket (Murdoch and Miller 1999). The Whitestone Creek subbasin is an island surrounded by larger subbasins of the Okanogan watershed. To the west is the Similkameen River subbasin, to the southwest is the Aeneas Creek, to the southeast is the Siwash Creek, to the east is the Antoine Creek and to the northeast is the Tonasket Creek.

Land Use and Ownership

Agriculture and livestock production are the two main economic sources to Okanogan County and Whitestone Creek subbasin specifically (LMEA 1997). Native vegetation is cleared most often in the flood plains and lower terraces for apple (*Malus*) orchards (DOI 1976). The main crop produced is apple, and other fruit trees such as cherry and pear, and crops such as wheat, barley, oats, corn and hay are additional agricultural uses of the land (LMEA 1997).

Topography, Geology & Soils

The rock types found within the glacial valley are Permian to Triassic metasediments, which include argillite, quartzite, and marble (DOI 1976). Soils originate from alluvial and glacial outwash deposits with a high percentage of silt and sand (DOI 1976). The terraced land surrounding the Okanogan River are coarse deposits of glacial outwash with a consistency of cobble and gravel (DOI 1976). The texture of the terraces range from loamy fine sand, fine sandy loam and very fine sandy loam (DOI 1976).

Fluvial Geomorphology & In-Channel Habitat

The subbasin valley is made up of glacially-formed terraces and narrow flood plains, surrounded by mountainous terrain (DOI 1976). The land lining the Okanogan River to the east is a flood plain and gently rises to sloping and undulating terraces (DOI 1976). Elevation from the Okanogan River in the east to the surrounding mountains gradually increases to 1000 ft. The majority of the agricultural lands in this region range from 50 to 600 ft above the river (DOI 1976).

Vegetation and Riparian Condition

Whitestone Creek subbasin is positioned in the rain shadow of the Cascade Mountains. The resulting low annual precipitation (12.3 inches) (<u>www.worldclimate.com</u>, 5/4/01) creates a semiarid region, evident by its transition between shrub-steppe and pine forest (DOI,1976). Along the riverbanks and the flood plain the dominant tree species is black cottonwood (*Populus trichocarpa*). The lowest elevation above the river, on the eastside of the subbasin, is a big sagebrush (*Artemisia tridentata*)-blue bunch wheatgrass (*Agropyron spicatum*) vegetation association (DOI 1976). Above this shrub network at higher elevations to the west are the cutleaf sagebrush (*Artemisia tripartita*)-Idaho fescue (*Festuca idahoensis*) zone (DOI 1976). Above the sagebrush-fescue association is the lower timberline of ponderosa pine (*Pinus ponderosa*).

Water Quantity/Hydrology

Water supply

Whitestone Creek Subbasin rests in a valley surrounded by mountainous reaches. The majority of the water that flows from the higher elevations to form the lake and river system of the subbasin is from snowmelt (WDFW 1990). Annual precipitation to this area does not contribute much water (12.3 inches) (www.worldclimate.com, 5/4/01).

Streamflow

The Okanogan River flows along the eastern edge of the Whitestone Creek subbasin. Although no information is available for Whitestone Creek flows specifically, the range of flow from the Okanogan north to south of the subbasin is representative of the smaller tributary trends. The Okanogan River at Oroville (located at the north end of Whitestone Creek subbasin) has a flow of 129 ft³/s, and at the lower reach of the Whitestone Creek subbasin near Tonasket, the Okanogan River flows are 887 ft³/s (http://wa.water.usgs.gov, 4/23/01).

Water Quality

The general trend of lower alkalinity values in the northeastern portions of Washington hold for both Spectacle and Whitestone Lakes. In a 1997 report by Ecology, Spectacle Lake supported an alkalinity range of 77-70 mg/l CaCO3 and Whitestone Lake a slightly higher range of 110-114 mg/l CaCO3 (Ecology 1997).

Aquatic weeds in the Spectacle and Whitestone Lake areas are of interest. In 1997 Whitestone Lake was found to house the noxious weed species *Myriophyllum spicatum* (Eurasian milfoil) and *Lythrum salicaria* (purple loosestrife); Spectacle Lake did not support any listed noxious plants of concern (Ecology 1997). The plant species found to be regularly supported in both Spectacle and Whitestone Lake was *Zannichellia palustris*, an aquatic plant with mid-range alkalinity level tolerance.

The majority of the sediment load into the Whitestone Creek subbasin originate from surface erosion in the Similkameen River two miles to the north (WDFW 1990). High sediment loads and a low gradient channel accumulate sediments which causes thermal heating (WDFW 1990). Thermal barriers form in areas of accumulated sediment blocking anadromous fish runs. For example, chinook salmon require temperatures below 66° F before they migrate from the Columbia into the Okanogan in September (DOI 1976). Sockeye salmon migrate between July and August and cannot travel through waters in excess of 66° F to 68° F (DOI 1976). A high influx of sediments also degrade spawning habitat (WDFW 1990).

Anadromous Salmonid Fisheries Resources in Whitestone Creek

This northern section of the Okanogan River and related tributaries is part of the river structure that represents an upper terminus of anadromous salmonids in the Columbia River Basin (WDFW 1990) (**Figure B-13**). These water systems of the Okanogan support anadromous species such as summer chinook (Oncorhynchus tshawytscha), sockeye (Oncorhynchus nerka), and Coho salmon (Oncorhynchus kisutch), and steelhead trout (Salmo gairdneri) (DOI 1976).

Summer chinook spawn from about early October to early November in the Okanogan and related tributaries. The 33.1 km of the Okanogan River that runs along the Whitestone Creek subbasin's eastern border supported the highest density of summer chinook redds throughout the Okanogan River in 1998 (Murdoch and Miller 1999). The ground and aerial survey taken from September to November counted a total of 29 redds, 33% of the total found that year (Murdoch and Miller 1999). The 1998 study estimated that, based on a 3.6 fish/redd ratio, 317 Redds expanded through tributary escapements. Compared to the total of 88 Redds found in the Okanogan, the tributaries potentially play a more dominant role in summer chinook spawning than the Okanogan itself.

The main run of the Okanogan River through the Whitestone Creek Subbasin is the majority of the chinook, sockeye and steelhead migration through the region (**Figure B-13**). Steelhead are shown to branch off into the Whitestone Creek at the main tributary to the Okanogan River, but no other documented records show a further extent for either chinook or sockeye **Figure B-13**).

Habitat Limiting Factors Analysis of the Whitestone Creek Sub-watershed

The following information addresses the factors affecting fish distribution in the Whitestone Creek sub-watershed (**Table 5-15**).

Table 5-15: Whitestone Creek Limiting Factors Assessment

Attribute Considered	Anadromous potential, Water
	Quality concerns

Water Quality	
Dissolved Oxygen	
Stream Temperature	
Turbidity/Suspended Sediment	
Nutrient Loading	
In Channel Habitat	
Fine Sediment (substrate)	
Large Woody Debris	
Percent Pool	
< 2%	
2-5%	
>5%	
Habitat Access	
Fish Passage	
Stream Flow	
Resembles Natural Hydrograph	
Impervious Surface	
Stream Corridor	
Riparian Vegetation	
Stream Bank Stability	
Floodplain Connectivity	

Support for Limiting Habitat Factor Rankings in the Whitestone Creek Sub-watershed

Bonaparte Creek Watershed Assessment

Sub-watershed Overview

The Bonaparte Creek watershed encompasses 102,120 acres of mixed ownership. The acres are a mixed ownership as follows: Private ownership, 59,000 acres (58%); Washington Department of Natural Resources, 9000 acres (9%); Bureau of Land Management managed lands, 1000 acres (1%); and the remaining 33,000 acres (32%) are managed by the US Forest Service (USFS). Bonaparte Creek enters the Okanogan River in the city of Tonasket, Washington, at River Mile (RM) 56.7 of the Okanogan River. The watershed at its longest axis is approximately 20 miles long; its widest point is approximately 17 miles wide.

Land Use and Ownership

Private lands adjacent to Bonaparte Creek are used primarily as rangelands, home sites, or for agriculture (hay fields). Primary use of USFS, DNR and BLM lands are timber production and/or livestock allotments.

State Highway 20 runs parallel to Bonaparte Creek for approximately 15 miles, and County Road 4953 runs parallel to the creek for almost 6 miles. There are many more roads adjacent to streams in this watershed.

Topography, Geology & Soils

Tonasket, Antoine, Siwash and Bonaparte watersheds are all part of the Okanogan sub-continent (Alt and Hyndman 1984). The Columbia River forms the eastern and southern boundaries. The western boundary, the Okanogan River valley, is geologically known as the Okanogan trench. The Okanogan sub-continent extends hundreds of miles north into British Columbia, Canada.

The Okanogan sub-continent was an island about the size of California that crashed into the Kootenay Arc (which was then the western edge of the continent), about 100 million years ago. Following this

"docking" of the sub-continent came the filling of what was then the "coastal area" on the west edge of the Okanogan sub-continent, the Okanogan trench (now the Okanogan Valley) (Alt and Hyndman 1984). The intersection of these two geologic features (the Okanogan sub-continent and the Okanogan trench) appears to be where barriers of waterfalls or high gradient stream channels occur. These barriers preclude upstream migration of anadromous salmonids.

The elevation of the confluence of Bonaparte Creek with the Okanogan River is 880 feet. The highest point in the Bonaparte Creek watershed is Bonaparte Mountain at 7,240 feet. The Bonaparte Watershed is oriented on an east to west axis.

Tectonic uplifting: continental glaciations, and volcanic ash deposition all played major roles in shaping the existing topography and soils characteristics of this watershed.

Continental glaciations have had the greatest impact. Large areas of exposed rock and shallow soils were left as a result of the flow and retreat of the Okanogan and Sanpoil lobes of this cordilleran ice sheet. Bedrock is overlain by Quaternary glacial till outwash and glaciolacustrine sedimentary deposits of varying thickness.

The upper elevation bedrock is tertiary medium to coarse grain grandiorite and granite of the Mt. Bonaparte pluton.

The lower elevations are underlain with pre-tertiary banded gneiss and schist of the Tonasket gneiss. Both rock types are included in a metamorphosed and structural uplift called the Okanogan gneiss dome (USFS 1998 and 1999).

Fluvial Geomorphology & In-Channel Habitat

Due to channel alterations, more water is transported during spring runoff and storm events than before. By increasing the force of the stream, affects to channel morphology and channel stability have occurred. As mentioned before, this has had the great impact to water quality. Large amounts of sandy sediment are transported to the lower reaches of Bonaparte Creek and into the Okanogan River from the channel erosion occurring between river miles 5.1 to river mile 10.8.

Riparian Vegetation and Riparian Condition

Streamside vegetation has been altered greatly in the reaches where land uses are agricultural, and pastureland in the upper portion. Home sites, and commercial uses in the Tonasket area have altered the lowest reach.

In-channel large woody debris appears to be lacking in much of Bonaparte Creek. Non-forested habitat types, rock and shrub steppe, occur frequently along Bonaparte Creek. It is unlikely large woody debris recruitment would occur from those sites.

Water Quantity/Hydrology

The following is from the Tonasket Watershed Assessment (USFS 1998) hydrology section and applies to Bonaparte Creek watershed: Tonasket Creek watershed is characterized by high spring runoff due to melting snowpack that accumulates in late fall and the winter months. Summer and fall runoff is low, fed by the release of stored water from riparian areas in floodplains, seeps, and springs at the headwater tributary streams.

Stream flow timing has changed through channel alterations in headwater tributary streams and on Bonaparte Creek. These alterations have cut the channels deeper resulting in reduced ground water recharge.

The road network has influenced the timing of run-off. Several roads intercept ground water and reroutes the water overland through ditches. This interception reduces the amount of late season flow by routing water from storm and melt water directly to stream channels. Using the USFS existing road layer, seventy-eight miles of road (20% of roads in watershed) were found to be within 100 meters of the one hundred, ninety miles of streams. Surface water also reaches these road drainage ways and leaves more quickly than if it were to recharge ground water storage areas.

Altered floodplains exceed 300 acres. These areas could hold more water than at present, and stored it for later release.

Irrigation withdrawals from the creek are made from Bonaparte Creek and its tributaries. Uses of water from withdrawals are irrigation of hayfields, stock watering and household water. Five documented water withdrawals were found from two sources. permit is for The Bonaparte Water Users Association has water right to 1080 acre-feet of water from Bonaparte Lake. (An unpublished memorandum, USFS 1967) Four other withdrawals from Bonaparte Creek are documented on the Washington State Department of Ecology's Water Rights Tracking web page http://www.ecy.wa.gov/programs/wr/info/wrats/Wria-ok.htm.

Water Quality

Due to channel alterations more surface water flows downstream during spring runoff and storm events. This increase in stream energy erodes areas where bank stability is poor, and degrades the water quality by increasing the amount of fine sediment.

Functioning depositional areas exist on Bonaparte Creek to allow these fine sediments to fall out and deposit on the streams banks and channel bottom. The "new" soil is then held in place by opportunistic plants. Identified functional depositional areas are approximately at river mile 10.8, 12.9, both near the confluence of Peony and Bonaparte Creek. In Upper Bonaparte Sub-watershed functioning depositional areas exist on Bonaparte Creek approximately at river mile 20.0, downstream from intersection of Bonaparte Lake road and Hwy. #20, river mile 23.0, confluence with Lightning Creek, river mile 24.5, non-channeled portion of Bonaparte Meadows. Peony Creek has two depositional areas. Both are located near Aeneas Valley road crossing (**Figure 5-1**).

Figure 5-1. These areas effectively improve water quality by slowing the stream.

Water quality discussion will be limited to the portions downstream of this last depositional area. Water quality is altered down stream of River Mile 10.8. Discussion of water quality will be limited to the reaches between river miles 0.00 and 10.8, focusing on the limiting factors to salmon, steelhead and bull trout production.

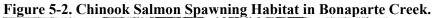
Large amounts of fine sediment are produced downstream of the last functioning depositional area. A large area beginning at river mile 5.1 and continuing for more than a 5 miles upstream is down cutting, and has created tall vertical banks confining the stream to a trench. The most significant example of this is located within a riparian enclosure approximately at river mile 5.1 to 6.3. This area was identified by the OCCD for project work to reduce sediment delivery to the Okanogan River in 1987. Here the stream still has 10-foot tall bare vertical upper banks. Sediment generating from this portion of the stream is carried to anadromous fishes redds below.

Downstream of from the sediment source Bonaparte Creek flows through a narrow canyon. Within the canyon the creek flows over 3 large waterfalls on its way to the Okanogan River. Sufficient mixing occurs in this area to replenish oxygen content in the water for fisheries below.

Water Quality is altered again in the lowest reach of Bonaparte Creek. Here urban impacts of street and parking lot runoff, combined with septic leach fields and apple shed effluents alter the water quality.

Bonaparte Creek is not on the Washington State List of Threatened and Imperiled Waterbodies (the 303d list) (M. Linden, personal communication, 2001).

Anadromous Salmonid Fisheries Resources of Bonaparte Creek


Anadromous fisheries resources are restricted to the lower 1.0 mile of the Bonaparte Creek subwatershed due to an impassible waterfall (**Figure B-14**). By estimate less than 100 square meters of suitable spawning habitat occurs in Bonaparte Creek. A large area, 200 square meters, with suitable spawning substrate is 300 meters downstream in the Okanogan River.

Steelhead

No data is available about the use of Bonaparte Creek for rearing or spawning of Upper Columbia River Summer Steelhead. It is assumed that passage of adults is not restricted up to river mile 1.0, at the first falls.

Chinook Salmon

Summer/fall chinook salmon are known to use the mainstem Okanogan River as well as the Similkameen River to Enloe Falls (**Figure 5-2**). . The mainstem Okanogan River is used for migration northward to Canadian waters. Most of the known summer/fall chinook spawning areas are in the Similkameen River. It is unlikely that chinook salmon use Bonaparte Creek, as flows in the fall are less than 5 cubic feet per second (cfs), but spawning has occurred in the mainstem Okanogan River below Bonaparte Creek. Note about the spawning below the Bonaparte creek portion talk to Linda Hoffman.

Adult spring chinook salmon (Oncorhynchus tshawytscha) in the Upper Columbia Basin are not currently known to use the Okanogan River. The temperature regime at the time spring chinook salmon spawn in the mainstem Okanogan River is too high for successful spawning and rearing. Water temperatures are elevated due to irrigation water withdrawals (K. Williams and J. Spotts, personal communication). In their Endangered Status of One Chinook Salmon ESU Final Rule (U.S. Federal Register, 1999), the National Marine Fisheries Service excluded the Okanogan River from their Endangered species listing for the Upper Columbia Evolutionarily Significant Unit (ESU) of spring chinook salmon. The Okanogan River was excluded from the listing because spring chinook adults are collected as they migrate upstream at Wells Dam on the Columbia River, approximately 20 miles downstream of the confluence of the Okanogan River. The adult salmon are transported to the Winthrop National Hatchery in Winthrop, Washington, and are spawned there. The eggs and resulting fry are raised at the hatchery and later released into the Methow River.

Sockeye salmon

Sockeye salmon are known to use the mainstem Okanogan River as a migration pathway to their spawning areas in Lake Osoyoos and the upstream reaches of the Canadian Okanogan River. Sockeye salmon are not known to use Bonaparte Creek.

Bull trout

There are no data or anecdotal information indicating bull trout ever were, or that bull trout currently are, in the Bonaparte Creek watershed. Data that does exist suggests that bull trout did not exploit the Okanogan River north of the city of Omak, approximately 30 river miles down-river of the confluence of Bonaparte Creek with the Okanogan River (K. Williams, personal communication). The Okanogan River is not suitable habitat for bull trout due to the bull trout requirement of very cold, clean waters with clean gravel/cobble substrate for successful spawning and rearing.

Scott and Crossman (1973) reported that bull trout are not present within the Canadian Okanogan River system.

Habitat Limiting Factors Analysis of the Bonaparte Creek Sub-watershed

Bonaparte Creek was divided into four reporting units (reaches) addressing potential limiting factors to salmonid production in Bonaparte Creek and in the Okanogan River.

Reach 1 (from the mouth of Bonaparte Creek to River Mile 1.0) is considered usable anadromous salmonid habitat provided that there is adequate flow. Reach 1 ends at the base of a waterfall that is a natural passage barrier.

Reach 2 (River Mile 1.0 to RM 4.8) includes the steep gradient channel. This reach ends at State Highway 20 bridge. The channel gradient is greater than 5% in this reach. This reach is considered a transport reach, but is not considered to be usable habitat for anadromous fish because of the natural barriers.

Reach 3 (River Mile 4.8 to RM 10.8) Water Quality is greatly altered in this reach. This reach is the major source of fine sediment delivered to the downstream fishery.

Reach 4 (River Mile 10.8 to Bonaparte Lake) Water quantity, timing and amount, and water quality, temperature, are important factors to track in this reach.

The following rankings reference habitat criteria accepted by the Okanogan TAG group as most relevant to the production potential of anadromous salmonid fishes in the Okanogan (**Table 5-16**).

Attribute Considered	Anad potential Reach 1	Water Quality Reach 2	Water Quality Reach 3	Water Quality Reach 4
Water Quality	Ittach I	Reach 2	ittach 5	ittach 4
Dissolved Oxygen	G1	G2	D.G.	F1
Stream Temperature	G1	D.G.	D.G.	G1
Turbidity/Suspended Sediment	F1	2.0.	D.G.	G1
Nutrient Loading	?	D.G.	D.G.	?
In Channel Habitat				
Fine Sediment (substrate)	P2	P2	P2	D.G.
Large Woody Debris	P2	P2	P2	D.G.
Percent Pool				
< 2%	D.G.		D.G.	D.G.
2-5%	D.G.		D.G.	D.G.
>5%		D.G.		D.G.
<u>Habitat Access</u>				
Fish Passage	F2	N/A	N/A	N/A
Stream Flow				
Resembles Natural Hydrograph	F2	F2	F2	F2
Impervious Surface	P2	F2	G2	F2
<u>Stream Corridor</u>				
Riparian Vegetation	P2	F2	F2	F2
Stream Bank Stability	F2	F2	P1	G2
Floodplain Connectivity	P2	F2	P2	F2

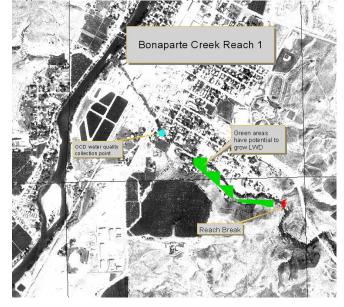
Table 5-16: Bonaparte Creek Limiting Factors Assessment

Support for Limiting Habitat Factor Rankings in the Bonaparte Creek Sub-watershed

Reach 1-

Water Quality

Data was collected in the same time period for dissolved oxygen, temperature, turbidity, and nutrient information.


- 1) Dissolved Oxygen Dissolved oxygen is rated Good based on greater than 95% saturation levels as represented in data collected by the Okanogan Conservation District (OCD) spot checks in 2000.
- 2) Stream Temperature.- Stream temperatures were below 18°C with a maximum temperature of 15.5°C recorded on 7/12/2000.
- Turbidity Turbidity measurements were all less that 100 NTUs. Two ratings greater than 20 NTUs on 5/10/2000 and 6/14/2000 were recorded. The maximum was 35.7 NTUs. This reach is rated fair for turbidity.
- Nutrient Loading Chemical Contamination/Nutrient Loading for dissolved nitrates, nitrites, Fecal coliform, phosphates and calcium carbonate and bicarbonate were recorded by OCD in 2000.

In-Channel Habitat

Fine Sediment - The substrate in the channel on the private lands has not been extensively observed, but while fishing in the Okanogan River at the confluence and while walking up the street along Bonaparte Creek I have noticed large amounts of fine substrate. The creek runs brown with silts and sands regularly in spring and on occasion in the summer and fall.

Large Woody Debris - Sites with potential for providing large woody debris (LWD) are depicted on **Figure 5-3**. Non-forested habitat types, shrub steppe, and/or rock comprise 83% of 50 meter wide


buffers on each side of Bonaparte Creek. Conifer trees of a size to be classified as LWD, 35 feet long with a diameter of 12 inch, are not likely to grow in these non-forested habitat types. Bonaparte Creek is not large enough to transfer LWD downstream to this reach. The potential for large woody debris recruitment is lower naturally in this reach because of this. By the matrix definitions, this reach rates poor for large woody debris.

Figure 5-3. Potential for large conifers

Percent Pools - **Figure 5-4** depicts where the stream channel is of a gradient of 2% or less, where it is 2-5%, and where it is greater than 5%. The total stream length in this Reach is 1.0 mile. The amount of stream channel that has 2% or less gradient is .15 miles (15% of the channel length in this reach). The amount of stream channel that is of 2-5 % gradient is .85 miles (85% of the channel length in this reach). None of stream channel is greater than 5% gradient in this reach. Remote sensing using a 10-meter digital elevation models was used to make these determinations. Where the gradient is 5% or greater, there is less likelihood of large pools than in gradients of 5% or less. The numbers of pools in this reach are few; the actual number of pools in this reach is a Data Gap.

Habitat Access

This criterion rated fair because two culverts are velocity barriers at times, and the channel itself, in areas, is a velocity barrier. Bonaparte Creek has been confined to a channeled trench through the town of Tonasket.

Stream Flow

Resembles Natural Hydrograph - The stream flow in Reach 1 is altered as a result of water withdrawals upstream in most years. The channel alterations upstream have changed timing of runoffs reducing summer thermal refuge at the confluence with the Okanogan River for steelhead smolt and adult sockeye salmon.

Impervious Surfaces - City streets and large parking lots along this reach of Bonaparte Creek create quick runoff and little interaction with the floodplain. This parameter has been rated poor.

Stream Corridor

Riparian Vegetation - The riparian vegetation in this reach rated poor, based on spot visual observations by myself. Shade has been greatly reduced in the lower portion of Reach 1; homes and lawns, and parking lots have replaced the natural vegetation. Trees and other vegetation have also been removed for clearing of the road right-of-ways.

Stream Bank Stability - Little or no channel bank erosion occurs in this reach. Stream bank stability is rated fair because stability of the channel is not maintained by vegetation. The stream bank is maintained in a stable condition with rip-rap through the city of Tonasket.

Floodplain Connectivity - Flood plain connectivity is rated as poor based on spot visual observations. Bonaparte Creek has been channeled through the city of Tonasket.

Reach 2-

Reach 2 affects the water quality downstream in Reach 1, but due to its steep gradient and an impassible barrier at the beginning, Reach 1 is not considered anadromous fish habitat.

Water Quality

No data was collected for dissolved oxygen, temperature, turbidity, and nutrient information in this reach. Best guesses are made on personal observations.

Dissolved Oxygen - Dissolved oxygen (DO) data was not collected, but the average channel gradient is greater than 3% in this reach and there are 3 waterfalls greater than 10 feet high. Sufficient mixing occurs in this reach to saturate DO levels in the water, and a rating of good is my determination.

Stream Temperature - No data for stream temperature is available in this reach. In the Limiting Factors Table DO for Reach 3 is a Data Gap (DG). Temperatures taken downstream rated good. This area is a deep canyon and the stream is shaded much of the day from brush small trees and the canyon walls itself. Stream temperatures taken downstream in Reach 1 and upstream in Reach 4 rated good. It is unlikely that stream temperatures rise above 18°C in this reach and a rating of good is suggested.

Turbidity - No data for turbidity is available in this reach. It is likely in poor condition in years that have normal rainfall conditions, and fair condition in years with lesser rainfall or slow snowmelt.

Nutrient Loading - No data for nutrient loading and chemical contamination information is available in this reach. A few homes and State Highway 20 are the only developments along the stream in this

reach. Runoff from State Highway 20 leads directly to the stream in this reach, and if any spills were to occur on the road the material would enter the water. This parameter is a Data Gap.

In-Channel Habitat

Substrate - Because Reach 2 is not considered to provide anadromous fish habitat, the substrate condition criterion does not apply to spawning substrate. This reach does contain fine sediment and it is transported to the fisheries below. Sanding of State Highway 20 in this reach adds to the amount of fine sediment delivered to the fisheries below.

Large Wood - Using a Plant Association Group cover generated for use by the U.S. Forest Service, determination of suitable habitat for conifer growth was made. In Reach 2 non-forested habitat types, rock mainly, comprise 23% of 50-meter wide buffers on each side of Bonaparte Creek. There is a Data Gap regarding the number of pieces of large woody debris within this reach.

Percent Pools - Figure 2 depicts where the stream channel is of a gradient of 2% or less, where it is 2-5%, and where it is greater than 5%. The total stream length in this Reach is 3.8 miles. None of stream channel gradient is 2% or less in this reach. The amount of stream channel that is of 2-5 % gradient is 2.9 miles (76% of the channel length in this reach). The amount of stream channel that is greater than 5% gradient is 0.9 miles (24% of this reach). Remote sensing using a 10-meter digital elevation models was used to make these determinations. Where the gradient is 5% or greater, there is less likelihood of large pools than in gradients of 5% or less. The numbers of pools in this reach are few; the actual number of pools in this reach is a Data Gap.

Habitat Access

Fish Passage - This criterion is not applicable. Anadromous fish habitat ends at the waterfall at the beginning of the reach.

Stream Flow

Resembles Natural Hydrograph - Stream flow information was not collected in this reach. Flows in this reach and the other reaches were determined to be in fair condition using the criteria that flow timing and amount are altered but not drastically so.

Impervious Surfaces - State Highway 20 along this Reach is the largest unnatural impervious surfaces. The length and proximity of the road was used to determine a ranking of fair.

Stream Corridor

Riparian Vegetation - The vegetation has been altered, but still appears to be within 25-50% of the potential natural community composition. The vegetation composition of this Reach is rated as fair.

Stream Bank Stability - Bonaparte Creek is well shaded in this reach and banks are held stable from deciduous vegetation in most locations. Other locations are held stable from rip-rap. Driving State Highway 20,one sloughing area is noticeable. Bank stability is rated fair for this reach.

Floodplain Connectivity - The construction and maintenance of the State Highway 20 has altered the sideslopes and narrowed the floodplain in places. In places where the sideslopes are quite steep, the floodplain and the road share limited space. This criterion is considered as fair.

Reach 3-

Water Quality

Reach 3 affects the water quality downstream in Reach 1. Although the gradient in much of the reach is less than 2%, the water in the stream interacts with the floodplain in few locations. The channel is confined to a narrow 10 foot deep cut through sandy-loam from river mile 5.1 to 6.3. From river mile 6.3 to 10.8 the channel is downcut but to a smaller degree. Due to its steep gradient and an impassible barrier at the beginning of Reach 2, Reach 3 is not considered anadromous fish habitat. Reach 3 water quality parameters of; stream temperature, turbidity and nutrient loading have the potential to affect the anadromous fisheries downstream in Bonaparte Creek and in the Okanogan River. No data was collected for dissolved oxygen, temperature, turbidity, and nutrient information in this reach. Best guesses are made on personal observations.

Dissolved Oxygen - Dissolved oxygen (DO) data was not collected. The average channel gradient is near 2% in this reach. In the Limiting Factors Table DO for Reach 3 is a Data Gap (DG). It is likely that insufficient mixing occurs to saturate DO levels in the water. A rating of fair is suggested.

Stream Temperature - No data for stream temperature is available in this reach. In the Limiting Factors Table DO for Reach 3 is a Data Gap (DG). This area is a deep canyon and the stream is shaded much of the day from brush small trees and the canyon walls itself. Stream temperatures taken downstream in Reach 1 and upstream in Reach 4 rated good. It is unlikely that stream temperatures rise above 18°C in this reach and a rating of good is suggested.

Turbidity - No data for turbidity is available in this reach. In the Limiting Factors Table DO for Reach 3 is a Data Gap (DG). The stream flows through a downcut trench from river mile 5.1 to 6.3. The channel upper channel banks range from 6 to 12 feet tall through this portion of the reach. In many areas these banks are not stable, more than 20% unstable total. Turbidity rating is likely in poor condition in years that have normal rainfall and snow conditions, and fair condition in years with lesser rainfall or slow snowmelt. In the Limiting Factors Table DO for Reach 3 is a Data Gap (DG).

Nutrient Loading - No data for nutrient loading and chemical contamination information is available in this reach. A few homes and State Highway 20, hay fields and some livestock yards are the identified developments along the stream in this reach. In the Limiting Factors Table DO for Reach 3 is a Data Gap (DG). No suggestion is made in this reach for this parameter.

In-Channel Habitat

Substrate - Because Reach 3 is not considered to provide anadromous fish habitat, the substrate condition criterion does not apply to spawning substrate. This reach does contain and generate fine sediment. It is transported to the fisheries below. The eroding channel throughout the reach adds to the amount of fine sediment delivered to the fisheries below. Large amounts of fine sediment are produced downstream of the last functioning depositional area (river mile 10.8). A large area beginning at river mile 5.1 and continuing for more than a 5 miles upstream is down cutting, and has created tall vertical banks confining the stream to a trench. The most significant example of this is located within a riparian enclosure approximately at river mile 5.1 to 6.3. This area was identified by the OCCD for project work to reduce sediment delivery to the Okanogan River in 1987. Here the stream still has 10-foot tall bare vertical upper banks. Sediment generating from this portion of the stream is carried to anadromous fishes redds below.

Large Wood - Using a Plant Association Group cover generated for use by the U.S. Forest Service, determination of suitable habitat for conifer growth was made. In Reach 2 non-forested habitat types, shrub steppe, comprise 48% of 50-meter wide buffers on each side of Bonaparte Creek. Much of the reach can be seen from State Highway 20. No pieces of wood seen in Bonaparte Creek in this reach

Okanogan/Similkameen Subbasin Summary 177

meet the criteria and a rating of poor is given. Large woody debris that may fall into the channel upstream of the wet meadow (river mile 10.8) is not likely to be delivered downstream to other reaches.

Percent Pools - Figure 2 depicts where the stream channel is of a gradient of 2% or less, where it is 2-5%, and where it is greater than 5%. The total stream length in this Reach is 6 miles. The amount of stream channel gradient is 2% or less is 5.3 miles (89% of the channel length in this reach). The amount of stream channel that is of 2-5 % gradient is .7 miles (11% of the channel length in this reach). None of stream channel that is greater than 5% gradient in this reach. Remote sensing using a 10-meter digital elevation models was used to make these determinations. Where the gradient is 5% or greater, there is less likelihood of large pools than in gradients of 5% or less. The numbers of pools and amount of pool habitat is a Data Gap.

Habitat Access

Fish Passage - This criterion is not applicable. Anadromous fish habitat ends at the waterfall at the beginning of the Reach 2.

Stream Flow

Resembles Natural Hydrograph - Stream flow information was not collected in this reach. Flows in this reach and the other reaches were determined to be in fair condition using the criteria that flow timing and amount are altered but not drastically so.

Impervious Surfaces - State Highway 20 along this Reach is the largest unnatural impervious surface. Runoff and ditching is not extensive even though State Highway is very near Bonaparte Creek. This parameter deserves a ranking of good.

Stream Corridor

Riparian Vegetation - Riparian vegetation is in fair to poor condition (Tonasket Ranger District 1996), with the potential natural community and composition being at or near 20%. State Highway 20, agriculture, housing, and livestock grazing pastures all have contributed to the alterations of vegetation along the stream in this reach.

Stream Bank Stability - Stream bank stability is in poor condition. From 1988 OCCD survey information and personal experience. The 1988 survey listed 1.5 miles of the riparian as having severe erosion. Restoration efforts by the Okanogan County Conservation District in 1989 built a riparian enclosure fence. Since then alder and dogwood has vegetated the area. Bare vertical banks still exist in much of the area. "Problem" beaver have been removed while trying to recolonize this area (D. Swedberg, personal communication, 2001). Moderate erosion was noted in 8 areas, totaling 1.6 miles of this reach. One mile of moderate erosion from grazing impacts was identified. It was noted that improvement in the riparian habitat in 4 of these areas, nearly 1 mile of stream, would improve water quality.

Floodplain Connectivity - The floodplain connectivity is currently in poor condition from the lack of stream water interaction due to the downcutting that has and still occurs in this reach.

Reach 4-

Water Quality-

Dissolved Oxygen (DO)-: Stream Temperature-: Turbidity-: Nutrient Loading-

Reach 4 includes Bonaparte Creek and it tributaries upstream of a braided channel woodland in T39N, R28E, Section 23, NE 1/4. The braided channel area intercepts much of the sediment that might be

Okanogan/Similkameen Subbasin Summary 178

delivered, the DO and temperature and nutrient loading are altered as a result of the transport through the 6 miles of Reach 3 and the 3.8 miles of Reach 2. Water quality parameters; DO, temperature, turbidity and nutrient loading, of Reach 1 is not affected to a discernable degree by the relatively small amount of pollutants in generated in Reach 4. These criteria are not applicable, and are not discussed here. The Limiting Factors Table for reach 4 is populated with the data supplied by the OCD. The water collection area for the OCD data is upstream of the Aeneas Valley road on Bonaparte Creek.

In-Channel Habitat

Fine Sediment - Little fine sediment from this reach is delivered to the spawning area in Reach 1. Fine sediment falls out of solution in the spread channel wetland river mile 10.8 to 11.4. Sand from road maintenance in winter along State Highway 20 directly enters the stream in at least .8 miles of this reach. This material likely drops out of the water column at or before river mile 10.8.

Large Wood - Sites with potential for providing large woody debris (LWD) were not done for Reach 4. Conifer trees of a size to be classified as LWD, 35 feet long with a diameter of 12 inch, are likely to grow along Bonaparte Creek, but the creek is not large enough to transfer LWD downstream to other reaches. The amount of LWD in Reach 4 is a Data Gap.

Percent Pools - Figure 2 depicts where the stream channel is of a gradient of 2% or less, where it is 2-5%, and where it is greater than 5%. The total length of streams in this reach is 21.9 miles. The amount of stream channel gradient is 2% or less is miles (83% of the channel length in this reach). The amount of stream channel that is of 2-5 % gradient is 3.1 miles (14% of the channel length in this reach). The amount of stream channel that is greater than 5% gradient is .6 miles (3% of the channel length in this reach). The amount of stream channel that is greater than 5% gradient is .6 miles (3% of the channel length in this reach). The amount of stream channel that is greater than 5% gradient is .6 miles (3% of the channel length in this reach). Remote sensing using a 10-meter digital elevation models was used to make these determinations. Where the gradient is 5% or greater, there is less likelihood of large pools than in gradients of 5% or less. The numbers of pools and amount of pool habitat is a Data Gap.

Habitat Access

Fish Passage - This criterion is not applicable. Anadromous fish habitat ends at the waterfall at the beginning of the Reach 2.

Stream Flow

Resembles Natural Hydrograph - Flows in this reach and the other reaches were determined to be in fair condition using the criteria that flow timing and amount are altered but not drastically so. The Bonaparte Water Users Association has water right to 1080 acre-feet of water from Bonaparte Lake. (An unpublished memorandum, USFS, 1967).

Impervious Surfaces - State Highway 20 along this Reach is the largest unnatural impervious surface. Runoff and ditching is not extensive, but one area along State Highway is adjacent to Bonaparte for .8 miles. This area has direct runoff to the creek, for this reason; this parameter deserves a ranking of fair.

Stream Corridor

Riparian Vegetation - Maintenance of State Highway 20 right of way, agricultural development and livestock grazing have altered the riparian vegetation in this reach, but still appears to be within 25-50% of the potential natural community composition. The vegetation composition of this Reach is rated as fair.

Stream Bank Stability - Stream bank stability is in good condition. The survey by OCCD in 1988 identified 1.5 miles of heavy grazing on 12.8 mile of stream surveyed. It is unknown if these areas

have been restored to a better condition. From observations along State Highway 20 this area has sufficient vegetation to stabilize the stream banks where State Highway 20 is adjacent to Bonaparte Creek and vegetation is lacking the channel is stabilized with rip-rap.

Floodplain Connectivity - The floodplain connectivity is currently in fair condition. Several large areas in this reach have downcutt or straightened channels. Bonaparte Meadows, just below Bonaparte Lake, have been and currently are being mined for peat. This area still becomes saturated with water. Other areas where channel alterations are evident occur in hay fields near the confluence with Peony Creek and upstream of the County Road 4953, Bonaparte Lake road, on a tributary to Bonaparte Creek. State Highway 20 in areas has also reduced the streams coconnectedness to the floodplain. These areas have reduced the creeks interaction with the floodplain, and overbank flows are reduced but are still present in this reach, that is the reason for the fair rating.

Siwash Creek Watershed Assessment

Sub-watershed Overview

The Siwash Watershed is 30,946 acres. Of these acres, 10,567 (34%) acres are managed by the USFS, the remaining 20,379 (66%) acres are a combination of ownership that includes private owners (60%), Washington Department of Natural Resources (5.5%), and Bureau of Land Management managed lands (<1%).

Land Use and Ownership

Private lands adjacent to Siwash Creek are used primarily as rangelands, agriculture, and home sites. Primary use of USFS, DNR and BLM lands are timber production and/or livestock allotments.

Topography, Geology & Soils

Tonasket, Antoine, Siwash and Bonaparte watersheds are all part of the Okanogan sub-continent (Alt and Hyndman 1984). The eastern and southern boundaries are formed by the Columbia River. The western boundary, the Okanogan River valley, is geologically known as the Okanogan trench. The Okanogan sub-continent extends hundreds of miles north into British Columbia, Canada.

The Okanogan sub-continent was an island about the size of California that crashed into the Kootenay Arc (which was then the western edge of the continent), about 100 million years ago. Following this "docking" of the sub-continent came the filling of what was then the "coastal area" on the west edge of the Okanogan sub-continent, the Okanogan trench (now the Okanogan Valley) (Alt and Hyndman 1984). The intersection of these two geologic features (the Okanogan sub-continent and the Okanogan trench) appears to be where barriers of waterfalls or high gradient stream channels occur. These barriers preclude upstream migration of anadromous salmonids.

The elevation of the confluence of Siwash Creek with the Okanogan River is 880 feet. The highest point in the Siwash Creek watershed is Fourth of July Ridge on Bonaparte Mountain at 6720 feet. The Siwash Watershed is oriented on an east to west axis.

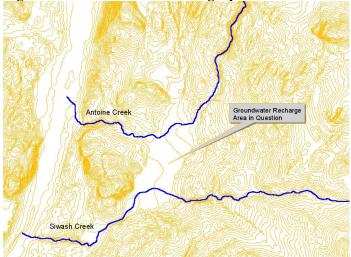
Tectonic uplifting: continental glaciations, and volcanic ash deposition all played major roles in shaping the existing topography and soils characteristics of this watershed.

Continental glaciations have had the greatest impact. Large areas of exposed rock and shallow soils were left as a result of the flow and retreat of the Okanogan and Sanpoil lobes of this cordilleran ice sheet. Bedrock is overlain by Quaternary glacial till outwash and glaciolacustrine sedimentary deposits of varying thickness.

The upper elevation bedrock is tertiary medium to coarse grain grandiorite and granite of the Mt. Bonaparte pluton.

The lower elevations are underlain with pre-tertiary banded gneiss and schist of the Tonasket gneiss. Both rock types are included in a metamorphosed and structural uplift called the Okanogan gneiss dome (USFS 1998 and 1999).

Riparian Vegetation and In-channel Habitat


Streamside vegetation has been altered greatly in the reaches where land uses are agricultural, and pastureland in the upper portion. Home sites, and commercial uses in the Tonasket area have altered the lowest reach.

In-channel large woody debris appears to be lacking in much of Siwash Creek. Non-forested habitat types, shrub steppe, occur frequently along Siwash Creek. It is unlikely large woody debris recruitment would occur from those sites.

Water Quantity/Hydrology

Water Quantity is the main limiting factor associated with Siwash Creek Watershed. Data from the downstream OCD site show that Siwash Creek was completely dry from July 10, 2000 through November 30, 2000.

Irrigation withdrawals peak at this time and may be the reason for such reduced surface flows. Another hypothesis is that Siwash Creek recharges groundwater draining to Antoine Creek, and Siwash Creek will only have surface flows during times when the groundwater "aquifer" is sufficiently recharged to spill water into the Siwash rivulet (**Figure 5-5**). This data gap should be resolved before attempts of summer and fall flow predications in the downstream reach of Siwash Creek are made.

Figure 5-5. Groundwater recharge questions.

The following is from the Tonasket Watershed Assessment (USFS 1998) hydrology section and applies to Siwash Creek watershed: Tonasket Creek watershed is characterized by high spring runoff due to melting snowpack that accumulates in late fall and the winter months. Summer and fall runoff is low, fed by the release of stored water from riparian areas in floodplains, seeps, and springs at the headwater tributary streams.

Stream flow timing has changed through channel alterations in headwater tributary streams and on Siwash Creek. These alterations have cut the channels deeper resulting in reduced ground water recharge to a small extent in this watershed.

The road network has influenced the timing of run-off. Several roads intercept ground water and reroutes the water overland through ditches. This interception reduces the amount of late season flow by routing water from storm and melt water directly to stream channels. Using the USFS existing road layer, twenty-eight miles of road (24% of roads in watershed) were found to be within 100 meters of the seventy-six miles of streams. Surface water also reaches these road drainage ways and leaves more quickly than if it were to recharge ground water storage areas.

Although channel alterations have altered the drainage of surface water in the Siwash Creek Watershed, a large agricultural complex functions, during spring runoff, to slow water velocities and allow for groundwater recharge. Road network effects downstream of this recharge area seen but to a much smaller extent.


Irrigation withdrawals from the creek are made from Siwash Creek and its tributaries. Uses of water from withdrawals are irrigation of fields, stock watering and household water. One withdrawal from Siwash Creek and one withdrawal from North Fork Siwash are documented on the Washington State Department of Ecology's Water Rights Tracking web page http://www.ecv.wa.gov/programs/wr/info/wrats/Wria-ok.htm.

Water Quality

Channel alterations have altered the drainage of surface water in the Siwash Creek Watershed to a small extent. An agricultural area located in Township 37 Range 27 section 12, functions during spring runoff to slow water velocities and allow for groundwater recharge.

OCD has data for water quality at two locations on Siwash Creek (**Figure 5-6**). There was no water in the channel from July to November at the downstream location. In Reach 1, a turbidity value of 6.84 NTU (good rating) was recorded on June 12, 2000. On the same day in Reach 3 the turbidity value was over 160.00 NTU (poor rating).

Figure 5-6. Data Collection areas for determination of Water Quality on Siwash Creek.

Areas upstream of this agricultural area in Township 37 Range 27 section 12 will have no influence on the water quality parameters of dissolved oxygen, nutrient loading, pH, and turbidity within the

historical range of anadromous fishes on Siwash Creek or the Okanogan River. Late summer and fall flows from Siwash Creek could effect the stream temperatures and create summer thermal refuge in the Okanogan River at the confluence with Siwash Creek and immediately downstream.

Water quality conditions in Siwash Creek, downstream from the groundwater recharge/depositional area changes as it flows downstream. Trout are found in the creek immediately downstream of this area, suggesting that water is present year around at this location. Downstream from this point Siwash Creek flows through deeply incised glacial till deposits.

Direct road runoff from Count Road 9467 is likely but for only a short distance and is not likely to alter water quality conditions with exceptions, (i.e. resurfacing, transport spills) Runoff from the USFS parking lot enters Siwash Creek. Several home sites are adjacent to the stream and it is likely that septic systems drain to the creek. Agricultural lands are located on lands up to the break in slope along much of Siwash Creek, and runoff from these orchards and fields is likely to enter Siwash Creek. All have potential to affects water quality of Siwash Creek.

Siwash Creek is not on the Washington State List of Threatened and Imperiled Waterbodies (the 303d list).

Anadromous Salmonid Fisheries Resources of Siwash Creek

Anadromous fisheries resources are restricted to the lower 1.4 miles of the Siwash Creek subwatershed due to an impassible steep gradient channel (**Figure B-15**). Suitable spawning habitat occurs in Siwash Creek only when flows are sufficient to allow migration upstream.

Steelhead

No data is available about the use of Siwash Creek for rearing or spawning of Upper Columbia River Summer Steelhead. It is assumed that passage of adults is not restricted up to river mile 1.4, to the steep gradient channel area. Juvenile fish, either resident rainbow trout or steelhead do invade the lower reaches in the spring.

Chinook Salmon

Summer/fall chinook salmon are known to use the mainstem Okanogan River as well as the Similkameen River to Enloe Falls. The mainstem Okanogan River is used for migration northward to Canadian waters. Most of the known summer/fall chinook spawning areas are in the Similkameen River. Chinook salmon do not use Siwash Creek for spawning, and juvenile use is a data gap.

Spring Chinook Salmon

Adult spring chinook salmon (*Oncorhynchus tshawytscha*) in the Upper Columbia Basin are not currently known to use the Okanogan River. The temperature regime at the time spring chinook salmon spawn in the mainstem Okanogan River is too high for successful spawning and rearing. Water temperatures are elevated due to irrigation water withdrawals (K. Williams and J. Spotts, personal communications). In their Endangered Status of One Chinook Salmon ESU Final Rule (U.S. Federal Register 1999), the National Marine Fisheries Service excluded the Okanogan River from their Endangered species listing for the Upper Columbia Evolutionarily Significant Unit (ESU) of spring chinook salmon. The Okanogan River was excluded from the listing because spring chinook adults are collected as they migrate upstream at Wells Dam on the Columbia River, approximately 20 miles downstream of the confluence of the Okanogan River. The adult salmon are transported to the Winthrop National Hatchery in Winthrop, Washington, and are spawned there. The eggs and resulting fry are raised at the hatchery and later released into the Methow River.

Sockeye salmon

Sockeye salmon are known to use the mainstem Okanogan River as a migration pathway to their spawning areas in Lake Osoyoos and the upstream reaches of the Canadian Okanogan River. Sockeye salmon adults do not use Siwash Creek, and juvenile use is a data gap.

Bull trout

There are no data or anecdotal information indicating bull trout ever were, or that bull trout currently are, in the Siwash Creek watershed. Data that does exist suggests that bull trout did not exploit the Okanogan River north of the city of Omak, approximately 30 river miles down-river of the confluence of Siwash Creek with the Okanogan River (K. Williams, personal communication). The Okanogan River is not suitable habitat for bull trout due to the bull trout requirement of very cold, clean waters with clean gravel/cobble substrate for successful spawning and rearing.

Scott and Crossman (1973) reported that bull trout are not present within the Canadian Okanogan River system.

Limiting Factors Assessment

Siwash Creek was divided into three reporting units (reaches) addressing potential limiting factors to salmonid production in Siwash Creek and in the Okanogan River.

Reach 1 (from the mouth of Siwash Creek to River Mile 1.4) is considered usable anadromous salmonid habitat provided that there is adequate flow. Reach 1 ends at a natural channel gradient break. The channel gradient is 14%, and most likely the extent of adult and juvenile fish.

Reach 2 (River Mile 1.4 to RM 4.4) includes the steep gradient channel. This reach ends at County Road 9467 bridge upstream of the depositional area. This reach has potential to affect water quality to the anadromous fishery, but is not considered to be usable habitat for anadromous fish because of the natural barriers.

Reach 3 (River Mile 4.4 and above) Water quantity, timing and amount, is important factors to track in this reach.

The following rankings reference habitat criteria accepted by the Okanogan TAG group as most relevant to the production potential of anadromous salmonid fishes in the Okanogan (**Table 5-17**).

Attribute Considered	Anadromous potential, Water Quality concerns		
Water Quality			
Dissolved Oxygen			
Stream Temperature			
Turbidity/Suspended Sediment			
Nutrient Loading			
In Channel Habitat			
Fine Sediment (substrate)			
Large Woody Debris			
Percent Pool			
< 2%			
2-5%			
>5%			

Table 5-17: Siwash Creek Limiting Factors Assessment

Attribute Considered	Anadromous potential, Water Quality concerns
Habitat Access	
Fish Passage	
Stream Flow	
Resembles Natural Hydrograph	
Impervious Surface	
Stream Corridor	
Riparian Vegetation	
Stream Bank Stability	
Floodplain Connectivity	

Support for Limiting Habitat Factor Rankings in the Siwash Creek Sub-watershed

Reach 1-Water Quality

Data was collected in the same time period for dissolved oxygen, temperature, turbidity, and nutrient information (Figure 5-7).

Figure 5-7. OCD water quality data collection location in Reach 1.

Dissolved Oxygen - Dissolved oxygen is rated Good based on greater than 95% saturation levels as represented in data collected by the Okanogan Conservation District (OCD) spot checks in 2000. Stream Temperature - Stream temperatures were below 18°C with a maximum temperature of 15.3°C recorded on 5/18/2000.

Turbidity – Turbidity measurements were all less that 100 NTUs. Two ratings both less than 20 NTUs on 5/18/2000 and 6/12/2000 were recorded. The maximum was 6.84 NTUs. This reach is rated good for turbidity.

Nutrient Loading - No data for Chemical Contamination/Nutrient Loading for dissolved nitrates, nitrites, Fecal coliform, phosphates and calcium carbonate and bicarbonate were recorded by OCD in 2000 and is listed in the table as a Data Gap (DG).

In-Channel Habitat

Fine Sediment - The substrate in the channel on the private lands has not been extensively observed, but while fishing in the Okanogan River at the confluence and while walking along Siwash Creek at

the Tonasket Ranger District, I have noticed some sand and silt in the creek. The creek runs clear regularly in spring. A rating of fair for this category was given because 12-20% of the streambed composition is smaller than 0.85mm in likely spawning locations.

Large Woody Debris - Non-forested habitat types, shrub steppe, and/or rock comprise 53% of 50 meter wide buffers on each side of Siwash Creek in this reach. Conifer trees of a size to be classified as LWD, 35 feet long with a diameter of 12 inch, are not likely to grow in these non-forested habitat types. Siwash Creek is not large enough to transfer LWD downstream to this reach. The potential for large woody debris recruitment is lower naturally in this reach because of this. The actual numbers of LWD is unknown. This reach rates poor for large woody debris using the matrix definitions.

Percent Pools - **Figure 5-8** depicts where the stream channel is of a gradient of 2% or less, where it is 2-5%, and where it is greater than 5%. The total stream length in this Reach is 1.4 miles. The amount of stream channel that has 2% or less gradient is .2 miles (15% of the channel length in this reach). The amount of stream channel that is of 2-5 % gradient is 1.2 miles (85% of the channel length in this reach). None of stream channel is greater than 5% gradient in this reach. Remote sensing using a 10-meter digital elevation models was used to make these determinations. Where the gradient is 5% or greater, there is less likelihood of large pools than in gradients of 5% or less. The number of pools in this reach is a Data Gap.

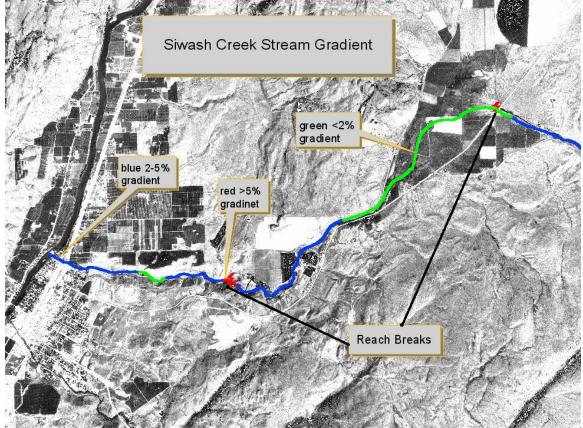


Figure 5-8. Stream Channel Gradients

Habitat Access

Fish Passage - Fish passage is assumed good. Siwash Creek has been confined to a channeled trench through the town of Tonasket, but the width of the trench allows for some sinuosity lowering

velocities and allowing upstream movement by juvenile fishes. One stream crossing, identified on aerial photo, could pose a passage problem (**Figure 5-9**).

Figure 5-9. This area has not been visited, and is a Data Gap.

Stream Flow

Resembles Natural Hydrograph - The stream flow in Reach 1 is dewatered as a result of water withdrawals upstream in most years. Reduced summer thermal refuge at the confluence with the Okanogan River for steelhead smolt, adult chinook salmon, and adult sockeye salmon is a result.

Impervious Surfaces - City streets and large parking lots along this reach of Siwash Creek create quick runoff and little interaction with the floodplain. This parameter has been rated fair because of the relatively small amount of the reach in this condition.

Stream Corridor

Riparian Vegetation - The riparian vegetation in this reach rated fair, based on spot visual observations by myself. Shade has been reduced in the lower portion of Reach 1; homes and lawns, and parking lots have replaced the natural vegetation. The upper half has steeper banks and was not developed for home sites. Overall the reach has moderate loss of connectivity, and moderate loss of shade.

Stream Bank Stability - Little or no channel bank erosion occurs in this reach. Stream bank stability is rated fair because stability of the channel is not maintained by vegetation in many areas. The stream bank is maintained in a stable condition with rip-rap through the city of Tonasket.

Floodplain Connectivity - Flood plain connectivity is rated as poor based on spot visual observations. Siwash Creek has been channeled through the city of Tonasket, and vegetation succession has altered significantly.

Reach 2-

Reach 2 affects the water quality downstream in Reach 1, but due to its steep gradient and an impassible barrier at the beginning, Reach 2 is not considered anadromous fish habitat.

Okanogan/Similkameen Subbasin Summary 187

Water Quality

No data was collected for dissolved oxygen, temperature, turbidity, and nutrient information in this reach. No guesses are made because of the variety of uses and the lack of knowledge of water withdrawals.

Dissolved Oxygen - Dissolved oxygen (DO) data was not collected, and is listed as a Data Gap (DG). Stream Temperature - Stream temperature data was not collected, and is listed as a Data Gap (DG). Turbidity - Turbidity data was not collected, and is listed as a Data Gap (DG). Nutrient Loading - Nutrient loading and chemical contamination data was not collected, and is listed as a Data Gap (DG).

In-Channel Habitat

Substrate - Because Reach 2 is not considered to provide anadromous fish habitat, the substrate condition criterion does not apply to spawning substrate. No data was not collected, and is listed as a Data Gap (DG).

Large Wood - Using a Plant Association Group cover generated for use by the U.S. Forest Service, determination of suitable habitat for conifer growth was made. In Reach 2 non-forested habitat types comprise 75% of 50-meter wide buffers on each side of Siwash Creek. There is a Data Gap regarding the number of pieces of large woody debris within this reach.

Percent Pools - Figure xxx depicts where the stream channel is of a gradient of 2% or less, where it is 2-5%, and where it is greater than 5%. The total stream length in this Reach is 3.0 miles. The amount of stream channel that has 2% or less gradient is 1.7 miles (57% of the channel length in this reach). The amount of stream channel that is of 2-5 % gradient is 1.2 miles (40% of the channel length in this reach). The amount of stream channel that is greater than 5% gradient is 0.1 miles (3% of this reach). Remote sensing using a 10-meter digital elevation models was used to make these determinations. Where the gradient is 5% or greater, there is less likelihood of large pools than in gradients of 5% or less. The numbers of pools in this reach is a Data Gap.

Habitat Access

Fish Passage - This criterion is not applicable. Anadromous fish habitat ends at the steep gradient channel at beginning of the Reach 2.

Stream Flow

Resembles Natural Hydrograph - Stream flow information was not collected in this reach, and is listed as a Data Gap (DG).

Impervious Surfaces - Little impervious surface was identified from the aerial photograph. This is rated to be in fair condition as some alteration was noticed.

Stream Corridor

Riparian Vegetation - The vegetation has been altered. Most notably the 300 acre depositional area has been converted to a series of hayfields with some natural vegetation occurring. The reach appears to be within 25-50%, likely 25%, of the potential natural community composition. The vegetation composition of this Reach is rated as fair.

Stream Bank Stability - Siwash Creek is well shaded in this reach and banks are held stable from deciduous vegetation in most locations. The depositional area is held stable from grasses and shrubs.

At least 80% of the banks are stable and an argument that 90% of the banks are stable could be made. The bank stability is rated fair for this reach and could be rated good.

Floodplain Connectivity - Turbidity data in reach 3 upstream of the depositional area and the resulting data in Reach 1 is the best evidence that this floodplain remains connected, at least in part. The riparian vegetation succession does not occur here and for this reason this reach is considered as fair for this parameter.

Reach 3-

Water Quality-

The water flowing form Reach 3 does not affect the water quality in Reach 1. The timing of the water release in Reach 3 may have an effect on the water temperatures later in the year. The table is populated with water quality data from OCD but is not discussed for the reasons mentioned.

In-Channel Habitat

Substrate - Because Reach 3 is not considered to provide anadromous fish habitat, the substrate condition criterion does not apply to spawning substrate. This reach does contain and generate fine sediment. It is not transported to the fisheries below.

Large Wood - This parameter was not analyzed in this reach. No numbers of LWD are available for this reach. For these reasons this is a Data Gap (DG).

Percent Pools - This parameter was not analyzed in this reach. No numbers of pools or stream are available for this reach. For these reasons this is a Data Gap (DG).

Habitat Access

Fish Passage - This criterion is not applicable. Anadromous fish habitat ends at the steep gradient channel at beginning of the Reach 2.

Stream Flow

Resembles Natural Hydrograph - Flows in this reach were determined to be in fair condition using the criteria that flow timing and amount are altered but not drastically so.

Impervious Surfaces - For much of the length of the creeks in this reach gravel roads parallel the stream. For this reason a rating of fair is given for this parameter.

Stream Corridor

Riparian Vegetation - Riparian vegetation is in fair with the potential natural community and composition being at or near above 50% but, roads that parallel the streams creates in-complete protection of habitats and refugia for aquatic species.

Stream Bank Stability - Siwash Creek is well shaded in this reach and banks are held stable from deciduous vegetation in hotter dryer locations, and from conifers in forested environments. The roads have reduced the amount of floodplain that streams use in the lower elevations of this reach and undoubtedly erode during higher bankfull flows. 80% of the banks are stable in most years. The bank stability is rated fair for this reach.

Floodplain Connectivity - The floodplain connectivity is currently in poor condition from the lack of stream water interaction due to the downcutting that has and still occurs in this reach.

Reach 4-Water Quality-

Dissolved Oxygen (DO)-: Stream Temperature-: Turbidity-: Nutrient Loading-Reach 4 includes Siwash Creek and it tributaries upstream of a braided channel woodland in T39N, R28E, Section 23, NE 1/4. The braided channel area intercepts much of the sediment that might be delivered, the DO and temperature and nutrient loading are altered as a result of the transport through the 6 miles of Reach 3 and the 3.8 miles of Reach 2. Water quality parameters; DO, temperature, turbidity and nutrient loading, of Reach 1 is not affected to a discernable degree by the relatively small amount of pollutants in generated in Reach 4. These criteria are not applicable, and are not discussed here. The Limiting Factors Table for reach 4 is populated with the data supplied by the OCD. The water collection area for the OCD data is upstream of the Aeneas Valley road on Siwash Creek.

In-Channel Habitat

Fine Sediment - Little fine sediment from this reach is delivered to the spawning area in Reach 1. Fine sediment falls out of solution in the spread channel wetland river mile 10.8 to 11.4. Sand from road maintenance in winter along State Highway 20 directly enters the stream in at least .8 miles of this reach. This material likely drops out of the water column at or before river mile 10.8.

Large Wood - Sites with potential for providing large woody debris (LWD) were not done for Reach 4. Conifer trees of a size to be classified as LWD, 35 feet long with a diameter of 12 inch, are likely to grow along Siwash Creek, but the creek is not large enough to transfer LWD downstream to other reaches. The amount of LWD in Reach 4 is a Data Gap.

Percent Pools - Figure 2 depicts where the stream channel is of a gradient of 2% or less, where it is 2-5%, and where it is greater than 5%. The total length of streams in this reach is 21.9 miles. The amount of stream channel gradient is 2% or less is miles (83% of the channel length in this reach). The amount of stream channel that is of 2-5 % gradient is 3.1 miles (14% of the channel length in this reach). The amount of stream channel that is greater than 5% gradient is .6 miles (3% of the channel length in this reach). The amount of stream channel that is greater than 5% gradient is .6 miles (3% of the channel length in this reach). The amount of stream channel that is greater than 5% gradient is .6 miles (3% of the channel length in this reach). Remote sensing using a 10-meter digital elevation models was used to make these determinations. Where the gradient is 5% or greater, there is less likelihood of large pools than in gradients of 5% or less. The numbers of pools and amount of pool habitat is a Data Gap.

Habitat Access

Fish Passage - This criterion is not applicable. Anadromous fish habitat ends at the waterfall at the beginning of the Reach 2.

Stream Flow

Resembles Natural Hydrograph - Flows in this reach and the other reaches were determined to be in fair condition using the criteria that flow timing and amount are altered but not drastically so. The Bonaparte Water Users Association has water right to 1080 acre-feet of water from Bonaparte Lake. (An unpublished memorandum, USFS, 1967).

Impervious Surfaces - State Highway 20 along this Reach is the largest unnatural impervious surface. Runoff and ditching is not extensive, but one area along State Highway is adjacent to Siwash for .8 miles. This area has direct runoff to the creek, for this reason; this parameter deserves a ranking of fair.

Stream Corridor

Riparian Vegetation - Maintenance of State Highway 20 right of way, agricultural development and livestock grazing have altered the riparian vegetation in this reach, but still appears to be within 25-

50% of the potential natural community composition. The vegetation composition of this Reach is rated as fair.

Stream Bank Stability - Stream bank stability is in good condition. The survey by OCCD in 1988 identified 1.5 miles of heavy grazing on 12.8 mile of stream surveyed. It is unknown if these areas have been restored to a better condition. From observations along State Highway 20 this area has sufficient vegetation to stabilize the stream banks where State Highway 20 is adjacent to Siwash Creek and vegetation is lacking the channel is stabilized with rip-rap.

Floodplain Connectivity - The riparian vegetation succession does not occur where roads parallel the channel and for this reason the floodplain connectivity is currently in fair condition.

Antoine Creek Watershed Assessment

Sub-watershed Overview

The Antoine Creek watershed encompasses 46,695 acres of mixed ownership. The acres are a mixed ownership as follows: Private ownership, 30,000 acres (72%); Washington Department of Natural Resources, 2800 acres (6%); Bureau of Land Management managed lands, 459 acres (<1%); and the remaining 9,806 acres (21%) are managed by the US Forest Service (USFS).

Antoine Creek enters the Okanogan River 4 miles north of the city of Tonasket, Washington, at River Mile (RM) 61.2 of the Okanogan River. The watershed at its longest axis is approximately 14 miles long and its widest point is approximately 10 miles wide.

Antoine Creek is dammed at approximately RM 12 by Fancher Dam. Approximately 40% of the watershed acres drain to Antoine Creek above Fancher Dam, with the remaining 60% of the watershed draining to Antoine Creek below Fancher Dam. The Fancher Dam reservoir covers approximately 20 acres and is approximately 55 ft deep at its deepest point. The water stored in the Fancher Dam reservoir is used for irrigation of croplands.

Land Use and Ownership

Land within this watershed is predominantly in private ownership. Private lands adjacent to Antoine Creek are used primarily for agriculture (rangelands, hay fields, orchards), and for orcharding. Primary use of USFS, DNR and BLM lands are timber production and/or livestock allotments.

Roads parallel Antoine Creek (approximately 5 miles) and Whiskey Cache Creek (approximately 4 miles). There may be more roads adjacent to these streams. Available maps do not depict all the roads to residences in the area.

Fancher Dam is on private land and has been in place for almost 90 years. The reservoir behind the dam is used for private land irrigation purposes. Most of the water stored in the reservoir is used for irrigation of large hayfields. There is flow from the reservoir at spring run-off when the water level of the reservoir reaches and overtops the spillway.

There are other private land irrigation withdrawals made downstream of Fancher Dam. There is also a cement diversion structure at approximately RM 1 on Antoine Creek, on private land. The stream below this point is often dry or "near dry" in the summer and early fall months (D. Van Woert, personal communication).

There may also be some domestic use withdrawals from Antoine Creek.

Topography, Geology & Soils

Tonasket, Antoine, Siwash and Bonaparte watersheds are all part of the Okanogan sub-continent (Alt and Hyndman 1984). The eastern and southern boundaries are formed by the Columbia River. The western boundary, the Okanogan River valley, is geologically known as the Okanogan trench. The Okanogan sub-continent extends hundreds of miles north into British Columbia, Canada.

The Okanogan sub-continent was an island about the size of California that crashed into the Kootenay Arc (which was then the western edge of the continent), about 100 million years ago. Following this "docking" of the sub-continent came the filling of what was then the "coastal area" on the west edge of the Okanogan sub-continent, the Okanogan trench (now the Okanogan Valley) (Alt and Hyndman 1984). The intersection of these two geologic features (the Okanogan sub-continent and the Okanogan trench) appears to be where barriers of waterfalls or high gradient stream channels occur. These barriers preclude upstream migration of anadromous salmonids.

The elevation of the confluence of Tonasket Creek with the Okanogan River is 885 feet. The highest point in the Tonasket Creek watershed is Bonaparte Mountain at 7,258 feet. The Antoine Watershed is oriented on a northeast to southwest axis.

Tectonic uplifting, continental glaciation, and volcanic ash deposition all played major roles in shaping the existing topography and soils characteristics of this watershed. Continental glaciation has had the greatest impact. Large areas of exposed rock and shallow soils were left as a result of the flow and retreat of the Okanogan and Sanpoil lobes of the Cordilleran Icesheet. Bedrock is overlain by Quaternary glacial till outwash and glaciolacustrine sedimentary deposits of varying thickness.

The upper elevation bedrock is tertiary medium to coarse grain grandiorite and granite of the Mt. Bonaparte pluton.

The lower elevations are underlain with pre-tertiary banded gneiss and schist of the Tonasket gneiss. Both rock types are included in a metamorphosed and structural uplift called the Okanogan gneiss dome (USFS 1998 and 1999).

Vegetation and Riparian Condition

In-channel large woody debris appears to be lacking in much of Antoine Creek. Non-forested habitat types do occur along Antoine Creek and its tributaries, but the agricultural use of adjacent lands may preclude large woody debris recruitment to the stream. Shrub and forb vegetation are present along much of Antoine Creek, providing some bank stability and shade cover.

Water Quantity/Hydrology

Antoine Creek is characterized by high spring runoff from snowmelt (USFS 1999). Summer and fall runoff is low, fed by the release of stored water from riparian areas in floodplains, seeps, and springs at the headwater tributary streams. As indicated in USFS (1999), "the timing of some run-off has been influenced by the road network that intercepts ground water and re-routes it overland. Some of that surface water reaches drainage ways and leaves more quickly than ground water flow. The interception reduces the amount of late season flow".

Fancher Dam reservoir entrains water from both Antoine and Mill Creeks and their tributaries. The water in Fancher Dam reservoir is used for crop irrigation on Fancher Flats during the months of May to October, annually. During this time, flow at the mouth of Antoine Creek is minimal, and sometimes non-existent (D. Van Woert, personal communication). "Surface stream flows in the lowest reach of Antoine Creek is often reduced to no flow during the driest part of the year. Antoine Creek has

sometimes been completely dewatered in dry years due primarily to irrigation withdrawals" (USFS 1999).

Other irrigation withdrawals occur downstream of Fancher Dam. Known withdrawal devices are at T38N, R28E, Section 31, SW^{1}_{4} , NE^{1}_{16} , and T38N, R27E, Section 35 NW^{1}_{4} , NW^{1}_{16} . The second withdrawal device may have an associated fish passage barrier. Water from Antoine Creek is also used in the early spring months for frost abatement on orchards (D. Van Woert, personal communication) Other withdrawals may also be occurring.

Water Quality

Antoine Creek is not on the Washington State List of Threatened and Imperiled Waterbodies (the 303d list). About 0.6 miles of stream channel in the Antoine Watershed are classified as sediment source reaches (USFS 1999). All of these sediment source reaches are upstream of functional depositional areas. A single sediment source reach approximately 0.40 miles long is situated upstream of Fancher Dam reservoir in an unnamed tributary to Antoine Creek. The remaining sediment source reaches (each about 0.05 miles long) are in unnamed tributaries to Antoine Creek and Whiskey Cache Creek. Whiskey Cache Creek, prior to its confluence with Antoine Creek (at approximately RM 4 of Antoine Creek) has a large wetland that filters sediment that might be delivered from upstream.

Anadromous Salmonid Fisheries Resources of Antoine Creek

Potential anadromous salmonid use of Antoine Creek is restricted to the lower 11.5 miles of the subwatershed due waterfalls and a steep gradient channel that begins at RM 11.5 (**Figure B-16**). Steelhead adults are known to use the confluence area of Antoine Creek with the Okanogan River (C. Hinkley, personal communication). Sockeye and chinook salmon are not known to use Antoine Creek, but their use of the accessible habitat near the confluence for holding and limited rearing cannot be precluded. There are no data or anecdotal information indicating bull trout ever used the Antoine Creek watershed, likely because of inhospitable temperatures.

Rankings of Habitat Limiting Factors in the Antoine Sub-watershed

Antoine Creek was divided into three reporting units (reaches) to address potentially limiting factors to salmonid production for this document.

Reach 1 (from the mouth of Antoine Creek to River Mile 11.5) is considered usable salmonid habitat provided that there is adequate flow and the irrigation withdrawal structure is passable. Reach 1 ends at the base of a waterfalls that is considered to be a natural passage barrier.

Reach 2 (River Mile 11.5 to RM 12.0) includes the waterfalls and associated steep gradient channel. This reach ends at the base of Fancher Dam. This reach has an affect on downstream water quality, but is not considered to be usable habitat for anadromous fish.

Reach 3 (River Mile 12.0 and above) includes Fancher Dam reservoir and all of Antoine Creek and all its tributaries upstream of the reservoir. These places are inaccessible to fish moving upstream from the Okanogan River.

The following rankings reference habitat criteria accepted by the Okanogan TAG group as most relevant to the production potential of anadromous salmonid fishes in the Okanogan (**Table 5-18**).

Table 5-18. Antoine Creek Limiting Factors Assessment

Attribute Considered	Anadromous Potential Reach	Water Quality Reach	Non-Issue Reach
	(RM 0-11.5)	(RM 11.5-12.0)	(> RM 12.0)
Water Quality			12.0)
Dissolved Oxygen	F1	P1	N/A
Stream Temperature	G1	G1	N/A
Turbidity/Suspended Sediment	G1	G1	N/A
Nutrient Loading	DG	DG	DG
<u>In Channel Habitat</u>			
Fine Sediment (substrate)	F2	N/A	N/A
Large Woody Debris	P2	DG	N/A
Percent Pool	DG	N/A	N/A
Habitat Access			
Fish Passage	F2	N/A	N/A
Streamflow			
Resembles Natural Hydrograph	P1	P1	G2
Impervious Surface	G2	DG	G2
<u>Stream Corridor</u>			
Riparian Vegetation	F2	DG	G2
Streambank Stability	F2	G2	P2
Floodplain Connectivity	F2	G2	F2

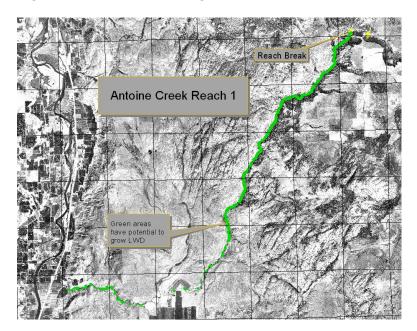
Support for Limiting Habitat Factor Rankings in the Antoine Creek Sub-watershed

Reach 1-Water Quality

Dissolved Oxygen - Dissolved oxygen is Fair based on the saturation level found during the summer months, as represented by data collected by the Okanogan Conservation District (OCD) from May 2000 to February 2001. Dissolved oxygen information is collected only when sufficient flowing water was present.

Stream Temperature - Stream temperatures were well below 18° C., in the same time period as the DO information was collected.

Turbidity - Turbidity measurements were all less that 20 NTUs. Data was collected in the same time period as the dissolved oxygen information.


Nutrient Loading - A data gap exists for Chemical Contamination/Nutrient Loading.

In-Channel Habitat

Fine Sediment - The substrate in the channel on the private lands has not been extensively observed. Spot visual observations (K. Cooper, personal communication) at potential spawning sites reveal the substrate to be in a Fair condition.

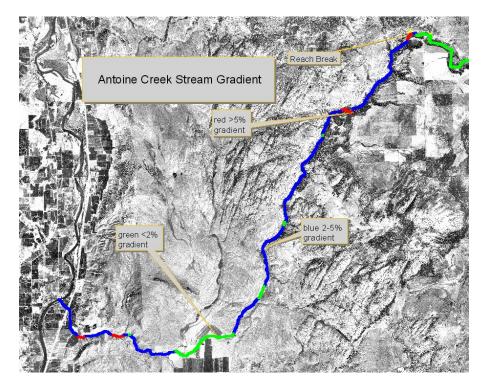

Large Woody Debris - Sites with potential for providing large woody debris (**Figure 5-10**). Determination was made by remote sensing (GIS/Arcview mapping), not from on-the-ground collected data. Non-forested habitat types comprise 37% of 50 meter wide buffers on each side of Antoine Creek. This indicates that the potential for large woody debris recruitment is low. By the matrix definitions, this reach rates Poor for large woody debris, but this rating must be tempered by considering the potential natural condition (non-forested) along this reach. Trees of a size to be classified as large woody debris are unlikely to grow in non-forested habitat types.

Figure 5-10. Potential for large conifers

Percent Pools - **Figure 5-11** depicts where the stream channel is of a gradient of 2% or less, where it is 2-5%, and where it is greater than 5%. The total stream length in this Reach is 11.5 miles. The amount of stream channel that has 2% or less gradient is 1.6 miles (14% of the channel length in this reach). The amount of stream channel that is of 2-5 % gradient is 8.8 miles (77% of the channel length in this reach). The amount of stream channel that is greater than 5% gradient is 1.0 miles (9% of the channel length in this reach). These determinations were made by remote sensing. Where the gradient is 5% or greater, there is less likelihood of large pools than in gradients of 5% or less. The actual number of pools in this reach is a Data Gap.

Figure 5-11. Stream Channel Gradients

Habitat Access

Fish passage is assumed beyond the two known irrigation diversions downstream of Fancher Dam. This is a Data Gap needing answered to fully appreciate available fish habitat in Antoine Creek. Because barriers are known to exist, but the extent of a barrier they present is not known, because the water levels in Reach 1 are known to fluctuate and at times to go dry, this criterion rated as Fair.

Stream Flow

Resembles Natural Hydrograph - The stream flow in Reach 1 is altered greatly by the operation of Fancher Dam for irrigation. In low water years, there is little, but more often no flow at the confluence of Antoine Creek with the Okanogan River (D. VanWoert, personal communication). This reach rates Poor for this criterion.

Stream Corridor

Riparian Vegetation - The riparian vegetation in this reach rated Fair, based on spot visual observations (K. Cooper, personal communication). Shade has been reduced in places due to agricultural conversion of lands to orchards, pastures, and crop lands, but the vegetative community appears to be within 25-50% of the potential natural vegetation.

Stream Bank Stability - Stream bank stability also seems Fair. Stability may have been modified by agricultural uses, either weakened by removal of vegetation, or perhaps reinforced by rip-rap.

Floodplain Connectivity - Flood plain connectivity is rated as Fair based on spot visual observations (K. Cooper, personal communication). Due to agricultural conversion of adjacent lands, the channel may be down-cutting somewhat.

The lowest portion of Antoine Creek was re-routed by Great Northern Railroad in the 1920s. The confluence was originally about ¹/₄ mile south of where it is today (D. Van Woert, personal communication). Thus, the half mile of stream from the east side of Highway 97 to the confluence with the Okanogan River is a dug channel with no opportunity created for a flood plain. The exception is where the current Antoine Creek channel meets the floodplain of the Okanogan River, but it must be noted that the Okanogan River floodplain has also been influenced by the placement of the railroad line, Highway 97, and conversions of adjacent lands to agricultural use.

Reach 2-

Reach 2 affects the water quality downstream in Reach 1, but due to its steep gradient is not considered anadromous fish habitat.

Water Quality

Dissolved Oxygen - Dissolved oxygen, as shown in the OCD data for their sample site in Reach 2 indicates a saturation level of 60% (7.39 mg/l at 12.°C., data collected from May of 2000 to February 2001). This gives this criterion a rating of Poor. However, the OCD collection site is above the waterfall. The waterfall mixes oxygen back into the water, as it continues downstream, raising the DO content as a result.

Stream Temperature - Stream temperature was in the Good category according to the OCD data.

Turbidity - Turbidity was also in the Good range according to OCD data.

Nutrient Loading - Nutrient loading and Chemical Contamination information is a data gap for Reach 2, as well.

In-Channel Habitat

Substrate - Because Reach 2 is not considered to provide anadromous fish habitat, the substrate condition criterion does not apply.

Large Wood - Determination was made by remote sensing, not from on-the-ground data collection. Non-forested habitats are not present within 50 meter buffers on each side of Antoine Creek. There is a data gap regarding the numbers of large woody debris currently present in this reach.

Percent Pools - The total stream length in this Reach is 0.5 miles. The amount of stream channel that has 2% or less gradient is 0.3 miles (60% of the channel length in this reach). The amount of stream channel that is of 2-5 % gradient is 0.1 miles (20% of the channel length in this reach). The amount of stream channel that is greater than 5% gradient is 0.1 miles (20% of the channel length in this reach). The amount of stream channel that is greater than 5% gradient is 0.1 miles (20% of the channel length in this reach). The amount of stream channel that is greater than 5% gradient is 0.1 miles (20% of the channel length in this reach). These determinations were made by remote sensing. Where the gradient is 5% or greater, there is less likelihood of large pools than in gradients of 5% or less. The actual number of pools in this reach is a Data Gap. The portion of the channel that is 2% or less in gradient, and the portion that is 2-5% gradient are both located above the fish barrier waterfall, and not available as anadromous fish habitat. Thus, this criterion does not apply.

Habitat Access

Fish Passage - This criterion is not applicable because the reach, due to its high gradient, is not considered to provide anadromous fish habitat.

Stream Flow

Resembles Natural Hydrograph - Stream flow information collected by OCD indicates that this criterion rates Poor, due to the operation of Fancher Dam reservoir for irrigation, which often totally dewaters the channel. In 2000, in addition to being used for irrigation, Fancher Dam reservoir supplied water to extinguish a large wildfire (helicopter buckets, as well as water tender trucks), essentially emptying the reservoir. The OCD sampling site in Reach 2 (below the dam) has had no water between September 2000 and February 2001. The reservoir is being allowed to recharge, with no water being released.

Stream Corridor

Riparian Vegetation - A Data Gap exists regarding the vegetative composition of this reach. Stream Bank Stability - The stream banks, due to the sideslope steepness have not been altered much over the years. Also due to the steep sideslopes, the channel is confined without much of a flood plain. This criterion rates Good.

Floodplain Connectivity - The stream banks, due to the sideslope steepness have not been altered much over the years. Also due to the steep sideslopes, the channel is confined without much of a flood plain. This criterion rates Good.

Reach 3-Water Quality-

Dissolved Oxygen - Stream Temperature - Turbidity-

Reach 3 includes all the stream and its tributaries above Fancher dam and its reservoir. The mixing of water in the reservoir changes the oxygen content and the temperature, but that gets changes again upon exit from the reservoir into Reach 2. The water quality of Reach 1 is not affected by that of Reach 3. These criteria are not applicable.

Nutrient Loading - Chemical Contamination and Nutrient Loading for this reach is a Data Gap.

In-Channel Habitat

Fine Sediment - Fine sediment that is delivered down Reach 3 settles in Fancher Dam reservoir, so this criterion is not applicable.

Large Wood - Due to the presence of Fancher Dam and reservoir, the amount of woody debris that may be present in Reach 3 does not affect Reach 1. This criterion is not apply.

Percent Pools - This reach does not affect the reach of Antoine Creek used by anadromous salmonids, so this criterion is not applicable.

Habitat Access

Reach 3 is above two natural fish barriers (a water fall and high gradient riffle), as well as a manmade barrier, Fancher Dam. Thus, this reach is not usable anadromous fish habitat.

Stream Flow

Resembles Natural Hydrograph - Reach 3 flows are not known to be altered. A Data Gap exists regarding the withdrawal of water from Antoine Creek above Fancher reservoir, or from Mill Creek, a major tributary to Antoine Creek. This criterion is rated Good.

Okanogan/Similkameen Subbasin Summary 198

Stream Corridor

Riparian Vegetation - Riparian vegetation is in Fair condition, having been altered by agriculture on private lands, road building, and older timer harvest units adjacent to streams on USFS managed lands.

Stream Bank Stability - Stream bank stability is in Poor condition due to livestock movement (hoof shear), roads (Tonasket Ranger District 1996), and conversion of riparian areas to agricultural uses in the private lands.

Floodplain Connectivity - The floodplain connectivity is currently in Fair condition, but is observed to be in a downward trend in the private land portions of Antoine Creek (K. Cooper, personal communication), where livestock appear to have increasing access to the stream channel in the aspen stands and meadows near Havillah.

Tonasket Creek Watershed Assessment

Sub-watershed Overview

The Tonasket Creek watershed encompasses 35,460 acres of mixed ownership. The acres are a mixed ownership as follows: Private ownership, 20,000 acres (56%); Washington Department of Natural Resources, 5700 acres (16%); Bureau of Land Management managed lands, 960 acres (3%); and the remaining 8,800 acres (25%) are managed by the US Forest Service (USFS).

Tonasket Creek enters the Okanogan River east of the city of Oroville, Washington, at River Mile (RM) 77.8 of the Okanogan River. The watershed at its longest axis is approximately 12 miles long and its widest point is approximately 8 miles wide.

Land Use and Ownership

Private lands adjacent to Tonasket Creek are used primarily for orcharding, as range lands, or for agriculture (hay fields). Primary use of USFS, DNR and BLM lands are timber production and/or livestock allotments.

County Road 9480 parallels Tonasket Creek for approximately 9 miles, and a Forest Road parallels the creek for almost 1 mile on the USFS managed lands. There may be more roads adjacent to streams in this watershed. Available maps do not depict all the roads to residences in the area, or for the subdivision being established at Nine Mile Ranch.

Topography, Geology & Soils

Tonasket, Antoine, Siwash and Bonaparte watersheds are all part of the Okanogan sub-continent (Alt and Hyndman 1984). The eastern and southern boundaries are formed by the Columbia River. The western boundary, the Okanogan River valley, is geologically known as the Okanogan trench. The Okanogan sub-continent extends hundreds of miles north into British Columbia, Canada.

The Okanogan sub-continent was an island about the size of California that crashed into the Kootenay Arc (which was then the western edge of the continent), about 100 million years ago. Following this "docking" of the sub-continent came the filling of what was then the "coastal area" on the west edge of the Okanogan sub-continent, the Okanogan trench (now the Okanogan Valley) (Alt and Hyndman 1984). The intersection of these two geologic features (the Okanogan sub-continent and the Okanogan trench) appears to be where barriers of waterfalls or high gradient stream channels occur. These barriers preclude upstream migration of anadromous salmonids.

The elevation of the confluence of Tonasket Creek with the Okanogan River is 910 feet. The highest point in the Tonasket Creek watershed is Wilcox Mountain at 4,378 feet. The Tonasket Watershed is oriented on a southeast to northwest axis.

Tectonic uplifting, continental glaciation, and volcanic ash deposition all played major roles in shaping the existing topography and soils characteristics of this watershed. Continental glaciation has had the greatest impact. Large areas of exposed rock and shallow soils were left as a result of the flow and retreat of the Okanogan and Sanpoil lobes of the Cordilleran Icesheet. Bedrock is overlain by Quarternary glacial till outwash and glaciolacustrine sedimentary deposits of varying thickness.

The upper elevation bedrock is tertiary medium to coarse grain grandiorite and granite of the Mt. Bonaparte pluton.

The lower elevations are underlain with pre-tertiary banded gneiss and schist of the Tonasket gneiss. Both rock types are included in a metamorphosed and structural uplift called the Okanogan gneiss dome (USFS 1998 and 1999).

Vegetation and Riparian Condition

In-channel large woody debris appears to be lacking in much of Tonasket Creek. Non-forested habitat types occur frequently along Tonasket Creek and its tributaries, so it is unlikely large woody debris recruitment would occur from those sites. Streamside vegetation has been altered greatly in the lowest reach where land uses are agricultural. Shrub and forb vegetation are present along much of Tonasket Creek, providing some bank stability and shade cover.

Water Quantity/Hydrology

The following is from the Tonasket Watershed Assessment (USFS 1998) hydrology section: Tonasket Creek watershed is characterized by high spring runoff due to melting snowpack that accumulates in late fall and the winter months. Summer and fall runoff is low, fed by the release of stored water from riparian areas in floodplains, seeps, and springs at the headwater tributary streams.

The timing of some run-off has been influenced by the road network that intercepts ground water and re-routes it overland. Some of that surface water reaches drainage ways and leaves more quickly than ground water flow. The interception reduces the amount of late season flow.

Irrigation withdrawals are made in the lower part of the creek. There are likely other water withdrawals from Tonasket Creek and its tributaries in the Nine Mile Ranch subdivision area, as well as Mud Lake Valley and Dry Creek areas. These withdrawals may be for irrigation, stock watering or perhaps domestic use. Tonasket Creek has been channelized through the orchards, and through the alluvial fan to the Okanogan River (K. Williams, personal communication). There may be some domestic use water withdrawals also made from Tonasket Creek.

Water Quality

Tonasket Creek is not on the Washington State List of Threatened and Imperiled Waterbodies (the 303d list).

The following is from the Tonasket Watershed Assessment (USFS 1998) hydrology section: Surface stream flow in the lowest reach of Tonasket Creek is often reduced to no flow during the driest part of the year. Tonasket Creek has sometimes been completely dewatered in dry years due primarily to irrigation withdrawals. About 1.5 miles of stream channel in the Tonasket Watershed are classified as sediment source reaches (USFS 1998). Of that, about 0.75 miles of these reaches are upstream of functional depositional areas. The remaining 0.75 miles of sediment source reaches do not have a functional depositional area between them and the confluence of Tonasket Creek with the Okanogan River.

There is a large wetland on the US Forest Service (USFS) managed lands (at approximately River Mile 13.5) this area filters sediment that might be delivered from upstream.

Anadromous Salmonid Fisheries Resources of Tonasket Creek

Anadromous fisheries resources are restricted to the lower 1.9 miles of the Tonasket Creek subwatershed due to the steep gradient of the channel that initiates at this point and continues to approximately RM 2.3. Above RM 2.3 (**Figure B-17**), it is suspected that eastern brook trout are present, though some fish shocking done in preparation for the replacement of a culvert on the paralleling County Road 9480 did not reveal any fish (L. Hofmann, personal communication).

Steelhead

Steelhead fry are observed in the confluence area where Tonasket Creek joins the Okanogan River by Ken Williams, Area Fish Biologist Region 2 Washington Department Fish and Wildlife (retired). He surmised that the fry were using the confluence area for rearing, and to evade predators found in the mainstem Okanogan River, and perhaps to make use of relatively warmer water temperatures in Tonasket Creek compared to the Okanogan River (K. Williams, personal communication). An adult steelhead was caught at approximately RM 1.8 in the late 1970s (D. Buckmiller, personal communication).

Chinook Salmon

Summer/fall chinook salmon are known to use the mainstem Okanogan River as well as the Similkameen River to Enloe Falls. The mainstem Okanogan River is used for migration northward to Canadian waters. Most of the known summer/fall chinook spawning areas are in the Similkameen River.

Adult spring chinook salmon (*Oncorhynchus tshawytscha*) in the Upper Columbia Basin are not currently known to use the Okanogan River. The temperature regime at the time spring chinook salmon spawn in the mainstem Okanogan River is too high for successful spawning and rearing. Water temperatures are elevated due to irrigation water withdrawals (K. Williams and J. Spotts, personal communication).

In their Endangered Status of One Chinook Salmon ESU Final Rule (US Federal Register 1999), the National Marine Fisheries Service excluded the Okanogan River from their Endangered species listing for the Upper Columbia Evolutionarily Significant Unit (ESU) of spring chinook salmon. The Okanogan River was excluded from the listing because spring chinook adults are collected as they migrate upstream at Wells Dam on the Columbia River, approximately 20 miles downstream of the confluence of the Okanogan River. The adult salmon are transported to the Winthrop National Hatchery in Winthrop, Washington, and are spawned there. The eggs and resulting fry are raised at the hatchery and later released into the Methow River.

Sockeye salmon

Sockeye salmon are known to use the mainstem Okanogan River as a migration pathway to their spawning areas in Lake Osoyoos and the upstream reaches of the Canadian Okanogan River. Sockeye salmon are not known to use Tonasket Creek.

Bull trout

There are no data or anecdotal information indicating bull trout ever were, or that bull trout currently are, in the Tonasket Creek watershed. Data that does exist suggests that bull trout did not exploit the Okanogan River north of the city of Omak, approximately 30 river miles down-river of the confluence of Tonasket Creek with the Okanogan River (K. Williams, personal communication). The Okanogan River is not suitable habitat for bull trout due to the bull trout requirement of very cold, clean waters with clean gravel/cobble substrate for successful spawning and rearing.

Scott and Crossman (1973) reported that bull trout are not present within the Canadian Okanogan River system.

Habitat Limiting Factors Assessment of the Tonasket Sub-watershed

Tonasket Creek was divided into three reporting units (reaches) in addressing potentially limiting factors to salmonid production for this document (**Table 5-19**).

Reach 1 (from the mouth of Tonasket Creek to River Mile 1.9) is considered usable salmonid habitat provided that there is adequate flow. Reach 1 ends at the base of a long, steep gradient channel that is considered to be a natural passage barrier.

Reach 2 (River Mile 1.9 to RM 13.2) includes the steep gradient channel. This reach ends at a large wet meadow on lands managed by the USFS. This reach has an affect on downstream water quality, but is not considered to be usable habitat for anadromous fish.

Reach 3 (River Mile 13.2 and above) includes Tonasket Creek and all its tributaries above RM 13.2. This reach is entirely on lands managed by the USFS. This reach is inaccessible to fish moving upstream from the Okanogan River.

The following rankings reference habitat criteria accepted by the Okanogan TAG group as most relevant to the production potential of anadromous salmonid fishes in the Okanogan (**Table 5-19**).

Attribute Considered	Anad potential reach 0.0 - 1.9 Reach 1	Water quality reach 1.9 - 13.2 Reach 2	Non-issue reach above 13.2 Reach 3
Water Quality			
Dissolved Oxygen	G1*	G1*	N/A
Stream Temperature	G1*	G1*	N/A
Turbidity/Suspended Sediment	G1*	G1*	N/A
Nutrient Loading	DG	DG	DG
In Channel Habitat			
Fine Sediment (substrate)	G2	N/A	N/A
Large Woody Debris	P 2	DG	N/A
Percent Pool	DG	DG	N/A
Habitat Access			
Fish Passage	F 2	N/A	N/A
Stream Flow			
Resembles Natural Hydrograph	F 2	2	G2
Impervious Surface	G2	G2	G2
<u>Stream Corridor</u>			
Riparian Vegetation	P2	F 2	G2
Stream Bank Stability	G2	F 2	G2
Floodplain Connectivity	P 2	F 2	G 2

Table 5-19. Tonasket Creek Limiting Factors Assessment

* Okanogan Conservation District (OCD) data

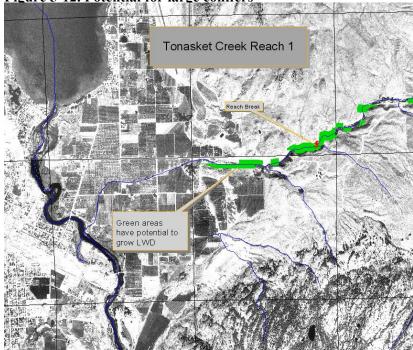
Support for Limiting Habitat Factor Rankings in the Tonasket Creek Sub-watershed

Reach 1-Water Quality

Dissolved Oxygen - Dissolved oxygen is rated Good based on the 110% saturation level (10.98 mg/l at 15.4°C), as represented in data collected by the Okanogan Conservation District (OCD) from May of 2000 to February 2001. Dissolved oxygen information was collected only when sufficient flowing water is present.

Stream Temperature - Stream temperatures were below 18°C., in the same time period as the DO information was collected.

Turbidity - Turbidity measurements were all less that 20 NTUs. Data was collected in the same time period as the dissolved oxygen information.


Nutrient Loading - A data gap exists for Chemical Contamination/Nutrient Loading.

In-Channel Habitat

Fine Sediment - The substrate in the channel on the private lands has not been extensively observed. Spot visual observations (K. Cooper, personal communication) at potential spawning sites reveal the substrate to be in a Good condition.

Large Woody Debris - Sites with potential for providing large woody debris (**Figure 5-12**). Determination was made by remote sensing (GIS/Arcview mapping), not from on-the-ground collected data. Non-forested habitat types comprise 75% of 50 meter wide buffers on each side of Tonasket Creek. This indicates that the potential for large woody debris recruitment is low. By the


matrix definitions, this reach rates Poor for large woody debris, but this rating must be tempered by considering the potential natural condition (non-forested_along this reach. Trees of a size to be classified as large woody debris are unlikely to grow in non-forested habitat types.

Percent Pools – **Figure 5-13** depicts where the stream channel is of a gradient of 2% or less, where it is 2-5%, and where it is greater than 5%. The total stream length in this Reach is 1.9 miles. The amount of stream channel that has 2% or less gradient is 0.9 miles (48% of the channel length in this reach). The amount of stream channel that is of 2-5 % gradient is 0. miles (26% of the channel length in this reach). The amount of stream channel that is greater than 5% gradient is 0.5 miles (26% of the channel length in this reach). The amount of stream channel that is greater than 5% gradient is 0.5 miles (26% of the channel length is 5% or greater, there is less likelihood of large pools than in gradients of 5% or less. The actual number of pools in this reach is a Data Gap.

Habitat Access

Fish passage is assumed to RM 1.9, the bottom end of the steep gradient channel, whether useable habitat is available beyond that point is a Data Gap. This criterion rated Fair, because the water levels in Reach 1 are known to fluctuate and at times to go dry, though the exact location of the withdrawal(s) is not known.

Stream Flow

Resembles Natural Hydrograph - The stream flow in Reach 1 is altered as a result of water withdrawal, though the exact location of the withdrawal(s) is not known. It is unknown if the withdrawals are direct from the stream channel, or if they are indirect, from the hyporheic zone adjacent to the stream channel(s) (C. Fisher, personal communication). This reach rates Poor for this criterion.

Stream Corridor

Riparian Vegetation - The riparian vegetation in this reach rated Poor, based on spot visual observations (K. Cooper, personal communication). Shade has been greatly reduced in the lower portion of Reach 1, the natural vegetation has been replaced by orchards. In other places agricultural conversion of lands to pastures, and crop lands, has occurred. Trees and other vegetation have also been removed for clearing of the right of way for County Road 9480.

Stream Bank Stability - Stream bank stability is Good, but this is based in part on observation of some rip-rapped stream sideslopes, and trapezoidal maintained stream channel through orchards.

Floodplain Connectivity - Flood plain connectivity is rated as Poor based on spot visual observations (K. Cooper, personal communication). Tonasket Creek has been channelized through orchards and along County Road 9480 for at least 1 mile to the Okanogan River. No flood plain was created when the channel was constructed.

Reach 2-

Reach 2 affects the water quality downstream in Reach 1, but due to its steep gradient is not considered anadromous fish habitat.

Water Quality

Dissolved Oxygen - Dissolved oxygen (DO), as shown in the OCD data (collected May 2000-February 2001) for their sample site in Reach 2 indicates a saturation level of 95% (10.16 mg/l at 13.3° C.), rating this Reach as Good for DO.

Stream Temperature - Stream temperature was in the Good category according to the OCD data.

Turbidity - Turbidity was also in the Good range according to OCD data.

Nutrient Loading - Nutrient loading and Chemical Contamination information is a data gap for Reach 2, as well.

In-Channel Habitat

Substrate - Because Reach 2 is not considered to provide anadromous fish habitat, the substrate condition criterion does not apply.

Large Wood - Determination was made by remote sensing (GIS/Arcview mapping), not from on-theground collected data. In Reach 2, non-forested habitat types comprise 13% of 50 meter wide buffers on each side of Tonasket Creek. There is a Data Gap regarding the number of pieces of large woody debris within this reach. It appears the potential for producing large woody debris size class material may be present in this reach.

Percent Pools - The total stream length in this Reach is 11.3 miles. The amount of stream channel that has 2% or less gradient is 2.4 miles (22% of the channel length in this reach). The amount of stream channel that is of 2-5 % gradient is 6.2 miles (56% of the channel length in this reach). The amount of stream channel that is greater than 5% gradient is 2.6 miles (23% of the channel length in this reach). These determinations were made by remote sensing. Where the gradient is 5% or greater, there is less likelihood of large pools than in gradients of 5% or less. The actual number of pools in this reach is a Data Gap.

Habitat Access

Fish Passage - This criterion is not applicable because the reach, due to its high gradient, is not considered to provide anadromous fish habitat.

Stream Flow

Resembles Natural Hydrograph - Stream flow information collected by OCD indicates that this criterion rates Fair. Timing of upstream withdrawals may be the problem.

Impervious Surfaces - Casual observations along this Reach indicate a lack of impervious surfaces, ranking this Reach as being in Good condition.

Stream Corridor

Riparian Vegetation - The vegetation composition of this Reach is rated as Fair, the vegetation has been altered, but still appears to be within 25-50% of the potential natural community composition.

Stream Bank Stability - Because of some streamside alteration of vegetation types, the stream bank stability is considered Fair.

Floodplain Connectivity - The construction and maintenance of the County Road has altered the sideslopes of the creek in places, and as well, the construction of the County Road usurped part of the flood plain. In places where the sideslopes are quite steep, the sideslopes have not been altered much over the years, but in those places, the channel is confined without much of a flood plain. This criterion is considered as Fair.

Reach 3-

Water Quality-

Dissolved Oxygen - Stream Temperature - Turbidity-

Reach 3 includes Tonasket Creek and it tributaries above and inclusive of the wet meadow in T39N, R28E, Section 23, NE¹/₄. The wet meadow intercepts any sediment that might be delivered, and the DO and temperature are altered as a result of the transport in the 11.3 miles of Reach 2. Thus, the water quality (DO, temperature and turbidity) of Reach 1 is not affected by that of Reach 3. The above criteria are not applicable.

Nutrient Loading - Chemical Contamination and Nutrient Loading for this reach is a data gap.

In-Channel Habitat

Fine Sediment - Fine sediment that is delivered down Reach 3 settles in the wet meadow, so this criterion is not applicable.

Large Wood - Large woody debris that may fall into the channel above the wet meadow is not likely to be delivered through the meadow and downstream to Reach 1, so this criterion is not applicable. Percent Pools - This reach does not affect the reach of Tonasket Creek used by anadromous salmonids, so this criterion is not applicable.

Habitat Access

Reach 3 is above one natural fish barrier (long high gradient riffle), as well as two man-made barriers (a culvert under County Road 9480, and another culvert on Forest Road 3524-100), thus, this Reach is not usable or accessible by anadromous fish.

Stream Flow

Resembles Natural Hydrograph - Reach 3 flows are not known to be altered, so this criterion rates Good.

Impervious Surfaces - Impervious surfaces are not known to be present in Reach 3 (Tonasket Ranger District 1996).

Stream Corridor

Riparian Vegetation - Riparian vegetation is in Good condition (Tonasket Ranger District 1996), with the potential natural community and composition being greater than 50%.

Stream Bank Stability - Stream bank stability is in Good (Tonasket Ranger District 1996).

Floodplain Connectivity - The floodplain connectivity is currently in Good condition (Tonasket Ranger District 1996).

Similkameen River Basin

Sub-watershed Overview

The Similkameen River is the largest tributary to the Okanogan River that originates in the Washington Cascades, flows north into Canada, and loops around to the south into the northern reaches of Okanogan County, Washington. The Similkameen Basin is 666.53 square miles, containing 17 rivers and streams, with a perimeter of 226.89 miles (EPA website). The Similkameen drainage basin is 3600 square miles, 80 percent of which is in the Canadian portion of the watershed (Interim Instream Flow Report, 1986). It is bordered to the south by the Sinlahekin River, which joins the larger tributary at the Palmer Lake Reservoir. The Similkameen watershed is ranked by the USDA as a high priority sub-watershed with a 303(d) listing from the Washington Department of Ecology (WDOE) in 1997 (WDOE 1997).

Land Use and Ownership

The Similkameen River Basin is primarily comprised of forested lands and rangelands. Just as in the Okanogan River Basin, ownership of the Similkameen encompasses public and private lands. The public sector is made up of the US Forest Service, Washington Department of Natural Resources (WDNR) and the US Bureau of Land Management.

There is a total of about 210,000 acres (private and WDF&W estimates not known) of land in the Similkameen and Sinlahekin Basins currently used for grazing. As a result of present and historical overgrazing, the land around the Similkameen shows signs of degradation; in 1982, the Bureau of Land Management classified 32% of the rangeland condition as poor. The livestock cause hoof shear as they travel along the water's edge, and graze out the native plants that would add stability. These two combined activities cause erosion of the streambank and sediment deposition into the river. In

Okanogan/Similkameen Subbasin Summary 207

1982, 111.6 miles of the Similkameen and Sinlahekin were assessed for streambank stability, and almost 3% were found to be unstable due to grazing impacts.

Other factors that promote instability in the streambank are active mining, road construction and irrigation. According to the USFS, there are a total of 50.5 miles of road within 200 ft of the Similkameen (WQ management, 2000). These activities lead to increased runoff and less infiltration.

Topography, Geology & Soils

Steep mountainous regions characterize the shape of the Similkameen Basin. The basin is a transitional zone between the Cascade Mountains to the west and Okanogan Highlands to the east (Enloe Hydroelectric Project, 2000). The valley was carved out through glacial activity during the Pleistocene ice age (www.env.gov.bc.ca website). Cordilleran ice sheets and their meltwater also effected the basin's drainage patterns. During the ice sheets migration south from the interior of British Columbia, the advance and retreat activity cut deep narrow canyons. The valley walls climb to elevations around 2,800 ft from the water's edge. There is little water storage, and runoff and floods are quite common.

The Similkameen Basin has a semi-arid climate, with the exception of the western mountainous regions that are relatively wet (Enloe Hydroelectric Project, 1989). The soils in the basin that result from this climate display an assorted diversity.

Fluvial Geomorphology & In-Channel Habitat

The noxious weed, Diffuse knapweed, is an invader species and a serious water quality threat in the Similkameen watershed. The watershed is listed as a Class C river for in-channel vegetation. The introduced species crowd out the native vegetation and create instability along the riverbanks. Noxious weeds are characteristic for having deep tap root systems as opposed to the fibrous roots of the native species. Woody vegetation increases stability by deflecting the water energy away from the bank, thereby retaining the bank soils during high flows.

The Similkameen has the greatest impact on the Okanogan in terms of erosion problems, with an erosion rate of 1.18 acre-ft per square mile. In a Pacific Southwest Interagency Committee (PSIAC) model study in 1998, the Bonaparte Creek and the Similkameen subwatersheds yielded 33% of the total sedimentation yield, even though they cover only 9.5% of the total modeled land area. In 1972 at Nighthawk, six miles above Enloe Dam, average annual suspended-sediment discharge was 134,000 tons per year. The recorded accumulation of sediment from 1920-1972 created an average water level rise of 0.65 feet per year.

Vegetation and Riparian Condition

The vegetation in this semi-arid climate is a mixture of three steppe vegetation zones within four major vegetation communities. High hillsides promote the growth of ponderosa pine with bitterbrush as the dominant understory. On the lower slopes big, sagebrush/bluebunch wheatgrass are found on the gentle rises, while bitterbrush/Idaho fescue community thrives on the steeper, rocky regions. Treetip sagebrush, rubber rabbitbrush, arrowleaf balsamroot, prickly pear, and a variety of grasses are considered to be associate species. The fourth community is made up of smooth sumac and cheatgrass on the slopes above the reservoir.

Water Quantity/Hydrology

Water supply

The total drainage area for the Similkameen River is 3550 mi², mostly in the Canadian portion of the basin (Enloe Hydroelectric Project, 1989). This includes two principal drainages on the Washington side: the Pasayten and Ashnola.

There is no principal aquifer in the majority of the Similkameen River Basin, but there are 29 square miles of Pacific Northwest fill aquifers composed of unconsolidated sand and gravel (USGS 1998). There is also a metamorphic, granitic and consolidated sedimentary rock component that has low permeability and porosity (Enloe Hydroelectric Project, 1989).

Streamflow

The Similkameen provides 75% of the average flow to the Okanogan River Basin. Peak flows occur around May to June (8,000-9,000 cfs), with a constant flow around 600-900 cfs the rest of the year. The peak makes up about 61 percent of the annual flow, while the months of August through March make up between 2.2 to 3.3 percent of the total annual discharge (Enloe Hydroelectric Project, 2000). Suspended Sediment flows closely follow streamflow peaks, forming a plateau of 11,500 mg/L between April and June (Okanogan Water Quality Management Plan, 2000). Because it is such a major contributor, the problem of suspended sediment transported in the Similkameen is magnified.

Water Quality

There is one 303(d) listing because of four excursions past the standard out of 34 samples for water temperature between 1991-1996 (Proposed 1998 Section 303(d) List), 1997). The Similkameen River is a Class A River and must hold to these water quality standards. The standard temperature for Class A is 18° C. The Similkameen has been measured above this temperature through most of August and into July. Temperatures required for successful salmon spawning range from 3.9° - 20° C. The Similkameen has temperatures of 22° C (as high as 26 C) in mid-summer, precluding summer rearing by juvenile salmonids (WQ management, 2000).

Anadromous Salmonid Fisheries Resources of the Similkameen Basin

Even though there are problems with sedimentation and water temperature, chinook salmon runs have increased slightly in the Similkameen River and declined in the Okanogan (WQ Management, 2000) (**Figure B-18**). This could be due to the migration barrier that the Conconully Dam provides; passage for salmon runs have been constructed through abandoned power plant, Enloe Dam, 8.8 miles above the confluence with the Okanogan River.

Excess silt and sedimentation has degraded salmon spawning habitat by reducing pool sizes. As the pools become shallower and wider, more surface area is exposed to direct sunlight, increasing temperatures.

Habitat Limiting Factors Assessment of the Similkameen Basin

The following information discusses the factors affecting fish distribution in the Similkameen River (Table 5-20).

Table 5-20.	Similkameen	River	Limiting	Factors	Assessment
1 4010 0 201	Simmeri	111,01		I MCCOID	1 100 coontent

Attribute Considered	Anadromous potential, Water Quality concerns
Water Quality	
Dissolved Oxygen	
Stream Temperature	
Turbidity/Suspended Sediment	
Nutrient Loading	
In Channel Habitat	
Fine Sediment (substrate)	
Large Woody Debris	
Percent Pool	
< 2%	
2-5%	
>5%	
Habitat Access	
Fish Passage	
Stream Flow	
Resembles Natural Hydrograph	
Impervious Surface	
<u>Stream Corridor</u>	
Riparian Vegetation	
Stream Bank Stability	
Floodplain Connectivity	

Ninemile Creek Watershed

Sub-watershed Overview

Ninemile Creek Subbasin is in the Northeast corner of the Washington-Canada border of the Okanogan Watershed. The main tributary that forms the subbasin generates from Osoyoos Lake on its western border. The majority of the Ninemile Creek subbasin is in Canada, to the northeast of Osoyoos Lake. The land ranges from arid desert to coniferous forest. No other major bodies of water are found on the Canadian side besides Ninemile Creek.

Land Use and Ownership

The close proximity of Osoyoos Lake to this arid region provides the irrigation needs for orchards in both the US and Canada portions of Ninemile Creek (<u>www.ncw.wsu.edu/PNWTrees</u>, 4/30/01). The major crops consist of apples, pears, sweet cherries, and peaches, while wine grapes are considered more minor crops (<u>www.ncw.wsu.edu/PNWTrees</u>, 4/30/01).

Topography, Geology & Soils

The altitude varies from 300 to 1000 ft from west to east across the subbasin. The Ninemile Valley is comprised of arid terraced land rising across the valley to forested regions on the east edge of the subbasin (www.ncw.wsu.edu/PNWTrees, 4/30/01).

Due to continental and alpine glacial activity, Pleistocene glacial deposits and Holocene alluvial deposits make up the soil structure of the Okanogan watershed (Ecology, 1999). Bedrock is composed primarily of granitic and andesitic rocks, and metamorphosed sedimentary rocks (Ecology, 1999).

Vegetation and Riparian Condition

Ninemile Creek subbasin is in a Montane Cordillera terrestrial ecozone (<u>www.atlas.gc.ca</u>, 4/30/01). On the Washington of the Ninemile subbasin there are two main vegetation types: forest land and shrub/grass land. Along with the elevation gain, the grasslands become forested areas along the eastern fringe. The nearness of the Cascade Range provides a rain shadow for the Ninemile Creek subbasin, forming dry, arid lands with an abundance of water due to snowmelt into the adjacent Osoyoos Lake and Ninemile Creek region (<u>www.ncw.wsu.edu/PNWTrees</u>, 4/30/01).

Water Quantity/Hydrology

Water supply Streamflow

Water Quality

Ninemile Creek was added to the Washington State 1998 303(d) list for DDT (NW Power Council, 2001). Another parameter of concern is the sedimentation rate, which is at 0.33 ac-ft/mi2. Sedimentation degrades habitat for salmonid species and increases temperatures (NW Power Council, 2001). Ninemile Creek is further north from the confluence of the Similkameen with the Okanogan and so is not influenced by the high levels of sedimentation coming from the Similkameen River.

Anadromous Salmonid Fisheries Resources of Ninemile Creek

The Zosel Dam/Osoyoos Lake region is important during the summer chinook spawning months of September to November (**Figure B-19**). The Similkameen is one of the most productive areas for summer chinook, and according to the 1998 survey of summer chinook redds, a total of 238 redds were counted during the spawning season (Murdoch and Miller 1999). The influence of the Similkameen and Okanogan River close to Zosel Dam creates great potential for tributary escapement into Ninemile Creek branching off to the east of Osoyoos Lake.

Habitat Limiting Factors Assessment of the Ninemile Creek Sub-watershed

The following information addresses the factors affecting fish distribution in the Ninemile Creek subwatershed (**Table 5-21**).

Habitat Pathway and Indicator*	Limiting Habitat Factor Rankings
Water Quality	
Dissolved Oxygen	
Stream Temperature	
Turbidity/Suspended Sediment	
Nutrient Loading	
In Channel Habitat	
Fine Sediment (substrate)	
Large Woody Debris	
Percent Pool	
Habitat Access	
Fish Passage	
Stream Flow	
Resembles Natural Hydrograph	
Impervious Surface	
Stream Corridor	
Riparian Vegetation	
Stream Bank Stability	

Table 5-21. Ninemile Creek Limiting Factors Assessment

Habitat Pathway and Indicator*	Limiting Habitat Factor Rankings
Floodplain Connectivity	

Summary of Action Item Recommendations by Sub-basin

This chapter provides a bulleted summary of the action item recommendations by sub-watershed, based upon the limiting factors assessment results and data gaps identified in chapter 5. The recommendations provided here are not prioritized, and are based upon the current technical understanding of the Okanogan TAG. Action items are listed for only those sub-watersheds where a significant consensus was secured. Action item recommendations for the Canadian sub-watersheds are beyond the scope of this current effort, but will be addressed in other related forums.

Okanogan Mainstem Action Items

- Address impacts of non-native fishes (e.g., smallmouth bass) on anadromous resource survival.
- Characterize sediment budget
- Secure functional riparian habitats and identify specific areas in need of restoration.
- Reduce mainstem temperatures to tolerable levels

Chiliwist Creek Sub-watershed Action items

- Stabilize flow to ensure cold year-round water at the mouth of the creek. High flows are not necessary.
- Restore sinuosity, decrease channelization.
- Decrease sediment load from roads.

Loup Loup Sub-watershed Action items

As evidenced by the current use of the upper reach of Loup Loup Creek by eastern brook trout and resident rainbow trout, water quality conditions are generally conducive for salmonids to exist. However, passage barriers and altered hydrology effectively eliminate the use of this system by anadromous salmonids except at the confluence of the system with the Okanogan mainstem. Based upon the limiting factors discussion and tabulation provided in section 5.3, the following (unprioritized) action items are recommended to improve habitat conditions in the Loup Loup subwatershed. in contrast, the lower reach (RM 0 to ~ 2.5) of Loup Loup Creek has several factors that limit the ability for salmonids to become reestablished. Two fish passage barriers (\sim RM 0.1 and 0.25) impede upstream migration by adult steelhead thus preventing natural reproduction for this endangered species. Furthermore, flows at \sim RM 2.0 are diverted for irrigation during the irrigation season and thus causing flows to become non-existent in this lower reach by mid-summer. Thus, before Loup Loup Creek can be beneficial to the recovery of anadromous salmonids particularly for summer steelhead, continuous flows need to be provided in the lower reach in sufficient amount for incubation and juvenile survival and current barriers need to modified or removed for migrating adult steelhead to access this lower reach.

- Formally evaluate fish passage conditions in system proceeding from the mouth upstream to the first natural blockage (RM 2.5).
- Examine water use in basin and eliminate excess uses water to re-establish flow regimes where possible in naturally anadromous zones
- Correct human-caused fish passage blockages as identified from further study, in concert with flow remediation to lower creek below falls at RM 2.5.

- Conduct quantitative habitat assessment study to identify functional and non-functional reaches and to prioritize habitat reaches for practicable in-channel and stream corridor (i.e., riparian) restoration.
- Examine Tallant Creek for potential habitat value through quantitative study. Identify source(s) of DDT contamination and determine if continued DDT contamination prevents or limits function of system for anadromous salmonids
- Reestablish anadromous fish by eradicating brook trout in upper waters. Reestablish historic steelhead routes by establishing stable flow.

Felix Creek Action Items

• Address report of illegal water withdrawal.

Omak Creek Action Items

- Create a sediment control program to limit sedimentation rates.
- Explore land use ordinances to improve water temperatures in lower reach (RM 0-5.1). Implement fencing, planting, and livestock management programs.
- Reduce road densities, decommission roads in the upper basin.

Salmon Creek Action Items

- Restore hydrologic regime that supports life cycles through Salmon Creek in the reach below the diversion dam (RM). Would support spring chinook and summer steelhead migration.
- Improve passage facilities at the OID diversion dam (RM).

Wanacut Creek Action Items

• Regulate irrigation water withdrawals to maintain consistent flows through subbasin.

Johnson Creek Action Items

Tunk Creek Action Items

Chewiliken Creek Action Items

Aeneas Creek Action Items

- Maintain water temperature. Aeneas Creek is a good rearing/refuge for sockeye migrating up to Osoyoos Lake.
- Create land use regulations to ensure good water quality.
- Maintain low irrigation use (low number of diversions).
- Gain more flow.
- Passage issues reach #1. If barrier is removed would there be spawning in Aeneas Creek? Removal would only open ¹/₄ mile up to the falls (natural barrier). There are high CaCO₃ levels in Aeneas Creek.
- Improve wood loading (low priority item).

Whitestone Creek Action Items

Bonaparte Creek Action Items

- Control sediment delivery. Identify sediment source control.
- Plant in areas of bank erosion next to roads.

Okanogan/Similkameen Subbasin Summary 213

• Create land management policies for private owners (i.e. fences to prevent cattle from going in the stream).

Siwash Creek Action Items

Antoine Creek Action Items

- Build storage reservoir to permit better flow regulation downstream of the dam. For example, improving flows through Fancher dam would help passage issues.
- Reestablish the natural channel in Reach 1 (RM 0-1.5).

Tonasket Creek Action Items

- Improve low streamflows by limiting/regulating water withdrawals.
- Preserve condition that benefit aquatic resources created by isolated events.
- Maintain habitat quality/quantity.

Similkameen River Action Items

Ninemile Creek Action Items

Literature Cited

- Alderdice, D.F., W.P. Wickett, and J.R. Brett. 1958. Some effects of temporary exposure to low dissolved oxygen levels on Pacific salmon eggs. Journal of Fisheries Research Board of Canada 15:229-250.
- Alt, D.P. and D.W. Hyndman, 1884. Roadside Geology of Washington. Mountain Press Publishing Company, PO Box 2399, Missoula, Montana.
- Bain, M.B. and N.J. Stevenson (eds.). 1999. Aquatic Habitat Assessment: Common Methods. American Fisheries Society, Bethesda, Maryland. 216 pp.
- Baker, J.P. and C.L. Schofield. 1982. Aluminum toxicity to fish in acidic waters. Water, Air and Soil Pollution 18:289-309.
- Baxter, C.V., C.A. Frissell and F.R. Hauer. 1999. Geomorphology, logging roads, and the distribution of bull trout spawning in a forested river basin: implications for management and conservation. Transactions of the American Fisheries Society. 128(5): 854-867.
- Bell, M.C. 1986. Fisheries handbook of engineering requirements & biological criteria. Portland, Or. Fish Passage Development and Evaluation Program, Corps of Engineers, North Pacific Division.
- Bennett, L.A. 1979. Cultural Resources Overview, USDA Forest Service, Okanogan National Forest.
- Bickford, S. 2000. Personal Communication. Douglas County Public Utility District. Regarding: Adult sockeye migration in Aeneas Creek.
- Bisson, P.A., R.E. Bilby, M.D. Bryant, C.A. Dolloff, G.B. Grette, R.A. House, M.L. Murhphy, K.V. Koski, and J.R. Sedell. 1987. Large woody debris in forested streams in the Pacific northwest: Past, present, and future. Pages 143-190 IN: Streamside management: Forestry and Fishery Interactions, (eds.) E.O. Salo and T.W. Cundy, University of Washington Institute of Forest Resources, Seattle, WA.

- Bjornn, T.C. and D.W. Reiser. 1991. Habitat requirements of salmonids in streams. Pages 83 138
 IN: Influences of Forest and Rangeland Management on Salmonid Fishes and Their Habitats.
 W.R. Meehan, editor. American Fisheries Society Special Publication 19, Bethesda, Maryland. 751 pp.
- Brett, J.R. 1952. Temperature tolerance of young Pacific Salmon, genus Oncorhynchus. Journal of the Fisheries Research Board of Canada. 19:265-323.
- Brown, L. 2001. Personal Communication. Regarding: steelhead migration in the Upper-Columbia River.
- Buckmiller, Dave. 2001. Personal Communication. Tonasket District Wilderness Ranger. Regarding: steelhead resources in Tonasket Creek.
- Caldwell, B. and D.Catherson. 1992. Methow River Basin fish habitat analysis using the instream flow incremental methodology. Report by the Washington State Department of Ecology, Olympia, Washington.
- Cederholm, C. J.; Reid, L. M.; and Salo, E. 0. 1981. Cumulative Effects of Logging Road Sediment on Salmonid Populations of the Clearwater River, Washington: A Project Summary. Pages 373-398 in WWRC.
- Chapman, D., A. Giorgi, T. Hillman, D. Deppert, M. Erho, S. Hays, C. Peven, B. Suzumoto, and R. Klinge. 1994a. Status of Summer/Fall Chinook Salmon in the Mid-Columbia Region. Don Chapman Consultants, Boise, ID. 412 p.
- Chapman, D. W., C. Peven, T. Hillman, A. Giorgi, F. Utter. 1994b. Status of summer steelhead in the mid-Columbia river. Don Chapman Consultants, Boise, ID.
- Chapman, D.W., C. Peven, A. Giorgi, T. Hillman, F. Utter. 1995. Status of spring chinook salmon in the mid-Columbia region. Don Chapman Consultants, Boise, ID.
- Chrisp Y.A. and T.C. Bjornn. 1978. Parr-smolt transformation and seaward migration of wild and hatchery steelhead trout in Idaho. Idaho Cooperative Fishery Research Unit, Final Report Project F-49-12, University of Idaho, Moscow, Idaho.
- Columbia Basin System Planning Production Plan for Salmon and Steelhead, Methow and Okanogan River Sub-basins, Sept. 1, 1990.
- Colville Confederated Tribes. 1992. Timber Fish and Wildlife Survey. Okanogan County, Washington.
- Colville Confederated Tribes. 1997. Integrated Resources Management Plan. Phase I: Inventory and Analysis Reports. Okanogan County, Washington.
- Colville Confederated Tribes. 2000. Environmental Trust Department database. November, 2000. Okanogan County.
- Colville Confederated Tribes. 2001. Water Quality Assessment and Management Program 305B Report. Okanogan County, Washington.

- Committee on Protection and Management of Pacific Northwest Anadromous Salmonids et al. 1996. (pg. 7 of 74).
- Cooper, Kelly. 2001. Personal Communication. Tonasket Ranger District Fish Technician. Regarding: in-channel habitat (i.e. substrate) of Tonasket Creek.

Craig, J and A. Suomela. 1941. History and Development of the Fisheries of the Columbia River.

Dames and Moore, 1999. Joint Study on Salmon Creek.

- Department of the Interior and Bureau of Reclamation. 1976. Final Environmental Statement: Oroville-Tonasket Unit Extension Okanogan-Similkameen Division Chief Joseph Dam Project.
- Dibble, C. 2001. Personal Communication. Washington Department of Natural Resources. Regarding: land ownership in Loup-Loup Creek.
- Don Chapman Consultants, Inc. 1989. Summer and winter ecology of juvenile chinook salmon and steelhead trout in the Wenatchee River, Washington. Final Report to Chelan County Public Utility District, Wenatchee, Washington. 301 p.
- Emadi, H. 1973. Yolk-sac malformation in Pacific salmon in relation to substrate, temperature, and water velocity. Journal of the Fisheries Research Board of Canada 30:1249-1250.
- EPA. 1998. Environmental Protection Agency Clean Water Action Plan. Washington, D.C.
- Fisher, C.J. and L. Fedderson. 1998. An Estimate of the Quantity of Spawning Habitat and Associated Embryo Production for Summer Steelhead and Spring Chinook in the Salmon Creek, Washington. Colville Confederated Tribes 15p
- Fisher, Chris. 2001. Personal Communication with Jerry Jones. Fish Biologist, Colville Confederated Tribes. Regarding: fisheries resources in Aeneas Creek. April 6, 2001.
- Fisher, Chris. 2001. Personal Communication. Fish Biologist, Colville Confederated Tribes. Regarding: habitat conditions in Bonaparte Creek.
- Fisher, Chris. 2001. Personal Communication. Fish Biologist, Colville Confederated Tribes. Regarding: habitat conditions and fisheries resources in Omak Creek.
- Fisher, Chris. 2001. Personal Communication. Fish Biologist, Colville Confederated Tribes. Regarding: stream flow in Tonasket Creek.
- Fisher, J.P. 2000. Facilities and Husbandry (Large Fish Models). In: The Laboratory Fish. Academic Press, London, pp 1-39.
- Forteath, N. (1988) In Fish Diseases, pp. 145-163. Post graduate committee in veterinary science, University of Sydney, Australia.
- Fraley, J. and B. Shepard. 1989. Life history, ecology and population status of migratory bull trout (Salvelinus confluentus) in the Flathead Lake and River system, Montana. Northwest Science 63:133 143.

- Fryer, J. 1995. Columbia Basin Sockeye Salmon: Causes of their Past Decline, Factors Contributing to their Present Low Abundance, and the Future Outlook. Doctoral dissertation, University of Washington, Seattle.
- Fulton, L. 1968. Spawning Areas and Abundance of Chinook Salmon (O. tshawytscha) in the Columbia River Basin – Past and Present. U.S. Fish and Wildlife Service, Special Scientific Report – Fisheries No. 571.
- Furniss, M.J.; Roelofs, T.D.; and Yee, C.S. 1991. Road Construction and Maintenance. American Fisheries Society Special Technical Publication 19:297-323.
- Garrigues, R. S. and B. Carey. 1999. Ground-water data compilation for the Okanogan watershed. Washington State Department of Ecology.
- Gregory, R.S.. 1994. The influence of ontogeny, perceived risk of predation, and visual ability on the foraging behavior of juvenile chinook salmon. Pages 271-284 in Vol. 18, D.K. Stouder, K.L. Fresh and R.J. Feller, editors. Theory and application in fish feeding ecology. University of South Carolina, Columbia.
- Groot, C. and L. Margolis (Editors). 1991. Pacific salmon life histories. UBC Press, University of British Columbia, Vancouver, BC. 564 p.
- Gullidge, E.J., 1977. The Okanogan River Basin Level B Study of the Water and Related Land Resources. Washington State Department of Ecology.
- Hansen, J.M. 1993. Upper Okanogan River sockeye salmon spawning ground survey-1992. Colville Confederated Tribes. Prepared for: Douglas County Public Utility District.
- Hansen J.M. 1995. Abundance and Quality of Salmonid Fish Spawning Habitat is Salmon Creek, Washington. Colville Confederated Tribes 9p
- Hansen., Phillip J. June 1998. Geologic Design Data Report for Safety of Dams Program Salmon Lake Dam. Okanogan Project, Washington. Volume I.
- Hatch, D.A., A. Wand. A. Porter, and M. Schwartzberg. 1992. The feasibility of estimating sockeye salmon escapement at Zosel Dam using underwater video technology. Columbia River Intertribal Fisheries Commission. 29 pp.
- Hays, F.R., I.R. Wilmot, and D.A. Livingston. 1951. The oxygen consumption of the salmon egg in relation development and activity. Journal of Experimental Zoology 116:377-395.
- Healey, M.C. 1991. Life history of chinook salmon. Pages 311-393, in, Groot, C. and L. Margolis (eds.). Pacific salmon life histories. UBC Press, Vancouver.

Hoffman. 1998. UDFW.

- Hunner, W. 2001. Personal Communication. Colville Confederated Tribes Hydrologist. Okanogan County, Washington.
- Labor Market and Economic Analysis (LMEA) Branch Employment Security Department. 1997. Okanogan County Profile.

- Leath, A. 2001. Personal Communication. Landowner, former WSE extension agent.
- Leopold, B.L., M.G. Wolman, and J.P. Miller. 1992. Fluvial Processes in Geomorphology. Dover Publications, Inc. Mineola, New York. 522 pp.
- Linden, M. 2001. Personal Communication. Regarding: habitat conditons of Bonaparte Creek.
- Marco, J. 2001. Personal Communication. Colville Confederated Tribes Fisheries Biologist. Okanogan County, Washington.
- Matthews and Cannings. 2001. Personal Communication.
- Miller, R. R. 1965. Quaternary freshwater fishes of North America. In: The Quaternary of the United States. Princeton University Press, Princeton, New Jersey. Pp. 569-581.
- Miller, M.D. and T.W. Hillman. 1996. Summer/fall chinook salmon spawning ground surveys in the Methow and Okanogan river basins, 1995. Report to Chelan County Public Utility District. BioAnalysts, Inc., Boise, Idaho.
- Miller, M.D. and T.W. Hillman. 1997. Summer/fall chinook salmon spawning ground surveys in the Methow and Okanogan river basins, 1996. Report to Chelan County Public Utility District. BioAnalysts, Inc., Boise, Idaho.
- Miller, M.D. and T.W. Hillman. 1998. Summer/fall chinook salmon spawning ground surveys in the Methow and Okanogan river basins, 1997. Report to Chelan County Public Utility District. BioAnalysts, Inc., Boise, Idaho.
- Monk, Patrick. Okanogan Irrigation District. April 7, 1998. Fax Memo to Chris Fisher, CCT re: Flow Data Sheets and Notes on the Quad Maps.
- Montgomery, D.R. and J.M. Buffington. 1993. Channel classification, prediction of channel response and assessment of channel condition. Department of Geological Sciences and Quaternary Research Center, University of Washington, Seattle, WA.
- MWG (Montgomery Water Group), Adolfson Associates, Inc., Hong West & Associates, Inc., R2 Resource Consultants, Inc., Marshall and Associates, Inc. and Washington Department of Ecology. 1995. Initial watershed assessment water resources inventory area 49—Okanogan River watershed. Ecology Open File Report 95-14.
- Mullan, J.W., K.R. Williams, G. Rhodus, T.W. Hillman and J.D. McIntyre. 1992. Production and habitat of salmonids in Mid-Columbia River tributaries. Monograph 1, U.S. Fish and Wildlife Service, Leavenworth, WA.
- Murdoch, Andrew and Todd Milbrof. Summer Chinook Spawning Ground Survey in the Methow and Okanogan River Basins in 1998. Washington Department Fish and Wildlife Salmon and Steelhead Division. Report #SS99-03.
- Murry, T. 2001. Personal Communication. Okanogan County Planning. Regarding: the unincorporated community of Mallott, WA.
- Naiman, R.J., T.J. Beechie, L.E. Benda, D.R. Berg, P.A. Bisson, L.H. MacDonald, M.D. O'Connor, P.L. Olson, E.A. Steel. 1992. Fundamental elements of ecologically healthy watersheds in the

Okanogan/Similkameen Subbasin Summary 218

Pacific Northwest coastal ecoregion. In: R.J. Naiman (ed.) Watershed management: balancing sustainability and environmental change. Springer-Verlag, New York. 542p.

Natural Resource Conservation Service (NRCS). 1995. Omak Creek Watershed Plan/Environmental Assessment. United States Department of Agriculture. 54 pages.

Nelson 1998. (pg. 7 of 74 in Hab LF by Watershed chpt.)

- Nelson, C. 2001. Personal communication. Okanogan Conservation District. Regarding: flow measurements and water qualityin the Upper Chiliwist.
- Newcombe, C.P. and J.O. Jensen. 1996. Channel suspended sediment and fisheries: a synthesis for quantitative assessment of risk and impact. North American Journal of Fisheries Management 16:693-697.
- NMFS. 1996. Coastal Salmon Conservation: Working Guidance for Comprehensive Salmon Restoration Initiatives on the Pacific Coast. National Oceanic and Atmospheric Administration, U.S. Dept. of Commerce.
- NRCS 1999. Salmon Creek Inventory and Analysis USDA Natural Resources Conservation Service 100p
- NRCS 1999. Salmon Creek Inventory and Analysis USDA Natural Resources Conservation Service 100p
- Okanogan TAG: Limiting Factors Analysis Technical Committee. 2001.
- Okanogan Watershed Committee (OWC). 2000. Okanogan Watershed Water Quality Management Plan. Okanogan Watershed Stakeholder's Advisory Committee and Okanogan Conservation District. Okanogan, Washington.
- Peven, C.M. 1990. The life history of naturally produced steelhead trout from the mid-Columbia River Basin.
- Peven, C.M. 1992. Population status of selected stocks of salmonids from the mid-Columbia River basin. Chelan County Public Utility District, Wenatchee, Washington.
- Peven, C.M. and N.A. Duree. 1997. Rock Island Dam smolt monitoring, 1992. Chelan Public Utility District, Wenatchee, Washington.
- Peven, C. 2001. Personal Communication. Regarding: chinook salmon in the mainstem Columbia River.
- Piper, R.G., I.B. McElwain, L.E. Orme, J.P. McCraren, L.G. Fowler, and J.R. Leonard. 1982. Fish hatchery management. US Fish and Wildlife Service, Washington, D.C.
- Platts, William S. 1981. Streamside Management to Protect Bank Channel Stablility and Aquatic Life in Interior West Watershed Management, Proceedings of a Symposium. April 8-10, 1980, Spokane, WA.

Platts, W. S. 1991. Livestock Grazing. American Fisheries Society Special Publication 19:389423.

- Pratt, K.L., D.W. Chapman, and M. Hill. 1991. Potential to enhance sockeye salmon upstream from Wells Dam. Don Chapman Consultants, Boise.
- Rosgen, D. 1996. Applied River Morphology. Wildland Hydrology. Pagosa Springs, Colorado.
- Scott, W.B., and Crossman, E.J. 1973. Fresh Water Fishes of Canada. Fisheries Research Board of Canada. Bulletin 184. Ottawa, Ontario, Canada. 966 pages.
- Servizi, J.A. 1988. Sublethal effects of dredged sediments on juvenile salmon. Pages 57-63 in C.A. Simenstad (ed) Effects of dredging on anadromous Pacific coast fishes. University of Washington, Seattle.
- Sigler, J.W., T.C. Bjorn, and F.H. Everest. 1984. Effects of chronic turbidity on density and growth of steelhead and coho salmon. Transactions of the American Fisheries Society 113:142-150.
- Sigler. J.W. 1988. Effects of chronic turbidity on anadromous salmonids: recent studies and assessment techniques perspective. Pages 27-37 in C.A. Simenstad (ed) Effects of dredging on anadromous Pacific coast fishes. University of Washington, Seattle.
- Soil Conservation Service. 1938. Conclusion Report: Mission Creek Watershed. U.S. Department of Agriculture. SCS file document, Pacific Northwest Region 11, Spokane, WA. 36 pp.
- Spotts, Jim. 2001. Personal Communication. Former Forest Fish Biologist for Okanogan National Forest and for Washington Department of Fish and Wildlife, Region 2. Regarding: spring chinook in the Upper Columbia Basin.
- Swanson, D.N. 1991. Natural Processes. Pages 139 179 IN: Influences of Forest and Rangeland Management on Salmonid Fishes and Their Habitats. W.R. Meehan, editor. American Fisheries Society Special Publication 19, Bethesda, Maryland. 751 pp.
- Swedberg, D. 2001. Personal Communication. Manager, WDFW Sinlahekin Wildlife Area, Okanogan County, Washington. Regarding: wildlife in Tonasket Creek area (i.e. beaver).
- The Northwest Power Planning Council (NWPPC). Draft Okanogan/Similkameen Subbasin Summary. May 11, 2001.
- Theurer, F.D., Kenneth A. Voos and William J. Miller. 1985. Instream water temperature model Washington, DC: Western Energy and Land Use Team, Division of Biological Services, Research and Development, Fish and Wildlife Service, U.S. Dept. of the Interior.

Tonasket Ranger District, 1996. Unpublished stream survey data on the USFS managed lands.

- Tonasket Ranger District. 1998. Biological Assessment for Grazing Allotments within the Tonasket Creek Watershed of the Okanogan Sub-basin. Portions of Haley, Hull, Lost and Phoebe Allotments. 13 April 1998. Unpublished report. 34 pages.
- Trevino, L. 2001. Personal Communication. Colville Confederated Tribe Water Administrator. Okanogan County.
- U.S. Department of Agriculture Soil Conservation Service (USDA). July 1980. Soil Survey of Okanogan County Area, Washington.

- USDA, USDI. 1995. Decision Notice for the Interim Strategies for Managing Anadromous Fish-Producing Watersheds in Eastern Oregon and Washington, Idaho, and Portions of California (PACFISH) USDA Forest Service Pacific Northwest Region, USDI Bureau of Land Management, Portland, Oregon.
- USDA, USDI. 2000. Draft. Interior Columbia Basin-Ecosystem Management Project (ICBEMP). PNW-GTR-400. USDA Forest Service, USDA Bureau of Land Management, Walla Walla, Washington.
- USDA. 1995. Okanogan Cooperative River Basin Study, Request for Authorization.
- US Fed Reg, 1999. Final Rule, Endangered Status of One Chinook Salmon ESU. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service. US Federal Register. Vol. 64, Number 56, March 24, 1999, page 14328.
- USFS. 1998a. Draft Framework to Assist in Making Endangered Species Act Determinations of Effect for Individual or Grouped Actions at the Bull Trout Subpopulation Watershed Scale. 47 pp.
- USFS, 1998b. Tonasket Watershed Assessment. US Forest Service, Okanogan National Forest, Tonasket Ranger District, Tonasket, Washington.
- USFS, 1999. Antoine-Siwash Watersheds Assessment. US Forest Service, Okanogan National Forest, Tonasket Ranger District, Tonasket, Washington.
- USGS. 1954. Plate B1. Generalized Geology of Okanogan River Basin and Locations of Selected Wells, 1:250,000 map.
- USGS. 1984a. Omak, Washington 1:100,000-scale metric topographic map, #WA1371.
- USGS. 1984b. Oroville, Washington 1:100,000-scale metric topographic map, #WA1405.
- USGS. 1998. Principal Aquifers of the 48 Contiguous US.
- Utter, F.R. 1993. A genetic examination of chinook salmon populations of the upper Columbia River. Report to Don Chapman Consultants, Inc., Boise, Idaho.
- Van Woert, D. 2001. Personal Communication. Tonasket Ranger District Assistant Fore Management Officer and private land owner on lower Antoine Creek.
- Waknitz, W.F. et al. 1995. Status review for mid-Columbia River summer chinook salmon. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northwest Fisheries Science Center.
- Walters, K. 1974. Water in the Okanogan River Basin, Washington. Department of Ecology, Water-Supply Bulletin 34.
- Washington Department of Ecology (WDOE). 1976. Reconnaissance Data on Lakes in Washington, Volume 5: Chelan, Ferry, Kittitas, Klickitat, Okanogan, and Yakima Counties. Water-Supply Bulletin 43, Vol. 5.

- Washington Department of Ecology. 1995. Watershed Approach to Water Quality Management: Needs Assessment for the Okanogan Watershed. June 1995. Report # WQ-95-60.
- Washington Department of Ecology. 1997a. Aquatic Plants Technical Assistance Program, Activity Report 98-311.
- Washington Department of Ecology. 1997b. Impaired and Threatened Surface Water Requiring Additional Pollution Control.
- Washington Department of Ecology. 1997c. Water Quality Monitoring Data. 1977-1997. Washington State Department of Ecology, Environmental Investigations and Laboratory Services, Olympia, Washington.
- Washington Department of Ecology. 1998. 1998 Washington State Water Quality Assessment: Section 305(b) Report. WDOE Water Division, Water Quality Program. Publication No. WQ-98-04. Olympia, WA.
- Washington Department of Ecology. Draft Initial Watershed Assessment Water Resource Inventory Area 49 Okanogan River Watershed. June 8, 1995.
- WATERSHEDS. 1997. Water, Soil, and Hydro-Environmental Decision Support System. Developed Under a Grant From the United States Environmental Protection Agency (United States Environmental Protection Agency Project #CR822270/Grant Cooperative Agreement 818397011).
- WDFW and Western Washington Treaty Indian Tribes (WWTIT). 1994. 1992 Washington State Salmon and Steelhead Stock Inventory (WDFW & WWTIT). Appendix one: Puget Sound Stocks, South Puget Sound Volume. Olympia, Washington.
- WDFW. 1990. Okanogan and Okanogan Rivers Subbasin: Salmon and Steelhead Production Plan.
- Williams, R.N., L.D. Calvin, C.C. Coutant, M.W. Erho, Jr., J.A. Lichaowich, W.J. Liss, W.E. Mconnaha, P.R. Mundy, J.A. Stanford, R.R. Whitney. 1996. Return to the River: Restoration of Salmonid Fishes in the Columbia River Ecosystem. Nowrthwest Power Planning Council, Portland, OR. 548 pp.
- Williams, Ken. 2001. Personal Communication. Washington Department of Fish and Wildlife Region 2 Fish Biologist.
- Yates, H.A. 1968. A pioneer project, a story of courage. History of the Okanogan Irrigation Project in Okanogan County, Washington: Portland, Oregon, Metropolitan

Subbasin Management

The anadromous fish species targeted for management in the Okanogan Basin are spring chinook, summer chinook, sockeye, and summer steelhead. The goal is to restore sustainable, naturally producing populations to support tribal and non-tribal harvest and cultural and economic practices while protecting the biological integrity and the genetic diversity of the watershed.

In an attempt to meet the subbasin goal, land managers have adopted the following outcome-based objectives:

- 1. Improve adult survival and
- 2. Improve juvenile survival.

Chinook

The broad strategy for reintroducing and protecting Okanogan spring chinook combines habitat protection, passage improvements, harvest management restrictions, and supplementation with artificial production. Specific strategies include improving habitat through the use of habitat restoration and passage improvements, and supplementing naturally spawning populations to enhance natural production.

The Confederated Tribes of the Colville Reservation (CTCR) are preparing comprehensive plans now to reintroduce spring Chinook into the Okanogan basin and to expand the propagation of summer/fall Chinook in the basin. These programs are being undertaken to achieve CTCR goals of restoring naturally spawning populations of Chinook salmon in their historic habitats, providing reliable and predictable runs of hatchery-origin Chinook to support ceremonial and subsistence (selective) fisheries, and local recreational (selective) fisheries.

For spring Chinook, the CTCR are currently investigating six strategic options (see Appendix O). The preferred alternative being analyzed would create both an "integrated recovery" program to restore naturally spawning populations in their historic habitats and an "isolated harvest" program to create a hatchery-origin run of salmon to support the basin fisheries. These programs would be initiated with Carson stock to assess habitat viability and provide for immediate harvest benefits and then transition to Methow Composite stock when hatchery programs in the Methow basin create a surplus to the needs of that basin. The Methow stock would only be used if it could be planted in the Okanogan basin as an "experimental population" under the Endangered Species Act (ESA). An experimental population of ESA-listed spring Chinook could aid in the de-listing and recovery of an endangered species without the take prohibitions normally associated with a listed species. This would increase the likelihood of local support for species reintroduction and provide the management flexibility for harvest and habitat improvement.

For summer/fall Chinook, the CTCR are considering several options for further development (see Appendix R). The current preferred alternative includes several programs. These are 1) an "integrated harvest" program to increase supplementation into underutilized habitats and support selective fisheries in the Okanogan basin, 2) an "integrated recovery" program to initiate propagation of later arriving summer/fall Chinook for planting into underutilized habitats, and 3) expanding an "isolated harvest" program to provide more salmon for the subsistence fishery located below Chief Joseph Dam.

New, expanded, and reprogrammed hatchery facilities combined with new acclimation facilities will be necessary to support these Chinook programs. The CTCR intends to soon complete Hatchery & Genetic Management Plans that will describe and analyze the strategic options and detail a preferred alternative to meet their and co-manager goals.

Sockeye

The CTCR manages the Cassimer Bar Hatchery with the goal of restoring sockeye stocks. In addition, since 2000 the CTCR has been funded by BPA to conduct a pilot study to assess the viability of using Ska'ha Lake in B.C. for sockeye production.

Steelhead

Efforts to restore and maintain steelhead populations and habitat include the hatchery programs outlined in Table X (in section titled Artificial Production), and habitat restoration projects on Omak and Salmon creeks.

The Okanogan Conservation District strongly endorses the voluntary Coordinated Resource Management planning process for managing natural resources. In the Okanogan Watershed Management Planning Area there are 15 active Coordinated Resource Management planning groups with another eight planning groups starting up in the next five years in the Omak Creek Watershed. These local planning groups operate within a framework of existing laws and regulations. They can assist and work with, but not over-ride, the decision-making authority of those responsible for public and private lands and resource management. The process provides for a voluntary coordination of activities toward common objectives and solves management problems through plan implementation.

USDA Forest Service

The Tonasket Ranger District, in the Okanogan and Wenatchee National Forest, manages 357,000 acres in the Okanogan Basin. The land is managed according to the Okanogan National Forest System Land and Resource Management Plan (USDA, 1989), as amended by the Decision Notice for the Interim Strategies for Managing Anadromous Fish-Producing Watersheds in Eastern Oregon and Washington, Idaho, and Portions of California (PACFISH) (USDA, USDI 1995). Most of the National Forest land is mid to upper elevation forest. The 1989 Forest Plan divides the land into management areas, each with a management prescription based on unique habitat conditions. The majority of National Forest land is managed for multiple uses, including lynx habitat, deer winter range, timber, and livestock grazing. A small portion of National Forest land in the northeast corner of the district is designated Wilderness, with no motorized equipment allowed. There is also a small parcel of land designated as a Research Area, and another relatively small parcel is managed as semi-primitive, with no motor vehicles allowed.

The USFS Tonasket Ranger District maintains 42 cattle allotments on National Forest land.

USDI Bureau of Land Management

The BLM management follows the same legal multiple-use mandate that guides the U.S. Forest Service. Management direction is outlined in the Spokane District Resource Management Plan (USDI, 1987), as amended by PACFISH (USDA, USDI, 1995). BLM lands in the basin include two large areas in the Similkameen and Salmon watersheds, and numerous small, scattered parcels throughout the basin. Management is centered on the two large areas; the scattered parcels are used primarily in land exchange deals.

Washington Department of Natural Resources

The WDNR manages 134,000 acres in the Loomis Forest. The Chopaka Natural Reserve, in the Loomis Forest, is a 3,000-acre natural preserve area. In the year 2000, two parcels totaling 25,000 acres were designated as Natural Areas, with access for recreation and grazing. The remaining area in the Loomis Forest is managed for multiple uses, including timber harvest

and livestock grazing. There are 15 million board feet harvested annually from the Loomis Forest (C. Johnson, personal communication, 2001).

Washington Department of Fish and Wildlife

The WDFW maintains five wildlife areas in the Okanogan Basin (Table 29).

Wildlife Area	Acreage	Major habitat components
Sinlahekin Wildlife Area	14,000	Riparian, sagebrush steppe, forest
Scotch Creek Wildlife Area	9,200	Sagebrush steppe
Tunk Creek Wildlife Area - subunit of Scotch Ck		Sagebrush steppe, low elevation, open forest, riparian
Driscoll Island Wildlife Area- subunit of Scotch Ck		Riparian
Chiliwist Wildlife Area - subunit of Methow	4,200	Sagebrush steppe, low elevation forest
Chesaw Wildlife Area - a part of the Scotch Ck Wildlife Area, but not within the Okanogan Basin	4,800	Sagebrush steppe

Table 29: Washington State Wildlife Areas in the Okanogan Basin.

Sinlahekin Wildlife Area

The Sinlahekin Wildlife Area encompasses most of the Sinlahekin Valley. The upper boundary reaches the tops of valley cliffs in some areas, and the base of the cliffs in other areas. It is the oldest wildlife area in the state of Washington, and the original objective of the acquisition was to provide mule deer winter range and outdoor recreation opportunities, namely fishing and hunting. Currently, wildlife viewing is also considered one of the objectives of the area. The Sinlahekin Wildlife Area does not have a management plan. The area provides habitat for a wide variety of wildlife, as reflected in the wide variety of habitat. A primary goal for this area is to reintroduce fire into the ecosystem. The ponderosa pine habitat has been replaced by dense stands of suppressed Douglas-fir. The first step to fire reintroduction, thinning these stands, is currently underway. The Sinlahekin Wildlife Area is actively pursuing habitat and wildlife assessment. Surveys for bats, small mammals, reptiles, and amphibians, and vegetation inventories are planned for 2001 (Swedberg, 2001, personal communication).

Scotch Creek Wildlife Area

In 1991, the WDFW purchased 15,469 acres in a total of 3 parcels of critical habitat for Columbian sharp-tailed grouse. Named the Scotch Creek Wildlife Area, it includes parcels on Scotch Creek, in the Tunk Valley, and the Chesaw Valley. The primary management objective for the wildlife area is the recovery of sharp-tailed grouse habitat and the remnant grouse populations. Preservation of mule deer habitat is also a major focus. The Washington Wildlife and Recreation Coalition funded this acquisition.

As a working cattle ranch, much of the uplands in this area were converted from native shrub-steppe grassland to grain fields of rye or wheat. Later these fields were seeded for livestock grazing. The native rangeland has been severely over-grazed, allowing the encroachment of diffuse knapweed and Russian knapweed. Deciduous trees (primarily water

birch) were removed along the riparian corridor to accommodate alfalfa production. This practice drastically reduced critical wintering habitat for sharp-tailed grouse.

The Driscoll Island parcel is located in the Okanogan River channel. There is a ford that gives access to this area. The island contains riparian habitat and a farming operation. There is a project proposal in place to address lateral erosion and its impacts on instream habitat (Swedberg, 2001, personal communication).

The Scotch Creek Wildlife Area Management Plan was approved by BPA in 1997. Since that time, restoration and enhancement efforts have included planting shrubs, weed control, and grassland seedings (Okanogan Conservation District, 2000).

Chiliwist Wildlife Area

The Chiliwist Wildlife Area, a subunit of the Methow Wildlife Area, contains sagebrush steppe and low elevation, open forest.

Confederated Tribes of the Colville Reservation

The Colville Indian Reservation encompasses 1.4 million acres of land held in Federal Trust for the tribal membership, as well as an additional 1.5 million acres of ceded land north of the reservation called the North Half, where tribal members retain hunting, fishing and gathering rights in cooperation with the state and federal agencies involved. The Confederated Tribes of the Colville Indian Reservation (CTCR) also have wildlife management interests and input on Usual/Accustomed Areas of the Wenatchipam, traditional lands of the Moses Columbia Reservation (MCR) and Arrow Lakes lands. On the western third of the Colville Reservation, 344,146 acres of tribal land fall within the Okanogan Subbasin drainage. This land, within the reservation, is comprised of 56% shrub-steppe or open canopy, while 23% is in thin canopy coniferous forest, 14 % provides wooded forage and hiding cover, and 6% is dense forested thermal cover. The tribe is likewise interested and involved in the management of and impacts upon resources on the portion of the Okanogan Subbasin that lies within the boundary of the North Half as well. This massive tract of land, inclusive of both tribal, ceded, and traditional areas, supports viable breeding and/or migratory populations of state and federally listed species of concern, threatened or endangered. Within the boundary of the reservation, in the Okanogan drainage, the number of listed species includes but is not limited to at least 32 species of wildlife, 2 species of fish, and 71 species of plants. An additional 25 species of wildlife found in this area are listed on the Washington State Priority Habitat and Species list (PHS). The CTCR also maintain a strong interest in and manage for plant, fish, and animal species of cultural, spiritual, and subsistence value. The CTCR strive to maintain viable populations of native and desired non-native desired wildlife species and their habitats, while providing wildlife in sufficient numbers to meet the cultural, subsistence and recreational needs of tribal members (CTCR, 1999).

Upper Columbia Salmon Recovery Board

The Upper Columbia Salmon Recovery Board (CSRB) is a partnership among Chelan, Douglas, and Okanogan counties, the Yakama Nation, and Confederated Tribes of the Colville Reservation in cooperation with local, state, and federal partners. The mission of the UCSRB is to restore viable and sustainable populations of salmon, steelhead, and other at-risk species through the collaborative efforts, combined resources, and wise resource management of the Upper Columbia Region.

Upper Columbia Salmon Recovery Board (UCSRB)

The UCSRB is a partnership among Chelan, Douglas, and Okanogan counties, the Yakama Nation, and Confederated Tribes of the Colville Reservation in cooperation with local, state, and federal partners. The mission of the UCSRB is *to restore viable and sustainable populations of salmon, steelhead, and other at-risk species through the collaborative efforts, combined resources, and wise resource management of the Upper Columbia Region.* To better meet its mission, the UCSRB wishes to ensure that actions taken to protect and restore salmonid habitat in the region are based on sound scientific principles.

A Regional Technical Team (RTT) was created by the UCSRB to review the technical merits of projects to be submitted by project sponsors in the Upper Columbia Region for funding by the Washington State Salmon Recovery Funding Board (SRFB). The UCSRB directed the RTT to establish a scientific framework for this process, with the premise that it will enable them to identify projects that will best contribute to the recovery of salmonids listed under the ESA. A proposed strategy to protect and restore salmonid habitat in the Upper Columbia Region was developed through this process (UCRTT 2001).

Transborder Coordination and Ecosystem Planning Processes

Existing transboundary planning includes three distinct efforts: the Douglas County Project, the South Okanogan-Similkameen Conservation Program, and the Columbia Basin Ecoprovince Review and Subbasin Planning Process. These efforts have the potential to form an interconnected network that can function as a safety net for habitat conditions in the basin (Huntley, 2001). There is also a recent collaboration agreement between the Colville Business Council and the Okanagan Nation Alliance, and a Pacific salmon treaty between the governments of Canada and the U.S.

Douglas County Project

As a condition of the Federal Energy Regulatory Commission (FERC) license to operate the Wells Dam on the Columbia River, the Douglas County Public Utility District (Douglas County PUD) must meet a specific mitigation requirement to compensate for the impacts of dam operation. In regards to sockeye salmon, the PUD must improve productivity over the 20-year average by roughly 10 percent. Douglas County PUD recognized the potential of improving stocks by concentrating on spawning and rearing habitats— which happen to lie in B.C. A contact group was formed in B.C., called the Okanagan Basin Technical Working Group, to assess available measures. The project involves representatives of the Canadian Department of Fisheries and Oceans, Ministry of Environment, Land, and Parks (MELP), and Okanogan Nations Alliance through research contracts. The Project operates on consensus, firmly rooted in biologically defensible goals. Since the initial contact, Douglas County PUD commissioned a variety of studies, many of which are to be finalized in 2001.

The Working Group is the steering force of the project, and consists of both U.S. and Canadian representatives of various interests. The Working Group coordinates the activity of its member agencies for this program. The funding from Douglas County PUD, however, goes directly to the Working Group members through their respective managing entities. This establishes channels for future on-the-ground activity, since the contract recipients are the individuals that will be making the management decisions.

While the project tries not to exclude any participants from decision-making, the small group of people involved is not widely representative. Significant sectors are not currently included, such as other U.S. interests and non-governmental organizations on both sides of the border. Also, Douglas County PUD is aware of the peculiar dynamic implicit in the arrangement—namely that resource managers in B.C. are engaged in helping the utility district to handle its mitigative responsibility in the U.S.

The Douglas County Project has encountered several obstacles, including political concerns, the international border, implications of the project in terms of the Pacific Salmon Treaty (PST), and bureaucratic inertia.

South Okanagan-Similkameen Conservation Program

The South Okanagan-Similkameen Conservation Program (SOSCP), was created by MELP and Environment Canada in July 2000 out of an existing management strategy for the basin, coordination of the Nature Trust of B.C.'s South Okanagan Critical Areas Program, and the MELP's Habitat Conservation Fund Okanagan Endangered Species Program. In the early 1990s, the strategy set priorities for management activities for the conservation of natural habitat and fish and wildlife. The strategy prioritized biophysical mapping projects, species status reports, and opportunities for stakeholder participation.

SOSCP was created to eliminate the redundant work performed by individual recovery teams working toward single species recovery. SOSCP adopted an ecosystem perspective and intends to coordinate existing conservation strategies, negotiate the acquisition of priority habitats, and expand community involvement through partnerships. SOSCP is a relatively new organization and its structure has yet to take shape.

SOSCP's membership now includes 19 organizations. SOSCP seeks out public involvement, and is planning to work with community members to reach common goals. Environment Canada announced in June 2000 that it will contribute \$1 million dollars from its Habitat Stewardship Program to fund a variety of SOSCP activities.

Columbia Basin Ecoprovince Review and Subbasin Planning Process The Columbia Basin Ecoprovince Review and Subbasin Planning Process (ERSPP) is an emerging process that coordinates priorities across the border. Largely a collaboration of government agencies, ERSPP works on the watershed level to set mitigation and restoration priorities and channels federal funds to programs in a strategic method.

The ERSPP is an internal mechanism for Northwest Power Planning Council (NPPC) review of project funding proposals submitted from throughout the region. The review process incorporates independent scientists and regional resource managers from the U.S. ERSSP will fundamentally restructure the planning boundaries, and Canadian officials will now be able to participate in the planning process and coordinate ERSPPs guidelines with their own. In the Okanogan, a group of managers, consultants, and government officials has already begun the subbasin planning process. The membership remains heavily rooted in the U.S., but the group is trying to include additional Canadian perspectives.

Okanogan/Similkameen Subbasin Summary 228

ERSPP implements the new ideological interpretation of NPPC's jurisdiction, incorporating Canadian federal and provincial managers and tribes in this process for the subbasins, like the Okanogan, that extend across the border. The ERSPP uses a three-year rolling review for subbasin plans. After the planning processes are completed at the subbasin level, the subbasin will submit a list of projects for funding with its plan to the NPPC. In this way, NPPC is able to maintain a focus on ecoprovincial and regional planning, leaving the smaller scale issues to those better prepared to address them.

The Okanogan River Basin is one of the 52 subbasins subject to planning under ERSPP. Participants in ERSPP describe it as the best example of the ERSPP's transboundary capacity. A good example of potential transboundary projects under the new process is a sockeye project spearheaded by the Colville tribe. The project aims to reintroduce sockeye into Ska'ha Lake, while maintaining the hatchery on the Colville Reservation. The CCT offered to act as a sponsor to make additional resources available to Canadian agencies. At present, the Canadian Department of Fisheries and Oceans is contracted to perform a disease risk analysis and MELP and others will assist with data collection.

Treaty Between The Government of Government of Canada and the Government of the United States of America Concerning Pacific Salmon.

Annex IV Chapter 1 Transboundary Rivers

8. Recognizing that stocks of salmon originating in Canadian sections of the Columbia River constitute a small portion of the total populations of Columbia River salmon, and that the arrangements for consultation and recommendation of escapement targets and approval of enhancement activities set out in Article VII are not appropriate to the Columbia River system as a whole, the Parties consider it important to ensure effective conservation of up-river stocks which extend into Canada and to explore the development of mutually beneficial enhancement activities. Therefore, notwithstanding Article VII, paragraphs 2, 3, and 4, the Parties shall consult with a view to developing, for the transboundary sections of the Columbia River, a more practicable arrangement for consultation and setting escapement targets than those specified in Article VII, paragraphs 2 and 3. Such arrangements will seek to, *inter alia*,:

(a) ensure effective conservation of the stocks;

(b) facilitate future enhancement of the stocks on an agreed basis; and

(c) avoid interference with United States management programs on the salmon stocks existing in the non-transboundary tributaries and the main stem of the Columbia River.

Collaborative development of a regional resolution to address fish passage issues at Enloe Dam

On March 29, 2001, The Colville Business Council and the Okanagan Nation Alliance signed a joint letter of commitment, quoted here:

In this joint letter of commitment, the Colville Business Council and the Okanagan Nation Alliance commit to the collaborative development of a regional resolution to fish passage issues at Enloe Dam, and working with the Upper and Lower Similkameen Indian Bands in particular to protect related fishing rights and interests. The collaborative activities will include working together on common fisheries interests to facilitate a broader ecosystem approach to fisheries, focusing on common restoration programming in the Okanagan-Similkameen sub-basin. Collaborative fisheries programming will address long-term ecosystem perspectives in the restoration of the subbasin and the region's tribal/First Nation's fisheries. Restoration programming may consider subbasin fisheries as part of broader collaborative fisheries programming in the Columbia watershed, and in the Upper Columbia Watershed in particular. Key elements of the collaborative programming will address, although are not limited to the following:

- Protection of fishing rights and interests
- Rehabilitation of the watershed's aquatic environments
- Cooperative conservation and management of common fisheries interests
- Development of the regions' tribal/First Nation's fisheries.

The Council confirms its respect for the spiritual prohibitions against salmon passage at Enloe Dam, and the need to involve the Upper and Lower Similkameen Indian Bands in related policy and program planning.

Goals, Objectives, and Strategies

Existing Goals, Objectives, and Strategies

The goals, objectives and strategies that follow are taken directly from documents prepared by the federal, tribal, state, and other entities present in the subbasin.

Washington Department of Fish and Wildlife

Sharp-tailed grouse

Goal: Recover populations of sharp-tailed grouse to the level where populations are viable (WDFW 1995b).

- **Objective 1:** Conduct research on sharp-tailed grouse through 2005 to monitor population size, determine population viability, and evaluate population responses to habitat alteration.
 - **Strategy 1:** Monitor all traditional sharp-tailed grouse display sites (leks) on an annual basis
 - **Strategy 2:** Collect and examine tissue samples of sharp-tailed grouse to monitor genetic heterogeneity and population viability.
 - **Strategy 3:** Evaluate movement of radio-marked sharp-tailed grouse to examine population viability and habitat connectivity.
 - **Strategy 4:** Monitor changes in sharp-tailed grouse populations in relation to habitat restoration activities.
- **Objective 2:** Improve quantity, quality, and configuration of the shrubsteppe habitat necessary to support a viable population of sharp-tailed grouse by 2010.
 - **Strategy 1:** Improve CRP plantings throughout the subbasin so that they meet standards for plant composition and for distribution and configuration in relation to shrubsteppe habitat.
 - **Strategy 2:** Continue restoration of habitat on public lands and education of private landowners about restoration opportunities on private land.

- **Strategy 3:** Purchase properties or easements based on their applicability to published objectives for management and recovery plans for sharp-tailed grouse.
- **Objective 3:** Use translocations of sharp-tailed grouse into Washington from populations in other states.
 - **Strategy 1:** Select a source population in another region based on genetic similarity to birds in Washington.
 - **Strategy 2:** Translocate sharp-tailed grouse into portions of the Okanogan subbasin where they are currently absent.
 - **Strategy 3:** Translocate sharp-tailed grouse into portions of the UMMS where population and/or genetic augmentation will be useful for long-term improvement in population viability.
 - **Strategy 4:** Monitor and evaluate the success and/or failure of all translocation activities.

Burrowing Owl

Goal: Halt the decline of burrowing owls, increase distribution of burrowing owls to include many of the historic regions occupied in the Columbia Basin, and maintain a stable population of burrowing owls in Washington.

Objective 1: Determine factors limiting burrowing owl populations in Washington.

- **Strategy 1:** Investigate burrowing owl habitat selection in native habitats. Determine factors influencing burrow occupancy and burrow fidelity in native habitats.
- **Strategy 2:** Investigate winter habitat and survival of burrowing owls on winter ranges.
- **Strategy 3:** Evaluate nesting productivity, natal recruitment, and annual survival in eastern Washington. Compare these parameters between large, stable colonies and more ephemeral sites. Also compare these parameters between native and disturbed habitats used.
- **Strategy 4:** Monitor year round movements and long-term survival through marking and radio- telemetry. Determine dispersal distances and colonization potential of adjacent areas.
- **Objective 2:** Develop conservation measures to protect burrowing owls.
 - **Strategy 1:** Develop management strategies for continued occupancy and enhancement of both native and disturbed habitats, like irrigation canals, golf courses, and other disturbed habitats.
 - **Strategy 2:** Evaluate the usefulness of artificial burrows in enhancing and re-establishing burrowing owl colonies in both native and disturbed habitats.
 - Strategy 3: Determine management strategies for re-establishment, augmentation, and re-colonizing unoccupied habitats.

Washington Ground Squirrel

Goal: Recover populations of Washington ground squirrels in the UMMS to the level where populations are viable.

- **Objective 1:** Determine distribution and abundance of Washington ground squirrels the UMMS.
 - Strategy 1: Monitor all known Washington ground squirrel populations annually.
 - **Strategy 2:** Conduct regular searches for 'new' and or additional populations of Washington ground squirrels.
 - Strategy 3: Determine habitat characteristics at occupied and unoccupied colonies.
 - **Strategy 4:** Evaluate the effects of habitat management on Washington ground squirrels.
- **Objective 2:** Develop habitat management strategies for Washington ground squirrels and incorporate specific management objectives into Wildlife Area and landscape plans.

Ferruginous Hawk

Goal: Recover ferruginous hawks from threatened status by maintaining a population of at least 60 nesting pairs statewide, including at least 10 pairs in the North Recovery Zone (WDFW 1996a).

- **Objective 1:** Improve our understanding of the suitability and security of ferruginous hawk nesting habitats (see Goal 3.1 and research topics in section 7 of Recovery Plan, WDFW 1996a).
 - **Strategy 1:** Investigate ferruginous hawk occupancy and productivity characteristics in relation to jackrabbit and ground squirrel distribution and abundance in shrubsteppe habitats.
 - **Strategy 2:** Investigate rates of prey delivery, food habits, and adult nest attendance to nestling survival through video monitoring.
 - **Strategy 3:** Evaluate habitat alteration and human activity relationships to ferruginous hawk productivity and occupancy, including the efficacy of existing platform nests erected to enhance nesting.
- **Objective 2**: Assess the importance of survival rates and contaminants of adult and juvenile ferruginous hawks to low rates of nest occupancy, and relate these to hawk movements (see Goal 3.1 and research topics in section 7 of Recovery Plan, WDFW 1996a).
 - **Strategy 1:** Capture and take blood samples from adult and juvenile hawks for pesticide analysis.
 - **Strategy 2:** Monitor year round movements and long-term survival through marking and satellite telemetry.
- **Objective 3:** Improve ferruginous hawk nest occupancy by identifying and promoting protection and enhancement (i.e., erect nest platforms) of the highest quality nesting habitats based on assessment of prey, survival, and human activity. Refine recommended spatial and temporal management buffers around nests and provide site specific recommendations for nest protection.

Northern Leopard Frog

Goal: Conserve the remaining populations of northern leopard frogs in Washington and reestablish additional populations (WDFW, 1996b).

- **Objective 1:** Develop needed information on distribution, habitat and relationships with other species, and implement recovery of leopard frogs.
 - **Strategy 1:** Complete surveys and determine specific distribution of northern leopard frogs.
 - **Strategy 2:** Investigate breeding, migratory, and over-wintering habitat relationships of northern leopard frogs.
 - **Strategy 3:** Evaluate range of suitable habitats, juxtaposition of habitats, and appropriate conditions for northern leopard frogs.
 - **Strategy 4:** Determine effects of non-native fish and introduced bullfrogs on northern leopard frogs.
 - **Strategy 5:** Determine effects of wetland restoration projects for waterfowl on northern leopard frogs.
- **Objective 2:** Plan and implement recovery programs, translocations and re-establishment of leopard frogs throughout the historic range of the species.

CTCR Objectives and Strategies

Goals, objectives, and strategies of the CTCR are outlined in detail in the Integrated Resource Management Plan (CTCR, 1999). Several key objectives are listed here.

Goal: Manage sharp-tailed grouse populations on the Colville Reservation

- **Objective 1:** Reestablish sharp-tailed grouse to their historic range within the boundaries of the Colville Reservation, increasing the population to over 10,000 birds distributed over 60,000 acres within the Okanogan Basin
 - Strategy 1: Restore deciduous (winter range), grassland and steppe habitats
 - **Strategy 2:** Manage range lands to maintain or enhance the habitats required by the sharp-tailed grouse.
- Goal: Assess and protect neotropical bird populations and their habitat
 - **Objective 1:** Conduct surveys to assess neotropical bird populations and their habitat. There is presently little data available to determine the limiting factors on bird populations and their habitat.
 - **Objective 2:** Support and enhance habitats for migrating bird populations
 - Strategy 1: Enhance riparian corridors along the major rivers within the basin
 - Strategy 2: Prevent fragmentation of critical habitats used by neotropical birds

Goal: Maintain or restore the habitat of native plants while preventing the spread of noxious weeds and other undesirable vegetation.

Objective 1: Minimize the spread of noxious weeds

Strategy 1: Implement mechanical, physical, chemical, and biological actions to reduce or remove undesirable species.

Goal Maintain and protect instream and riparian habitat and support ecological function in these habitats.

- **Objective 1:** Identify key ecological attributes specific to the Okanogan subbasin.
- **Objective 2:** Maintain adequate stream flow in the Okanogan Watershed to support salmonids at all life stages.

Strategy 1: Explore water conservation strategies to increase water use efficiency.Strategy 2: Develop a water market in the Okanogan Subbasin.

Objective 3: Reduce summer water temperatures in the Okanogan Watershed to meet the needs of salmonids in all life stages.

Strategy 1: Identify priority areas for riparian protection and restoration.

Strategy 2: Restore existing riparian habitat to buffer stream temperatures.

Strategy 3: Explore water conservation strategies to increase water use efficiency.

Goal: Establish production-related strategies for salmon recovery and maximize reproductive potential of salmonids.

Objective 1: Maximize reproductive potential of steelhead in the Okanogan Subbasin.

- **Strategy 1.** Explore feasibility of steelhead kelts reconditioning to allow repeat spawning.
- **Objective 2.** Supplement Okanogan Basin spring chinook and steelhead populations as necessary to effect recovery while conserving genetic integrity.
 - **Strategy 1:** Explore all possible actions to reintroduce and recover spring chinook in the Okanogan Subbasin.
 - Strategy 2: Explore all possible actions recover sockeye salmon in the Okanogan Subbasin.
 - Strategy 3: Collect local wild brood stock and develop acclimation sites.
- **Objective 3:** Identify opportunities and actions to affect transborder cooperation between the U.S. and Canada

Upper Columbia Salmon Recovery Board

The following goals and objectives of the Upper Columbia Salmon Recovery Board are outlined in the UCSRB Strategy Document (UCSRB, 2001).

Goal: Restore the complexity of the stream channel and floodplain in the Okanogan Subbasin.

- **Objective 1:** Allow unrestricted stream channel migration, complexity, and flood plain function.
 - Strategy 1: Provide fish access to disconnected stream sections or oxbows,
 - **Strategy 2:** Remove dikes (or similar structures) that prevent stream channel migration,
 - **Strategy 3:** Change the points of origin for problematic water withdrawals to less sensitive site(s),
 - **Strategy 4:** Screen water intakes to prevent impingement or stranding of juvenile fish,
 - Strategy 5: Purchase water shares for instream flow and water quality benefits,
 - **Strategy 6:** Provide alternative sources of irrigation and domestic water to mitigate impacts of problematic surface water diversions,
 - Strategy 7: Remove passage barriers,
 - **Strategy 8:** Use mechanical means to encourage natural development of riparian areas,
 - **Strategy 9:** Implement upland management practices that reduce sediment delivery to streams,
 - **Strategy 10:** Implement agricultural practices that reduce sediment delivery to streams, and

Strategy 11: Use engineering techniques to increase complexity of permanently altered habitats.

UCSRB objectives for the Okanogan subbasin specifically

- Goal: Protect and Restore Salmonid Habitat in the Okanogan Subbasin
 - **Objective 1** Protect the remaining sockeye and summer chinook spawning and rearing habitat that remains within this watershed. In particular, the summer chinook spawning habitat located in the lower Similkameen (Category 2) and in the mainstem Okanogan River between Ellisford and Riverside (Category 2) and the remaining sockeye spawning habitat that remains downstream of McIntyre Dam (Category 2).
 - **Objective 2** Reconnect smaller tributary streams with the mainstem Okanogan River. Many of the smaller tributaries once provided thermal refuge for summer and fall migrating adults and for rearing of stream-type juvenile salmonids.

Objective 3: Establish a normative hydrograph, decrease the width: depth ratio, increase riparian coverage, and decrease sediment input will also improve the water quality, quantity and would provide for improved upstream migration and over-summer rearing conditions. Water rights should be purchased or secured through trust for increasing late-summer instream flows of tributary streams.

Statement of Fish and Wildlife Needs

Fish

- Enhance instream flows, water quality and habitat conditions to benefit resident fish populations where they are found to be impaired.
- Obtain baseline information on status of native fish communities.
- Inventory exotic fish species in the subbasin.
- Enhance survival of post-spawn (kelt) steelhead to maximize reproductive success.

Instream restoration:

- Reestablish stream flow to recover and maintain fish populations and habitat
- Address structural barriers on the Okanogan, Similkameen, and tributaries.
- Address elevated water temperatures in Okanogan River.
- Address DDT and PCB presence in the basin.
- Address elevated sediment delivery in Similkameen River and Bonaparte Creek.
- Address pool quantity and quality throughout the basin.
- Identify needs for acclimation facilities as a precursor to supplementation programs.

Floodplain and riparian

- Restore riparian and floodplain habitat in the Okanogan River and its tributaries.
- Identify and protect remaining intact riparian area and floodplain on Okanogan.
- Manage wetland areas to maintain fish, wildlife and cultural benefits

- Conduct a shoreline resource inventory for those designated in local shoreline master plans.
- Restore wetlands throughout the agricultural zone
- Establish and monitor grazing practices in uplands to protect riparian habitat.
- Habitat enhancement projects
- Noxious weed control
- Establish a facility for native plant propogation
- Protect and create wildlife migration and travel corridors

Uplands and forest

- Restore upland and forest habitat and hydrologic function throughout the basin.
- Reintroduce fire to sagebrush steppe and forests.
- Continue to restructure forest transportation system and reduce road density.
- Continue to implement updated forest management practices with the aim of restoring forest habitat and hydrologic function.
- Habitat enhancement projects
- Noxious weed control
- Establish a facility for native plant propagation
- Protect and create wildlife migration and travel corridors
- Obtain detailed distribution and description of shrub-steppe habitats with reference to dominant plant species, vegetative condition, and habitat potential.
- Evaluate shrub-steppe habitat characteristics in relation to use by shrub-steppe obligates such as sage grouse, sharp-tailed grouse, pygmy rabbits, Washington ground squirrels, and neotropical migrants.
- Evaluate shrub-steppe restoration activities in relation to wildlife potential; including activities associated with BPA, WDFW, BLM, USFWS, NRCS, and private land.
- Evaluate landscape configuration in relation to population viability for species of interest including sage grouse, sharp-tailed grouse, pygmy rabbits, Washington ground squirrels, and neotropical migrants.
- Expand shrub-steppe quantity with the aid of acquisitions, easements, and landowner incentives such as the Conservation Reserve Program.
- Restore shrub-steppe habitat with deep soils
- Reduce and prevent degradation and fragmentation of large contiguous blocks of shrubsteppe habitat
- Evaluate shrub-steppe restoration techniques
- Develop and implement shrub-steppe restoration techniques that are economically feasible over large landscapes (e.g. establishing sagebrush by seed rather than by hand-planted rooted seedlings).

Wildlife

- Improve demographic and population monitoring of deer and elk
- Continue and/or expand surveys to monitor distribution, abundance, and viability of species of interest including bats, sage grouse, sharp-tailed grouse, pygmy rabbit, Washington ground squirrel, ferruginous hawk, golden eagle, burrowing owl, neotropical birds, and reptiles and amphibians.

• Protect key roost and hibernacula habitats for bats

CTCR Stated Needs

Conduct gap analysis projects to determine the historic and current presence of wildlife species

Conduct comprehensive species inventories for each habitat type on the reservation.

Carry out habitat enhancement efforts based on identified needs.

Evaluate the performance of net traps, fish wheels, and other gear for selective, tribal ceremonial and subsistence harvest, and collection of spring Chinook, summer/fall Chinook, steelhead, and sockeye for brood stock collection, scientific research, and trap and haul over Chief Joseph Dam.

- 1. Determine the ability of Canadian trap nets and fish wheels to collect and sort spring Chinook, summer/fall Chinook, sockeye, and steelhead below Chief Joseph Dam, near the confluence of the Okanogan River, and in the Okanogan River.
- 2. Determine the effects of trap nets and fish wheels on captured and released fish.
- 3. Determine the suitability and acceptability of trap nets, fish wheels, and seines (Zosel Dam) for additional tribal harvest.
- 4. Determine the feasibility of using trap nets and fish wheels for collecting brood stock for artificial propagation programs and collecting M&E information.
- 5. Determine the feasibility of trap nets and fish wheels for collecting and passing summer/fall Chinook over Chief Joseph Dam.

Develop acclimation facilities for steelhead and spring Chinook at one or more sites in the Omak Creek watershed to improve survival and minimize straying.

Develop acclimation facilities for steelhead and spring Chinook at one or more sites in the Salmon Creek watershed to improve survival and minimize straying.

Develop and implement the Omak/Salmon Creek M&E Plan to quantify the performance and effects of steelhead and spring Chinook out-planting in these two watersheds.

Plan and develop acclimation facilities for 500,000 spring Chinook yearlings to implement Phase 1 of the Okanogan River Spring Chinook HGMP.

Develop and implement an M&E plan to quantify the performance and effects of the Isolated Harvest spring Chinook program in the Okanogan River, per the HGMP.

Fund the spawning, rearing and transportation of a 500,000 smolt spring Chinook Isolated Harvest program for the Okanogan sub-basin per the HGMP.

Fund the investigation and development of an efficient water market in the Okanogan sub-basin to allow for water leases, water purchases, and water conservation to improve stream flows for fisheries restoration.

Restore a natural stream channel in lower Omak Creek to protect and improve fish spawning, rearing, and passage habitat.

Determine the feasibility and cost of long-term and annual leasing, and purchase of water in the Salmon Creek watershed to provide at least passage flows in the lower reaches.

Expand the spawning distribution and abundance of summer Chinook in the Okanogan River through new acclimation facilities located near historic spawning habitats.

- 1. Develop an acclimation facility near Whitestone Creek to accept some of the existing, 576,000 smolt production from Similkameen Pond to disperse spawning in historic habitats.
- 2. Develop an acclimation facility near Riverside to accept some of the existing PUD smolt production from the mid-Columbia River to increase spawning in historic habitats.
- 3. Develop an acclimation facility near Omak for rearing and release of late arriving summer/fall Chinook to increase spawning in historic habitats.

Reform the Okanogan summer/fall Chinook program by propagating late arriving Chinook and acclimating for release in the mid and lower Okanogan River

Initiate the collection and spawning of steelhead returning to the Okanogan sub-basin to develop a unique population within the Upper Columbia River Steelhead ESU.

Initiate the planning and construction of facilities necessary to collect and spawn summer/fall Chinook to develop a unique population within the ESU.

Determine the existing and potential capacity of Okanogan tributary habitat (and habitat above Osoyoos Lake) for the spawning, incubation, rearing, and migration of steelhead, sockeye and spring Chinook.

Determine the success of trap & haul, spawning, incubation, emergence, and migration of summer/fall Chinook in upper Rufus Woods Reservoir from fish collected below Chief Joseph Dam.

Assess the potential of tributaries to Rufus Woods and Roosevelt lakes for spawning, rearing, migration and smolt collection of steelhead and Chinook salmon.

Determine the potential for releasing waters from the depths of Lake Osoyoos to cool the Okanogan River to aid the migration of spring Chinook and sockeye.

Determine the feasibility of rehabilitating the riparian corridor along the Okanogan River and key tributaries to improve native fish habitat and decrease water temperatures.

Determine the potential to attract and collect juvenile anadromous fish at Chief Joseph Dam.

• Assess habitat conditions and plan restoration projects in the Cameron Lake area. This area has been overgrazed, and was burned in a wildfire in 2001. The sagebrush-steppe, riparian, and wooded habitat of the subbasin support raptors, upland game birds, songbirds, woodpeckers, jackrabbits, marten, fisher, wolverine, lynx, grizzly bear, elk, moose, bighorn sheep, and more

• Conduct baseline surveys of reptile and amphibian populations. Sagebrush lizard and western toad, both federally listed, have been documented in the subbasin

UCSRB Stated Needs

- Upper Mainstem Okanogan (Mcintyre Dam To Similkameen Confluence)
- Protect habitat and flows from McIntyre Dam downstream to Osoyoos Lake.
- Manage water releases through Okanogan Fall Dam to prevent redd scour/desiccation.
- Restore floodplain function in this reach.
- Develop a normative flow pattern in this reach.
- Reduce sedimentation and nonpoint pollution in the reach and Lake Osoyoos.

Mainstem Okanogan River (Similkameen Confluence To Mouth)

- Release water from upstream dams at critical periods to aid adult sockeye salmon migration.
- Reconnect smaller tributary streams to mainstem Okanogan River through the procurement and enforcement of water rights.
- Protect and passively restore riparian habitat on the mainstem, with upstream reaches having priority.
- Implement agricultural practices that reduce sediment delivery to the river.

Similkameen River

- Protect riparian and instream habitats from Enloe Dam to the Okanogan confluence.
- Reduce impacts from roads in floodplains, and relocate where appropriate.
- Implement agricultural practices that reduce sediment delivery to the river.
- Increase knowledge base on heat loading processes in this reach.
- Clean up mine tailings in riparian areas that have connectivity to the river.

Bonaparte Creek

- Reduce impacts from roads in floodplains, and relocate where appropriate.
- Implement agricultural practices that reduce sediment delivery to the river.

Omak Creek

- Implement forest and agricultural practices that reduce sediment delivery to the river.
- Increase stream flow.
- Protect and restore riparian habitat in middle and lower reaches.

Salmon Creek

- Provide suitable instream flows for lower Salmon Creek.
- Create a stream channel morphology in lower Salmon Creek that is consistent with historical stable stream type, and raise the water table to support riparian vegetation by developing a small but effective floodplain.
- Use passive restoration for riparian areas between Conconully Reservoir and diversion dam.

• The Upper Columbia Region should have a coordinated program that informs the public about salmonid habitat needs and means to protect water resources.

Canadian Okanagan/Similkameen Subbasin Summary

Canadian Okanagon/Similkameen Subbasin Description

General Description

Subbasin Location

The Okanagan Watershed in Canada extends north from the Columbia Plateau in Washington State to the ridge of land separating the drainage basins of the Columbia and Fraser Rivers (Figure 10). The majority of the Okanagan River mainstem lies in a valley that is a long north-south trench located in the interior plateau of British Columbia. The valley is 18 kilometers wide at the northern end, and only 5 to 10 kilometers wide at the southern end. From a few miles north of Armstrong, BC, the entire valley drains south to the Columbia River. Many of the tributaries to the Okanogan River are small systems that arise in the hills that surround this valley.

The Similkameen River, which measures approximately 197 kilometers in length, is a major tributary to the Okanogan River. The Similkameen River watershed is located to the west of the Okanogan River watershed. However, while most of the Similkameen river watershed lies in Canada, the confluence of the Similkameen and Okanogan rivers lies in Washington State.

Other notable and fish bearing main tributaries to the Okanagan River include Mission Creek and Kelowna (Mill) Creek near the city of Kelowna; Vernon Creek south of the city of Winfield; Penticton Creek near the city of Penticton; Powers Creek; Trepanier Creek just north of Peachland; and Peachland Creek near the town of Peachland. The combined stream length of these main tributaries (not including the Okanagan River mainstem itself and Kelowna Creek) is approximately 227 kilometers (Powers Creek 29 kilometers; Mission Creek 74 kilometers; Peachland Creek 31 kilometers; Penticton Creek 29 kilometers; Trepanier Creek 28 kilometers; Vernon Creek 36 kilometers). There are approximately 66 kilometers of stream accessible to stream spawning kokanee, of which 19 kilometers are located on Mission Creek. In the Okanagan Basin, 95 percent of stream spawning occurs within Mission, Kelowna (Mill), Powers, Trepanier, Peachland, and Penticton Creeks.

The Kelowna (Mill) Creek watershed is located approximately 20 kilometers northeast of the city of Kelowna. The watershed is approximately 7,900 hectares and has been used historically for irrigation, recreation, and timber harvesting activities. Stream channel assessment work carried out in the Kelowna Creek watershed identified significant changes to the stream channels within this watershed, all of which appear to be the result of past logging activities. Five sites were found to require remedial work. Several surveys have been conducted on this watershed, and gravel placement has occurred to enhance spawning and egg incubation habitat. The protection of kokanee, rainbow trout, and brook trout spawning and rearing habitat should be considered the first priority of management practices in this creek.

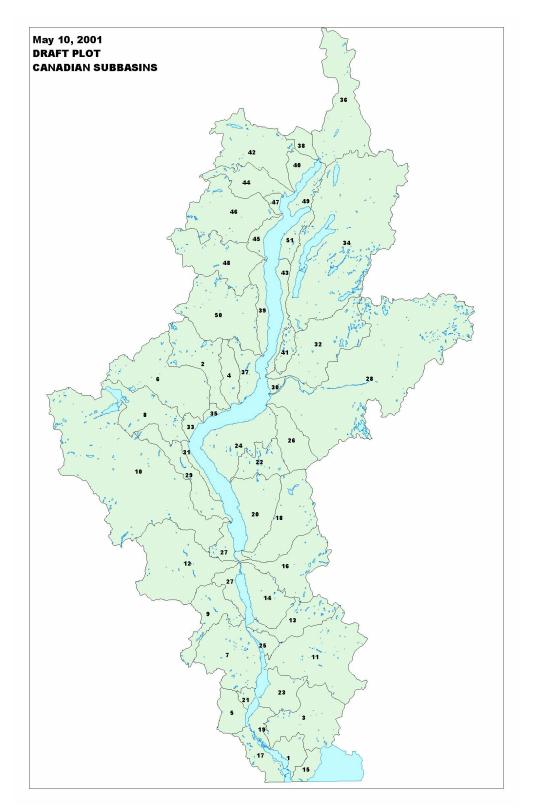


Figure 10: Canadian Subbasin Location Map.

Mission Creek is the largest tributary of Okanagan Lake, and ranges in elevation from 342 meters at its confluence with the lake to a maximum of 2,171 meters at the summit of Little White Mountain, with 60 percent of the watershed above 1,300 meters in elevation. The watershed, which has a total of 1,157 kilometers of forestry roads throughout its borders, is 858 square kilometers in size.

Peachland and Trepanier creeks lie within two adjacent watersheds and are located on the west side of Okanagan Lake near Peachland, BC. The Peachland Creek Watershed is 14,150 hectares while the Trepanier Creek Watershed is 25,990 hectares. Trepanier Creek Watershed ranges in elevation from 342 meters at the confluence with Okanagan Lake to a maximum of 1,900 meters at Mount Gottfriedsen, with 60 percent of the watershed above 1,160 meters in elevation. There are approximately 543 kilometers of roads within the two watersheds. Both urban development and agricultural practices occur along the lower 3 kilometers of both watersheds. At the headwaters of Peachland and Trepanier Creeks is the Brenda Mine. Both watersheds are currently under forest licenses to several forestry companies.

Vernon Creek is designated as a community watershed for the Town of Winfield, BC. Several enhancement projects have occurred in the Vernon Creek watershed including the placement of gravel for the enhancement of spawning and egg incubation potential. Riprap was added at the bottom of Wood Lake Road to stabilize stream banks in this section to prevent downstream siltation and sedimentation. A Water Survey of Canada station was located on Vernon Creek in 1973 to collect data on water quality and quantity in the creek.

The Okanagan Watershed also contains several large lakes. The largest of these is Lake Okanagan, which extends approximately from the city of Vernon in the north to the city of Penticton in the south. Next in size, and downstream in order, is medium-sized Skaha Lake, followed by the small-sized Vaseux Lake. Osoyoos Lake is a medium-sized lake that straddles the Canada-U.S. border.

Climate

The Okanagan Valley is located in the rain shadow of the Coast Mountains. Moisture is precipitated on the windward side of the mountain range resulting in a moisture deficit within the valley. Air masses descending on the leeward slopes of the Coast Mountain range are warmed and become more stable, favoring potentially higher rates of evaporation and exacerbating the moisture deficit in Okanagan Valley. Mean precipitation increases to the north and with elevation. Conversely, mean daily temperature decreases to the north and upslope. The Okanagan Valley typically experiences precipitation peaks in June and in December/January.

Vegetation

The valley bottom up to an elevation of approximately 750 meters is described as an interior Douglas-fir and ponderosa pine - bunchgrass biogeoclimatic zone. The ponderosa pine zone occurs at elevations between 335 and 900 meters as a thin band on the bottoms and/or sidewalls of valleys such as the Similkameen and Okanogan watersheds. The zone in British Columbia represents the northern limits of a zone that is much more extensive in the U.S. Typically, ponderosa pine falls between the bunchgrass and interior Douglas-fir zones. At

Okanogan/Similkameen Subbasin Summary 243

higher elevations, within the interior Douglas-fir biogeoclimatic zone, the forest is more closed and western larch, western red cedar, and lodgepole pine are found more frequently.

Cottonwood trees are also found along many of the watercourses in the lower elevations of the Okanagan Watershed. Cottonwood forests are sensitive to changes in the watershed. Where they are found on active floodplains, cottonwood forests rely on the natural cycle of flooding to replenish soil nutrients and moisture. Many streams in the interior have been diked and channeled to prevent flooding. The Okanagan River between Penticton and the U.S. border has been converted into a straight channel. Black cottonwood is very resistant to flooding and regenerates best on disturbed lands such as floodplains. The cottonwood ecosystem of the southern interior is among the rarest plant communities in the province. In the south Okanagan and Similkameen valleys, fewer than 500 hectares remain. They are important as they provide crucial habitat, especially to species that are not well adapted to living in the arid grasslands and forests that dominate this part of the province. Cottonwoods grow quickly and die relatively young. They often provide snags (standing dead trees) which are important to a variety of wildlife species. These snags may eventually fall into the stream, where they help create cover and pool habitat for fish and other aquatic creatures. In this capacity, fallen trees help to stabilize stream banks and prevent erosion and siltation of streambeds.

Soils

Within the Okanagan Basin there are four major soil types and a group of groundwater soils where natural drainage is poor. Brown soils predominate to a maximum elevation of approximately 610 m and occur as far north as Summerland. Dark brown soils occur further north within the elevation range from 344 m to 1,067 m. These soils are found on the lower slopes and in well-drained parts of the valley bottom and are ideal for orcharding. Black soils occur largely in the north Okanagan on southern exposures throughout the entire region. They are found to an elevation of 1,372 m and are associated with low soil moisture levels and grassland vegetation. The intermontane podsol soils that are predominant in the north Okanagan are of little agricultural importance.

Land Uses

Land use composition in the Okanagan watershed and the Similkameen Watershed are notably different. In the Okanagan Watershed, there is a great deal of agricultural activity throughout the valley bottom basin, and even on many of the lower slopes above the valley bottom. There is also a large amount of urban development throughout the Okanogan Basin. In many places this urban development is now occurring on former agricultural lands, and is often extending well up the lower slopes. By way of example, the city of Kelowna now contains some 100,000 people within the city limits, and is growing rapidly. Similarly, the city of Penticton has approximately 32,000 people, and the city of Vernon has some 34,000 people.

Tourism is a major activity within the Okanagan basin (Okanagan Lake is a particularly notable attraction to tourists), and the number of people in the basin noticeably increases (probably several fold) during the summer. Most potentially developable land (including many areas formerly covered by wetlands) in the basin has now been developed, and urban and agricultural development are now expanding into even marginal land and rough terrain. It is anticipated that urban development will continue to expand at a great rate in the

Okanagan Basin, and to continue to be a major stress on aquatic, terrestrial, and wetland ecosystems.

Land suitable for cultivation occurs on bottomlands, benches, and terraces within the valley. The first settlers to the Okanagan Valley developed lands adjacent to creeks, lakes, and springs, which provided storage for the limited irrigation systems they built. Between 1900 and 1920, dozens of dams of varying sizes and qualities were built in the Okanagan uplands. The character of the Okanagan Basin is being altered by increased population and land use changes and demands. During the period 1971 to 1986, urban population increased by 63 percent, twice the rate of increase for B.C. as a whole. Rural population growth was also strong, increasing by 62 percent for the same time period.

The growth of the orchard industry in the semi-arid Okanagan Valley required an inexpensive supply of water available to all orchardists. Between 1860 and 1920 agriculture moved from stock raising and grain growing to intensive orcharding thus increasing demand for irrigation. This increased demand for water resulting in long, high volume, elaborate and expensive irrigation systems requiring storage, conveyance and application of water. By 1920 such a system was in place and the Okanagan fruit industry flourished.

In contrast to the Okanagan Basin, in the Similkameen Basin the agricultural and urban development is much less advanced, and is generally restricted to a few localities.

Growing populations have threatened and endangered many species and habitats in the Okanagan Valley. Only 9 percent of the natural grasslands that are native to this valley remain due to the construction of orchards, roads, and urban development. Population growth has put pressure on the agricultural land base. Census figures show that total reported farm area declined 4.6 percent in a 15-year period from 1971 to 1986; woodland declined 47 percent; and total improved farmland declined by 22 percent. Cropland, however, rose slightly from 18,639 hectares in 1971 to 19,039 in 1986.

In both watersheds there is extensive forest harvesting activity. However, in the Okanogan Watershed this activity tends to happen mainly in the higher elevations of the watershed (due to agriculture and urban development having taken over the lower elevations). In the Similkameen Watershed, timber harvesting occurs in both the valley bottoms and higher elevations.

There is ample evidence that forest practices can reduce the abundance of some vertebrates. There is also evidence that suggests most vertebrate species are linked to specific forest elements such as large snags or hardwoods. Most forest elements with which vertebrate groups are associated are altered by forest practices. Therefore, management to sustain vertebrate richness must be planned over a large enough area that a full range of these structures is considered.

Human influence in the watershed has lead to fire suppression activities for a variety of reasons. These reasons include both protection of timber resources and protection of urban developments that exist at the forest-urban interface. Fire suppression in the valley is changing the biodiversity of the ecosystem, as many of the low elevation areas are believed to originally have been fire-induced systems. In other words, previous periodic fires maintained the species composition regime. However, such fires are no longer allowed to occur, and different, non-fire-resistant species are becoming established and dominant. An example of

this is a change in predominance of fire-resistant ponderosa pine to a predominance of nonfire-resistant Douglas-fir at mid elevations.

Other changes in species composition and ecosystem function are also occurring. Introduced species are becoming more common, and they often threaten many indigenous species in the valley. Livestock grazing has also had a major impact on the biodiversity of this ecosystem, as it can disturb the soils and natural vegetation and allow for invasion of weeds like knapweed. Wildlife killed each year on Okanagan roads and from poaching in the area is also impacting wildlife species. Bird populations are primarily affected by urbanization and agricultural practices, which tend to destroy riparian habitat that is breeding habitat for many birds.

Fish and Wildlife Resources

Fish and Wildlife Status

Okanagan River and Lake

Fish distribution in seven major tributaries to the Okanagan River will be addressed separately; however, it should be noted that there are other creeks in this watershed with notable importance to the fishery within this system.

The key species of current management concern in the Okanagan Basin is kokanee. This species is under so much pressure from harvesting and land use activities that it was necessary to implement a closure of the kokanee sport fishery in Okanagan Lake in 1995. Currently, kokanee are present in Okanagan Lake and within accessible tributaries to this system, but not at historic levels. Much effort has also recently been placed on protecting, managing, and enhancing kokanee habitat.

Other sport fish species found in Okanagan Lake and mainstem include anadromous salmon, steelhead, rainbow trout, largemouth bass, smallmouth bass, and yellow perch. Forage fish species include carp, chiselmouth chub, longnose sucker, mottled sculpin, northern pikeminnow (formerly northern squawfish), pumpkinseed, redside shiner, sculpins, suckers, and tench. Bull trout are not known to be in the Okanagan Watershed on the Canadian side of the border (Matthews and Cannings, pers comm.).

Anadromous sockeye have been known to spawn just above Lake Osoyoos but do not migrate further upstream due to the presence of McIntyre Dam located 1.5 miles upstream from the confluence with Lake Osoyoos. Occasionally sockeye get past McIntryre Dam and into Vaseux Lake. From there the next migration barrier is located at Okanagan Falls Dam, although it is sometimes possible to get past this dam if the stop logs are properly set. If fish do manage to pass the dam at Okanagan Falls they enter Skaha Lake. Spawning upstream of Skaha Lake is likely only in the mainstem, as the other tributaries to this lake are too small or urbanized. The mainstem above Skaha Lake is likely accessible as far as the outlet dam on Okanagan Lake. Chinook apparently can use the mainstem of the Okanagan River to access as far as McIntyre Dam. Stocked steelhead (as manifested by adipose fin clipping) have been observed as far up the Okanogan River as McIntyre Dam. However, as with sockeye, if the dam gates are set properly, steelhead may be able to gain access further upstream (Mathews, pers comm.).

General Discussion

Constraints to anadromous and resident fish, wildlife, and habitat result from many of the direct and indirect impacts within the basin; many of these impacts and their resolution have cross-border implications. Such impacts include hydroelectric facilities and their operations, water consumption, water management, urban development, infrastructure, agriculture, forestry, water quality, ground disturbances, out right habitat loss, and introduced species.

Dealing with these constraints will require both institutional and technical approaches. The complexity of the jurisdictional arrangements and differences in management objectives within the basin necessitates an extensive and comprehensive process of trans-boundary coordination between federal, state/provincial, and local governments, public utility districts, tribal entities, and other stakeholders. Many good efforts are already underway to facilitate such coordination; but such coordination is still in its infancy, and much remains to be done. The technical component will require an ecosystem-based approach; the issues are often regional and ecologically interconnected. Moreover, the requirements of each life stage must be identified and addressed. Unfortunately, at times we have incomplete data and understanding, which greatly adds to the difficulty of managing the Okanogan basin.

Fish

It is anticipated that there will be a continued loss of fish species diversity in the Canadian Montane Cordilleran Ecozone (which includes the Okanagan Basin) in the future. Urban, agricultural, forest harvest, and other land uses are expected to increase throughout the Okanagan Watershed, and to continue to exert pressure on fish and fish habitat. These pressures may be partly diminished by recent regulatory changes. These include increased enforcement of the Federal Fisheries Act, implementation of the Provincial Fish Protection Act, and municipal initiatives such as the city of Kelowna's environmental protection bylaws. Also, it is thought that legislation such as the provincial "Forest Practices Code" should assist in reducing the degree of anthropogenic impacts on aquatic environments and slow rates of degradation that occur as a result of forest harvest activities.

Global warming is expected to increase surface water temperatures in the lakes of the Okanagan Basin, to increase the length of ice-free periods, and to increase the duration of summer stratification. For rivers, groundwater temperatures will increase. The net result of these processes is an increase in water temperature of the watercourses in the Okanagan Basin. These changes would most likely result in a northward shift in fish distributions; however, this tendency is complicated by the topography of the region. The number of warmwater species in southern parts of the ecozone may increase with global warming, but the diversity of coldwater species will probably decrease.

The B.C. Conservation Data Centre (CDC) maintains a list of both globally and provincially threatened and endangered species in the Okanagan Basin. For fish, this list is provided in Table 30.

Table 30: Global and Provincial Status of "At Risk" Fish Species in the Okanagan Basin.

Common Name	Global	Provincial	Provincial
	Rank ^a	Rank ^b	List ^c

Freshwater Fish			
Mottled Sculpin	G5	S3	Blue
Bull Trout	G3	S3	Blue
Chiselmouth	G5	S3	Blue
Umatilla Dace	G4	S2	Red
Mountain Sucker	G5	S3	Blue

^aBasic **Global Ranks** include the following: **GX** – Presumed Extinct throughout its range, **GH** – Possibly Extinct and **G1** through **G5** where **G1** is Critically Imperiled and **G5** is Secure. Additional Ranking codes include **G#G#** which is used to indicate uncertainty regarding the exact status of a taxon; **Q** denotes questionable taxonomic status; **T** reflects the status of infraspecific taxa (subspecies or varieties) and follows the species' global rank; **U** indicates a lack of available information about status or trends and the species is therefore unrankable; and a ? which indicates that the global rank of a species has not yet been assessed.

^bBasic **Provincial Ranks** are similar to that of the Global Ranking system but are based upon provincial species populations and are coded with an S (such as SX, SH, S1 through S5). Provincial ranks are sometimes followed by rank qualifiers which include B which refers to the breeding occurrences of mobile animals; N which refers to the non-breeding occurrences of mobile animals; and Z which refers to species that occurs within the province but as a diffuse, usually moving population (for which it is difficult or impossible to map static occurrences).

^c**Red List** candidates include any indigenous species or subspecies (taxa) considered to be Extirpated, Endangered, or Threatened in British Columbia. Extirpated taxa no longer exist in the wild in British Columbia, but do occur elsewhere. Endangered taxa are facing imminent extirpation or extinction. Threatened taxa are those that have been, or are being, evaluated for these designations.

Blue List species are any indigenous species or subspecies (taxa) considered to be Vulnerable in British Columbia. Vulnerable taxa are of special concern because of characteristics that make them particularly sensitive to human activities or natural events. Blue listed taxa are at risk, but are not Extirpated, Endangered, or Threatened.

Yellow List candidates include any indigenous species or subspecies (taxa) which is not at risk in British Columbia. The CDC tracks some Yellow listed taxa which are vulnerable during times of seasonal concentration (for example, breeding colonies).

The presence of rare fish in the Okanagan Basin means that special care must be taken when planning land use, including the operating and building of any dams or water diversions. It is also important that care be taken to not introduce fish species to non-indigenous habitats in order that the <u>native</u> species present are not threatened by competition.

The following is a brief discussion of one of the species of particular concern.

Umatilla Dace

Canadian populations of Umatilla dace are found in the lower Columbia, Kettle, Kootenay, and Similkameen rivers as well as in parts of the Slocan River. Umatilla dace are not found in the Okanagan system north of the Canadian-American border, although it presumably could become established if appropriate management actions are implemented. It prefers riverine habitat with cobble or stone bottom and relatively warm, productive waters. Umatilla dace is endangered in Canada due to an extremely small population size, restricted distribution, and limited available preferred habitat. Original habitat use by the Umatilla dace has been disrupted by the construction of dams within the watersheds. Conversely, rocks used in dike construction have increased available habitat. Although immediate threats to populations appear to be small, one natural process that may be dangerous is eutrophication. The excessive algae that grows during the stages of eutrophication may deter Umatilla dace, as they tend to not be found around large growths of algae.

Wildlife

The BC Conservation Data Centre list of both globally and provincially threatened and endangered species in the Okanagan Basin provided below in Table 31.

Table 31:	Global and Provincial	Status of "At Risk	" Wildlife Specie	es in the	Okanagan Basin.

AmphibiansG4T4QS3S4BlueTiger SalamanderG5S2RedGreat Basin SpadefootG5S3BlueNorthern Leopard FrogG5S1RedPainted TurtleG5S3S4BluePigmy Short-Horned LizardG5S3S4BlueRacerG5S3S4BlueGopher Snake, deserticola subspeciesG55S3S4BlueWestern RattlesnakeG5S1B,S3NRedMestern GrebeG5S1B,S3NRedAmerican BitternG4S3B,SZNBlueGreat Blue Heron, herodias subspeciesG55S3NYellowRedheadG5S3N, S4BYellowBald EagleG4S4YellowSwainson's HawkG5S2S, SZNRedFerruginous HawkG5S2S, SZNRedPrairie FalconG5S2B, SZNRedSharp-Tailed Grouse, columbianus subspeciesG4T3S2B, SZNRedPrairie FalconG5S2B, SZNRedSandhill CraneG5S2B, SZNRedSandhill CraneG5S2B, SZNRedSandhill CraneG5S3B, SZNBlueAmerican AvocetG5S2S3B, SZNBlueMarine FalconG5S2S3B, SZNBlueAmerican AvocetG5S3B, SZNBlueAmerican AvocetG5S3B, SZNBlueAmerican AvocetG5S4B, SZNRedLong-Billed Gull<	Common Name	Global Rank ^a	Provincial Rank ^b	Provincial List ^c
Tiger SalamanderG5S2RedGreat Basin SpadefootG5S3BlueNorthern Leopard FrogG5S1Red Reptiles Painted TurtleG5S3S4BluePigmy Short-Horned LizardG5S3S4BlueRubber BoaG5S3S4BlueRacerG5S3S4BlueGopher Snake, deserticola subspeciesG5T5S3BlueBirdsWestern RattlesnakeG5S1B,S3NRedAmerican BitternG4S3B,SZNBlueTundra SwanG5S3NYellowRedheadG5S3N, S4BYellowBalde EagleG4S4YellowSwainson's HawkG5S2B,SZNRedPreruginous HawkG5S2B,SZNRedPraine FalconG5S2B,SZNRedSage GrouseG5S2B,SZNRedSage GrouseG5S2B,SZNRedSage GrouseG5S2B,SZNRedSharp-Tailed Grouse, columbianus subspeciesG4T3S3BlueG5S1S3B,SZNBlueMerican AvocetG5S23B,SZNBlueUpland SandpiperG5S1S3B,SZNBlueRemire Falled CurlewG5S3B,SZNBlueRemire Falled CurlewG5S3B,SZNBlueRemire Falled GuilG5S4B,SZNYellow	Amphibians			
Tiger SalamanderG5S2RedGreat Basin SpadefootG5S3BlueNorthern Leopard FrogG5S1Red Reptiles Painted TurtleG5S3S4BluePigmy Short-Horned LizardG5S3S4BlueRubber BoaG5S3S4BlueRacerG5S3S4BlueGopher Snake, deserticola subspeciesG5T5S3BlueBirds </td <td>Tailed Frog – Coastal</td> <td>G4T4Q</td> <td>S3S4</td> <td>Blue</td>	Tailed Frog – Coastal	G4T4Q	S3S4	Blue
Great Basin SpadefootG5S3BlueNorthern Leopard FrogG5S1RedPainted TurtleG5S1RedPainted TurtleG5S3S4BluePigmy Short-Horned LizardG5SHRedRubber BoaG5S3S4BlueRacerG5S3S4BlueGopher Snake, deserticola subspeciesG5T5S3BlueWestern RattlesnakeG5S1B,S3NRedMestern GrebeG5S1B,S3NRedAmerican BitternG4S3B,SZNBlueGreat Blue Heron, herodias subspeciesG5T5S3B, S5NBlueGreat Blue Heron, herodias subspeciesG5S3N, S4BYellowRedheadG5S3N, S4BYellowRedheadG5S2B, SZNRedFerruginous HawkG4S1BRedPrairie Falcon, anatum subspeciesG4T3S2B, SZNRedPrairie Falcon, anatum subspeciesG5S2B, SZNRedSage GrouseG5S2B, SZNRedSage GrouseS4T3S3Sandhill CraneG5S2B, SZNRedSage SINBlueMarie AndoroG5S1S3B, SZNBlueMerican AvocetG5S1S3B, SZNBlueMarie AndoroG5S1S3B, SZNBlueMerican AvocetG5S1S3B, SZNBlueMerican AvocetG5S1S3B, SZNBlueRedS1S3B, SZNBlueRedMarie Billed CurlewG		G5	S2	Red
ReptilesG5S3S4BluePainted TurtleG5S3S4BluePigmy Short-Horned LizardG5S3S4BlueRubber BoaG5S3S4BlueRacerG5S3S4BlueGopher Snake, deserticola subspeciesG5T5S3BlueWestern RattlesnakeG5S3BlueBirdsWestern GrebeG5S1B,S3NRedAmerican BitternG4S3B,SZNBlueGreat Blue Heron, herodias subspeciesG5T5S3B, S5NBlueTundra SwanG5S3N, S4BYellowRedheadG5S2B, SZNRedFerruginous HawkG4S1BRedRough-Legged HawkG5S2B, SZNRedPrairie FalconG5S2B, SZNRedSage GrouseG5S2B, SZNRedSage GrouseG5S2B, SZNRedSage GrouseG5S2B, SZNRedSage GrouseG5S2B, SZNRedSage GrouseG5S2B, SZNRedSage GrouseG5S2B, SZNBlueMemican AvocetG5S2S3B, SZNBlueUpland SandpiperG5S1S3B, SZNBlueUpland SandpiperG5S1S3B, SZNBlueRing-Billed CurlewG5S4B, SZNYellowReing-Billed GullG5S4B, SZNYellow	0	G5	S3	Blue
ReptilesG5S3S4BluePigmy Short-Horned LizardG5S3S4BlueRubber BoaG5S3S4BlueRacerG5S3S4BlueGopher Snake, deserticola subspeciesG5T5S3BlueWestern RattlesnakeG5S3BlueBirdsWestern GrebeG5S1B,S3NRedAmerican BitternG4S3B,SZNBlueGreat Blue Heron, herodias subspeciesG5T5S3B, S5NBlueTundra SwanG5S3N, S4BYellowRedheadG5S2B, SZNRedSwainson's HawkG4S1BRedFerruginous HawkG5S2B, SZNRedPragine Falcon, anatum subspeciesG4T3S2B, SZNRedPrairie FalconG5S2B, SZNRedSage GrouseG5S2B, SZNRedSage GrouseG5S2B, SZNRedSage GrouseG5S2B, SZNRedSage GrouseG5S2B, SZNRedSage GrouseG5S2B, SZNRedSage GrouseG5S2B, SZNBlueUpland SandpiperG5S1S3B, SZNBlueUpland SandpiperG5S1S3B, SZNBlueRing-Billed CurlewG5S4B, SZNYellowReing-Billed GullG5S4B, SZNYellow	Northern Leopard Frog	G5	S1	Red
Painted TurtleG5S3S4BluePigmy Short-Horned LizardG5SHRedRubber BoaG5S3S4BlueRacerG5S3S4BlueGopher Snake, deserticola subspeciesG5T5S3BlueWestern RattlesnakeG5S3Blue Birds Western GrebeG5S1B,S3NRedAmerican BitternG4S3B,SZNBlueGreat Blue Heron, herodias subspeciesG5T5S3B, S5NBlueTundra SwanG5S3N, S4BYellowRedheadG5S2B,SZNRedFerruginous HawkG4S1BRedFerruginous HawkG5S2B,SZNRedPrairie FalconG5S2B, SZNRedSage GrouseG5S3B, SZNBlueSandhill CraneG5S2B, SZNRedSage GrouseG5S3B, SZNBlueSandhill CraneG5S2S3B, SZNBlueMerican AvocetG5S2S3B, SZNBlueUpland SandpiperG5S1S3B, SZNBlueRing-Billed CurlewG5S1S3B, SZNBlueReing-Billed GullG5S4B, SZNYellow				
Pigmy Short-Horned LizardG5SHRedRubber BoaG5S3S4BlueRacerG5S3S4BlueGopher Snake, deserticola subspeciesG5T5S3BlueWestern RattlesnakeG5S3BlueWestern GrebeG5S1B,S3NRedAmerican BitternG4S3B,SZNBlueGreat Blue Heron, herodias subspeciesG55S3NYellowRedheadG5S3N, S4BYellowBald EagleG4S4YellowSwainson's HawkG5S2B,SZNRedFerruginous HawkG5S2S,SZNRedRough-Legged HawkG5S2B,SZNRedParirie Falcon, anatum subspeciesG4T3S2B,SZNRedSharp-Tailed Grouse, columbianus subspeciesG4T3S3BlueSandhill CraneG5S3B,SZNBlueSaAmerican AvocetG5S2S,SZNRedSaSharp-Tailed Grouse, columbianus subspeciesG4T3S3BlueAmerican AvocetG5S2S,SZNBlueSaUpland SandpiperG5S1S,SZNBlueSaAmerican AvocetG5S3B,SZNBlueSaRedG5S1S,SZNBlueSaRedG5S3B,SZNBlueSaSandhill CraneG5S3B,SZNBlueAmerican AvocetG5S3B,SZNBlueRing-Billed GullG5S4B,SZNYellow <td></td> <td>G5</td> <td>S3S4</td> <td>Blue</td>		G5	S3S4	Blue
Rubber BoaG5S3S4BlueRacerG5S3S4BlueGopher Snake, deserticola subspeciesG5T5S3BlueWestern RattlesnakeG5S3Blue Birds	Pigmy Short-Horned Lizard	G5	SH	Red
Gopher Snake, deserticola subspeciesG5T5S3BlueWestern RattlesnakeG5S3BlueBirdsCCWestern GrebeG5S1B,S3NRedAmerican BitternG4S3B,SZNBlueGreat Blue Heron, herodias subspeciesG5T5S3B, S5NBlueTundra SwanG5S3N, S4BYellowRedheadG5S3N, S4BYellowBald EagleG4S4YellowSwainson's HawkG5S2B, SZNRedFerruginous HawkG5S2S3NYellowPeregrine Falcon, anatum subspeciesG4T3S2B, SZNRedPrairie FalconG5S2B, SZNRedSharp-Tailed Grouse, columbianus subspeciesG4T3S3BlueSanchill CraneG5S23B, SZNBlueAmerican AvocetG5S23B, SZNBlueUpland SandpiperG5S1S3B, SZNBlueRing-Billed GullG5S4B, SZNRed	0 /	G5		Blue
Western RattlesnakeG5S3BlueBirdsCCWestern GrebeG5S1B,S3NRedAmerican BitternG4S3B,SZNBlueGreat Blue Heron, herodias subspeciesG5T5S3B, S5NBlueTundra SwanG5S3NYellowRedheadG5S3N, S4BYellowBald EagleG4S4YellowSwainson's HawkG5S2B, SZNRedFerruginous HawkG5S2B, SZNRedRough-Legged HawkG5S2S3NYellowPeregrine Falcon, anatum subspeciesG4T3S2B, SZNRedPrairie FalconG5S2B, SZNRedSage GrouseG5SXRedSharp-Tailed Grouse, columbianus subspeciesG4T3S3BlueAmerican AvocetG5S2S3B, SZNBlueUpland SandpiperG5S1S3B, SZNBlueRing-Billed CurlewG5S3B, SZNBlueRing-Billed GullG5S4B, SZNYellow	Racer	G5	S3S4	Blue
Western RattlesnakeG5S3BlueBirdsCCWestern GrebeG5S1B,S3NRedAmerican BitternG4S3B,SZNBlueGreat Blue Heron, herodias subspeciesG5T5S3B, S5NBlueTundra SwanG5S3NYellowRedheadG5S3N, S4BYellowBald EagleG4S4YellowSwainson's HawkG5S2B, SZNRedFerruginous HawkG5S2B, SZNRedRough-Legged HawkG5S2S3NYellowPeregrine Falcon, anatum subspeciesG4T3S2B, SZNRedPrairie FalconG5S2B, SZNRedSage GrouseG5SXRedSharp-Tailed Grouse, columbianus subspeciesG4T3S3BlueAmerican AvocetG5S2S3B, SZNBlueUpland SandpiperG5S1S3B, SZNBlueRing-Billed CurlewG5S3B, SZNBlueRing-Billed GullG5S4B, SZNYellow	Gopher Snake. deserticola subspecies			
BirdsG5S1B,S3NRedWestern GrebeG4S3B,SZNBlueAmerican BitternG4S3B,SZNBlueGreat Blue Heron, herodias subspeciesG5T5S3B, S5NBlueTundra SwanG5S3NYellowRedheadG5S3N, S4BYellowBald EagleG4S4YellowSwainson's HawkG5S2B, SZNRedFerruginous HawkG4S1BRedRough-Legged HawkG5S2S3NYellowPeregrine Falcon, anatum subspeciesG4T3S2B, SZNRedSage GrouseG5SXRedSharp-Tailed Grouse, columbianus subspeciesG4T3S3BlueSandhill CraneG5S2S3B, SZNBlueAmerican AvocetG5S1S3B, SZNBlueUpland SandpiperG5S1S3B, SZNRedLong-Billed CurlewG5S3B, SZNBlueRing-Billed GullG5S4B, SZNYellow				
Western GrebeG5S1B,S3NRedAmerican BitternG4S3B,SZNBlueGreat Blue Heron, herodias subspeciesG5T5S3B, S5NBlueTundra SwanG5S3NYellowRedheadG5S3N, S4BYellowBald EagleG4S4YellowSwainson's HawkG5S2B, SZNRedFerruginous HawkG4S1BRedRough-Legged HawkG5S2S3NYellowPeregrine Falcon, anatum subspeciesG4T3S2B, SZNRedSage GrouseG5SXRedSharp-Tailed Grouse, columbianus subspeciesG4T3S3BlueSandhill CraneG5S2S3B, SZNBlueAmerican AvocetG5S1S3B, SZNBlueUpland SandpiperG5S1S3B, SZNBlueRing-Billed GullG5S4B, SZNPlue				
American BitternG4S3B,SZNBlueGreat Blue Heron, herodias subspeciesG5T5S3B, S5NBlueTundra SwanG5S3NYellowRedheadG5S3N, S4BYellowBald EagleG4S4YellowSwainson's HawkG5S2B, SZNRedFerruginous HawkG4S1BRedRough-Legged HawkG5S2S3NYellowPeregrine Falcon, anatum subspeciesG4T3S2B, SZNRedSage GrouseG5S2B, SZNRedSharp-Tailed Grouse, columbianus subspeciesG4T3S3BlueSandhill CraneG5S2S3B, SZNBlueAmerican AvocetG5S2S3B, SZNBlueUpland SandpiperG5S1S3B, SZNBlueRing-Billed GullG5S4B, SZNYellow		G5	S1B,S3N	Red
Great Blue Heron, herodias subspeciesG5T5S3B, S5NBlueTundra SwanG5S3NYellowRedheadG5S3N, S4BYellowBald EagleG4S4YellowSwainson's HawkG5S2B, SZNRedFerruginous HawkG4S1BRedRough-Legged HawkG5S2S3NYellowPeregrine Falcon, anatum subspeciesG4T3S2B, SZNRedPrairie FalconG5S2B, SZNRedSage GrouseG5S2B, SZNRedSandhill CraneG5S3B, SZNBlueAmerican AvocetG5S2S3B, SZNBlueUpland SandpiperG5S1S3B, SZNBlueLong-Billed CurlewG5S3B, SZNBlueRing-Billed GullG5S4B, SZNYellow				
Tundra SwanG5S3NYellowRedheadG5S3N, S4BYellowBald EagleG4S4YellowSwainson's HawkG5S2B, SZNRedFerruginous HawkG4S1BRedRough-Legged HawkG5S2S3NYellowPeregrine Falcon, anatum subspeciesG4T3S2B, SZNRedPrairie FalconG5S2B, SZNRedSage GrouseG5S2B, SZNRedSharp-Tailed Grouse, columbianus subspeciesG4T3S3BlueAmerican AvocetG5S2S3B, SZNBlueUpland SandpiperG5S1S3B, SZNRedLong-Billed CurlewG5S3B, SZNBlueRing-Billed GullG5S4B, SZNYellow				
RedheadG5S3N, S4BYellowBald EagleG4S4YellowSwainson's HawkG5S2B, SZNRedFerruginous HawkG4S1BRedRough-Legged HawkG5S2S3NYellowPeregrine Falcon, anatum subspeciesG4T3S2B, SZNRedPrairie FalconG5S2B, SZNRedSage GrouseG5SXRedSharp-Tailed Grouse, columbianus subspeciesG4T3S3BlueSandhill CraneG5S2S3B, SZNBlueAmerican AvocetG5S1S3B, SZNBlueUpland SandpiperG5S1S3B, SZNBlueRing-Billed GullG5S4B, SZNYellow				
Bald EagleG4S4YellowSwainson's HawkG5S2B, SZNRedFerruginous HawkG4S1BRedRough-Legged HawkG5S2S3NYellowPeregrine Falcon, anatum subspeciesG4T3S2B, SZNRedPrairie FalconG5S2B, SZNRedSage GrouseG5SXRedSharp-Tailed Grouse, columbianus subspeciesG4T3S3BlueSandhill CraneG5S2S3B, SZNBlueUpland SandpiperG5S1S3B, SZNRedLong-Billed CurlewG5S3B,SZNBlueRing-Billed GullG5S4B, SZNYellow				
Swainson's HawkG5S2B, SZNRedFerruginous HawkG4S1BRedRough-Legged HawkG5S2S3NYellowPeregrine Falcon, anatum subspeciesG4T3S2B, SZNRedPrairie FalconG5S2B, SZNRedSage GrouseG5SXRedSharp-Tailed Grouse, columbianus subspeciesG4T3S3BlueSandhill CraneG5S3B, SZNBlueUpland SandpiperG5S1S3B, SZNRedLong-Billed CurlewG5S3B,SZNBlueRing-Billed GullG5S4B, SZNYellow				
Ferruginous HawkG4S1BRedRough-Legged HawkG5S2S3NYellowPeregrine Falcon, anatum subspeciesG4T3S2B, SZNRedPrairie FalconG5S2B, SZNRedSage GrouseG5SXRedSharp-Tailed Grouse, columbianus subspeciesG4T3S3BlueSandhill CraneG5S3B, SZNBlueAmerican AvocetG5S1S3B, SZNBlueUpland SandpiperG5S1S3B, SZNRedLong-Billed CurlewG5S3B,SZNBlueRing-Billed GullG5S4B, SZNYellow				
Rough-Legged HawkG5S2S3NYellowPeregrine Falcon, anatum subspeciesG4T3S2B, SZNRedPrairie FalconG5S2B, SZNRedSage GrouseG5SXRedSharp-Tailed Grouse, columbianus subspeciesG4T3S3BlueSandhill CraneG5S3B, SZNBlueAmerican AvocetG5S1S3B, SZNBlueUpland SandpiperG5S1S3B, SZNRedLong-Billed CurlewG5S3B,SZNBlueRing-Billed GullG5S4B, SZNYellow				
Peregrine Falcon, anatum subspeciesG4T3S2B, SZNRedPrairie FalconG5S2B, SZNRedSage GrouseG5SXRedSharp-Tailed Grouse, columbianus subspeciesG4T3S3BlueSandhill CraneG5S3B, SZNBlueAmerican AvocetG5S2S3B, SZNBlueUpland SandpiperG5S1S3B, SZNRedLong-Billed CurlewG5S3B,SZNBlueRing-Billed GullG5S4B, SZNYellow				
Prairie FalconG5S2B, SZNRedSage GrouseG5SXRedSharp-Tailed Grouse, columbianus subspeciesG4T3S3BlueSandhill CraneG5S3B, SZNBlueAmerican AvocetG5S2S3B, SZNBlueUpland SandpiperG5S1S3B, SZNRedLong-Billed CurlewG5S3B,SZNBlueRing-Billed GullG5S4B, SZNYellow				
Sage GrouseG5SXRedSharp-Tailed Grouse, columbianus subspeciesG4T3S3BlueSandhill CraneG5S3B, SZNBlueAmerican AvocetG5S2S3B, SZNBlueUpland SandpiperG5S1S3B, SZNRedLong-Billed CurlewG5S3B,SZNBlueRing-Billed GullG5S4B, SZNYellow				
Sharp-Tailed Grouse, columbianus subspeciesG4T3S3BlueSandhill CraneG5S3B, SZNBlueAmerican AvocetG5S2S3B, SZNBlueUpland SandpiperG5S1S3B, SZNRedLong-Billed CurlewG5S3B,SZNBlueRing-Billed GullG5S4B, SZNYellow				
Sandhill CraneG5S3B, SZNBlueAmerican AvocetG5S2S3B, SZNBlueUpland SandpiperG5S1S3B, SZNRedLong-Billed CurlewG5S3B,SZNBlueRing-Billed GullG5S4B, SZNYellow				
American AvocetG5S2S3B, SZNBlueUpland SandpiperG5S1S3B, SZNRedLong-Billed CurlewG5S3B,SZNBlueRing-Billed GullG5S4B, SZNYellow				
Upland SandpiperG5S1S3B, SZNRedLong-Billed CurlewG5S3B,SZNBlueRing-Billed GullG5S4B, SZNYellow				
Long-Billed CurlewG5S3B,SZNBlueRing-Billed GullG5S4B, SZNYellow				
Ring-Billed Gull G5 S4B, SZN Yellow				
Barn Owl G5 S3 Blue				
Flammulated Owl G4 S3S4B, SZN Blue				
Western Screech-Owl, <i>macfarlanei</i> subspecies G5T? S2 Red				
Burrowing Owl G4 S1B, SZN Red				
Short-Eared Owl G5 S2N, S3B Blue				
White-Throated SwiftG5S3S4B, SZNBlue				
Lewis's Woodpecker G5 S3B, SZN Blue				
Williamson's Sapsucker, <i>thyroideus</i> subspecies G5TU S3B, SZN Blue				
White-Headed WoodpeckerG4S1S2Red				
Gray Flycatcher G5 S3 Blue				
Canyon Wren G5 S3 Blue	, ,			
Sage Thrasher G5 S1B Red				
Yellow-Breasted Chat G5 S1B Red	0			
Brewer's Sparrow, <i>breweri</i> subspecies G5T4 S2B Red				

Common Name	Global Rank ^a	Provincial Rank ^b	Provincial List ^c
Lark Sparrow	G5	S2B, SZN	Red
Grasshopper Sparrow	G5	S2B	Red
Bobolink	G5	S3B,SZN	Blue
Mammals			
Preble's Shrew	G4	S1	Red
Merriam's Shrew	G5	S1	Red
Fringed Myotis	G4G5	S2S3	Blue
Western Small-Footed Myotis	G5	S2S3	Blue
Northern Long-Eared Myotis	G4	S2S3	Blue
Spotted Bat	G4	S3	Blue
Townsend's Big-Eared Bat	G4	S2S3	Blue
Pallid Bat	G5	S1	Red
Nuttall's Cottontail	G5	S3	Blue
Mountain Beaver, rainieri subspecies	G5T4	S3	Blue
Cascade Golden-Mantled Ground Squirrel	G5	S3S4	Blue
Great Basin Pocket Mouse	G5	S3	Blue
Western Harvest Mouse	G5	S2S3	Blue
Fisher	G5	S3	Blue
Northern Bog Lemming, artemisiae subspecies	G4T2T3	S2S3	Blue
Grizzly Bear	G4	S3	Blue
Fisher	G5	S3	Blue
Wolverine, <i>luscus</i> subspecies	G4T4	S3	Blue
Badger	G5	S2	Red
Caribou, Southern population	G5T2T3Q	S2	Red
California Bighorn Sheep	G4G5T4	S2S3	Blue

^aBasic **Global Ranks** include the following: **GX** – Presumed Extinct throughout its range, **GH** – Possibly Extinct and **G1** through **G5** where **G1** is Critically Imperiled and **G5** is Secure. Additional Ranking codes include **G#G#** which is used to indicate uncertainty regarding the exact status of a taxon; **Q** denotes questionable taxonomic status; **T** reflects the status of infraspecific taxa (subspecies or varieties) and follows the species' global rank; **U** indicates a lack of available information about status or trends and the species is therefore unrankable; and a ? which indicates that the global rank of a species has not yet been assessed.

^bBasic **Provincial Ranks** are similar to that of the Global Ranking system but are based upon provincial species populations and are coded with an S (such as SX, SH, S1 through S5). Provincial ranks are sometimes followed by rank qualifiers which include B which refers to the breeding occurrences of mobile animals; N which refers to the non-breeding occurrences of mobile animals; and Z which refers to species that occurs within the province but as a diffuse, usually moving population (for which it is difficult or impossible to map static occurrences).

^c**Red List** candidates include any indigenous species or subspecies (taxa) considered to be Extirpated, Endangered, or Threatened in British Columbia. Extirpated taxa no longer exist in the wild in British Columbia, but do occur elsewhere. Endangered taxa are facing imminent extirpation or extinction. Threatened taxa are those that have been, or are being, evaluated for these designations.

Blue List species are any indigenous species or subspecies (taxa) considered to be Vulnerable in British Columbia. Vulnerable taxa are of special concern because of characteristics that make them particularly sensitive to human activities or natural events. Blue listed taxa are at risk, but are not Extirpated, Endangered, or Threatened.

Yellow List candidates include any indigenous species or subspecies (taxa) which is not at risk in British Columbia. The CDC tracks some Yellow listed taxa which are vulnerable during times of seasonal concentration (for example, breeding colonies).

The following are brief discussions of some of the species of particular concern.

Amphibians

Tiger Salamander

The tiger salamander is widespread in North America and is capable of tolerating dry conditions of many regions such as those found in the interior. Its distribution within the southern Okanagan Valley reaches as far north as Summerland and Meadow Valley and to the east, at least to Myer's Lake. Tiger salamanders are typically found near small alkaline lakes and ponds and can resist periods of drought by residing below ground. They also choose breeding sites that are adjacent to grassland foraging habitat with access to suitable alkaline lakes and ponds with prey availability.

Development of roads, agricultural lands, and housing complexes is the main limiting factor for the tiger salamanders. Trampling of lakeside habitat by livestock impacts salamander eggs or larvae and leads to soil compaction which limits opportunities to gain subterranean refuge. Overgrazing or destruction of adjacent foraging habitat and degradation of water quality by livestock activities are additional concerns. Water use for irrigation may lower water levels sufficiently to be detrimental to the salamander population. Improperly screened pumps cause mortality.

In permanent lakes, game fish and other predatory fish prey on salamander eggs and larvae. These fish have been introduced into lakes suitable for salamanders. The remaining populations in temporary ponds are subject to periodic drought.

Reptiles

Night Snake

In Canada, the night snake is only found in British Columbia. It is one of the rarest snakes in the country. This species occurs in a variety of habitats but is generally associated with arid regions, especially sandy and rocky habitats. While the habitat in which this species has been recorded in the last decade remains relatively intact, the original valley vegetation has been severely altered by humans.

Little is known about the limiting factors except that they may include competition, predation, prey availability, or human disturbance. Their nocturnal nature suggests that the night snake's main threat from humans is in terms of habitat destruction. Climate is probably an important limiting factor affecting population size and distribution. Oviparous snakes in British Columbia, and in Canada generally, have a significantly more restricted range than viviparous species.

Short-Horned Lizard

The short-horned lizard has not been positively identified in British Columbia since 1898. The species was probably never common in British Columbia and it is likely that this population was a peripheral isolate and is now extirpated from British Columbia. The shorthorned lizard occurs in a variety of habitats from sagebrush deserts to light forests, and at a wide range of elevations. It is most frequently found in open habitats where the soil is loose and sandy, but may be found in rocky areas. It is quite cold tolerant, which accounts for its occurrence at high elevations and high latitudes.

Birds

Brewer's Sparrow

There are two geographic subspecies of Brewer's sparrow in British Columbia. The sagebrush subspecies breeds in the Okanagan and Similkameen valleys south of Penticton. The timberline subspecies migrates through the Okanogan to breed in northern British Columbia and the southern Yukon; it also breeds in the mountains of southeastern British Columbia to the international border. This is a bird of open brushlands such as sagebrush plains, alpine meadows, and valleys where low shrubbery prevails. Sagebrush in medium to high density is the preferred habitat of the sagebrush Brewer's sparrow for nesting and foraging for insects and weed seeds.

The main threat to the sparrow is the conversion of sagebrush land to other uses. Removal of sagebrush habitat to increase forage for cattle is a primary limiting factor in the distribution of the sagebrush Brewer's sparrow throughout its range in the Okanagan. As well, cattle may also damage and/or disturb nests and degrade foraging areas. Use of insecticides for insect control may harm the birds directly or through contamination or reduction of their prey species.

Burrowing Owl

Historically, burrowing owls in British Columbia bred mainly in the Okanagan-Similkameen and south Thompson basins. Since 1928, only three nest sites have been located: one at Chopaka in the lower Similkameen Valley (1943), another at Okanogan Landing (until 1963), and a third on the West Bench near Penticton (1970). Now burrowing owls are found only at reintroduction sites near Osoyoos and Kamloops. burrowing owls were designated as threatened in 1979 and were reconfirmed as threatened in 1991. In 1995 the situation was reevaluated and burrowing owls were uplisted to endangered. Except for some recent nests derived from introductions, its true breeding status is not clear, but there may still be a few isolated nesting pairs in the Okanagan Valley each year. The reintroduction of burrowing owls has not been successful in establishing a stable population.

The major habitat needs of burrowing owls are prairie-like terrain with low herbaceous vegetation, deep soil for burrows, the presence of mammals that excavate burrows, and a food supply. They are adapted to open, usually dry country with short vegetation. Being ground-dwellers, it is difficult for them to detect approaching predators or find prey in brushland or forest. They are well adapted to grazed rangelands, but find croplands less suitable. The terrain is often flat, but rugged landscapes are also used. The extent of suitable habitat is quite restricted in British Columbia.

The overall abundance of burrowing owls is limited by the availability of suitable habitat. The grasslands in which they live are restricted to the dry valley bottoms of the southern interior, and comprise less than one percent of the area of the province. Expanding towns, intensive agriculture, and a multitude of other industrial uses and developments, especially in the Okanagan Valley is further diminishing this small area of natural grassland. The burrowing owl used badger holes as burrows. When cattle were introduced to the grasslands, the badgers were killed because their holes were a hazard. Badgers probably declined as a result of over-hunting, habitat loss, and habitat fragmentation.

Sage Grouse

The sage grouse apparently was always a rare bird in the extreme south of the Okanagan and Similkameen valleys before its complete disappearance in the first quarter of the Twentieth Century. The region probably offered only marginal habitat and, being at the northern limit of its range, the sage grouse probably existed precariously.

The sage grouse is restricted to open big sagebrush habitats in the extreme south Okanagan. The strutting ground habitat is moderately open sagebrush with a canopy coverage of 20 to 50 percent. A minimum radius of 2.4 km around strutting ground is suggested for protection of habitat.

The sage grouse has been heavily impacted by reduction of range and uncontrolled hunting. The restricted range resulting from livestock grazing and agriculture has meant that there probably is not enough habitat left in British Columbia for reintroduction. Agriculture, excessive livestock grazing, and sagebrush control using herbicides and fire are primarily responsible for loss of shrub-steppe habitat. These continue to threaten sage grouse habitat in addition to irrigation projects; commercial, industrial, and power development; and military training. It has been found that reduction of sagebrush cover reduces male attendance and nest success, and broods will avoid meadows surrounded by bare ground.

White-headed Woodpecker

The British Columbia population of the white-headed woodpecker has apparently fluctuated widely over the last 50 years. The species was considered very rare in the late 1950s and early 1960s, but became more numerous in late 1960s and early 1970s. The British Columbia population was under 100 birds when last surveyed in 1990. In Canada, the white-headed woodpecker is found only in British Columbia, where it is a very rare resident in the Okanagan Valley. The white-headed woodpecker requires mature ponderosa pine stands restricting it, more or less, to the benches and hills of the Okanagan Valley below 600 or 700 m elevations. They have also been found in ornamental gardens, mixed ponderosa pine forest, and black cottonwoods.

The primary limiting factor for populations of the white-headed woodpecker in Canada is the dependence of the species on mature to old-growth ponderosa pine forests. This dependence is likely related to both the availability of snags for nesting and roosting as well as the availability of cones for foraging. Most of the old-growth ponderosa pine forests of British Columbia were heavily logged in the 1930s and 1940s and only scattered remnants remain, usually in sites with difficult access. Seed production by ponderosa pines is also related to the age and size of the trees and the density of the stand; large, dominant trees in open situations produce almost all seeds. As a result of logging and subsequent fire suppression, many ponderosa pine forests in the Okanagan Valley are now characterized by dense stands of young trees, presumably resulting in poor seed production there. Reduced snag densities after even selective logging would likely seriously lower the quality of white-headed woodpecker nesting habitat. As well, the habit of nesting low in snags may increase nest predation pressure. Since insects are an important food source for white-headed woodpeckers, particularly in the summer, pesticide application in ponderosa pine forests would likely have a significant impact on woodpecker populations.

Yellow-breasted Chat

The yellow-breasted chat is on the British Columbia Wildlife Branch 1993 Red List of candidate species to be considered for legal designation under the British Columbia Wildlife Act as Endangered or Threatened. It is also protected under the federal Migratory Birds Convention Act of 1994 as well as the British Columbia Wildlife Act of 1982.

In British Columbia, the yellow-breasted chat is essentially restricted to the valley bottoms of the south Okanagan and Similkameen valleys from Vaseux Lake and Cawston south, where it has been long established. Almost all known territories are located along the Okanagan and Similkameen rivers rather than in side valleys. Outside that area there is only one breeding record and 15 other sight records, mostly of singing males. In the Thompson-Okanagan they are locally common in a few remaining habitat patches but rare elsewhere.

The yellow-breasted chat is a bird of edges of woods, fence rows, dense thickets, and brambles in low wet places near streams, pond edges, or swamps and in old overgrown clearings and fields. The lowland riparian thickets favored by chats are very vulnerable to clearing for agricultural and residential/industrial developments. There now seem to be only five sites remaining in the province that are suitable for breeding: the south Similkameen Valley, which probably contains the most extensive habitat in the province; Okanagan River oxbows at the north end of Osoyoos Lake; Okanagan River between Inkaneep Provincial Park and McIntyre Bluff; Vaseux Lake, primarily at the north end but previously at the south end, as well; and woodlands along the Okanogan River on the Penticton Indian Reserve. Chat territories next to farmlands, particularly orchards, might be affected by pesticide applications either indirectly (through loss of insect food) or directly (through direct contact with pesticides).

Mammals

Pallid Bat

The pallid bat is one of the rarest mammals in British Columbia and is therefore on the Provincial Red List. In British Columbia, the pallid bat is afforded complete legal protection under the Wildlife Act. All Canadian sightings have occurred in extreme southern British Columbia in the southern Okanagan Valley in a localized area between Oliver, Osoyoos, and Okanagan Falls. The southern Okanagan Basin ecosection represents the northernmost known limit of the pallid bat's distribution. The pallid bat is found in <u>arid</u> desert habitat in British Columbia, often near rocky outcrops and water. It is restricted to low elevations (300 to 490 meters) in sagebrush-steppe areas and ponderosa pine forests in the vicinity of cliff faces and water. Preferring to forage in open areas, the pallid bat can be found over lengthy tracts of sandy, sparsely vegetated sagebrush and grassland. Gravel roads and canyon mouths are preferred feeding areas. The ponderosa pine trees are preferred as night roosts and steep cliffs for day roosts.

It seems likely that pallid bat have always been rare in the Canadian portion of their range because of restricted habitat and a less than ideal climate and low recruitment. However, severe habitat loss in the South Okanagan has probably further limited their numbers. Colonial species are sensitive to human disturbance. Any human activity that disturbs the bats in their night roost, day roosts, or foraging grounds, could potentially cause pallid bat to move out of the area. These activities may include logging, industrial activity, hiking, and rock climbing. Habitat loss from conversion of sagebrush-steppe habitat to other uses such as

Okanogan/Similkameen Subbasin Summary 254

housing developments and golf courses appear to be on the increase in the Okanagan. The reduction of open foraging areas because of development as well as grazing by cattle may degrade foraging areas, reducing prey diversity and density. Roost sites are generally secure because of inaccessibility, however. Pesticides are used extensively in Okanagan fruit orchards and potentially have detrimental effects on the pallid bat populations. Because of the climate in British Columbia, pallid bat may suffer more from ingesting pesticides than pallid bat farther south. Pesticides are stored in the fatty tissues and are released when the fat is metabolized. The effect of ingested pesticides is probably worst during severe cold because more fat reserves are used during hibernation and migration. In addition, pesticides and herbicides may limit the prey supply, but it is not known how this would affect the abundance of the pallid bat.

Western Harvest Mouse

Because of its limited range and apparent rarity, the western harvest mouse was placed on the provincial Blue List by the Ministry of Environment. With no evidence for population declines, the western harvest mouse does not warrant a threatened or endangered status. However, because it occurs in low population numbers, has a restricted range and low dispersal abilities, and there is evidence for habitat fragmentation, this species should remain on the provincial Blue List as a sensitive species. In British Columbia, the western harvest mouse is known only to occur in the lower elevation grasslands in the southern Okanagan and Similkameen valleys at low elevation. Across North America, the western harvest mouse inhabits sagebrush-steppe and agricultural areas below elevations of 500 m. It forages in grasslands bordering riparian areas such as irrigation rights-of-way, coastal salt marshes, streams, or lakes, and in ravines of deciduous willow, rose, and trembling aspen. In British Columbia, they are mainly associated with edge habitats bordering agricultural areas and rangeland.

Cattle grazing, agriculture, and urbanization have affected grassland habitats in southern British Columbia. The most intensive grazing in the Okanagan Valley occurred in the late 1880s. Over-grazing by cattle has altered the plant species composition and cover in British Columbia grasslands and, presumably, this has affected habitat quality and small mammal population densities. Heavy cattle grazing reduced cover in ravines and on the grasslands, causing threats to the habitat of the western harvest mouse. Grazing also reduced the availability of food, since the western harvest mouse's diet consists primarily of seeds from grasses. In British Columbia, ongoing habitat loss through urbanization has had the greatest impact on this species. Historically, grasslands were distributed continuously throughout low elevations of the Okanagan and Similkameen valleys. The conversion of grasslands to irrigated orchards, vineyards, and cultivated fields, and recent urban development has eliminated much of the original grassland-steppe in these valleys and contributed to habitat fragmentation. The rapid growth of urban centers, such as Penticton, Kelowna, and Vernon, in the past decade has resulted in significant habitat loss and contributed to fragmentation of the range. Other potential limiting factors are competition with other small mammals and habitat disturbance from hay mowing, cultivation, and fire.

White-tailed Jackrabbit

The white-tailed jackrabbit is probably extirpated in British Columbia and is therefore on the Provincial Red List. Before extirpation, this race was restricted in Canada to the southern

Okanagan and Similkameen valleys of British Columbia. Where it is at the northern periphery of its range in British Columbia, it is probably extinct. The white-tailed jackrabbit uses different habitat types seasonally.

The white-tailed jackrabbit probably disappeared in British Columbia as a result of over-hunting, habitat loss, and habitat fragmentation. The white-tailed jackrabbit used to be locally abundant, but numbers were reduced because of cultivation and extermination by farmers who viewed them as pests and sources of fur. One reason that they are limited by any development of their habitat is that they require a large home range, estimated to be as large as 89.4 hectares in Colorado. Consequently, their numbers have dropped due to the reduction of available habitat. Since they can cause agricultural damage, the white-tailed jackrabbit is not considered adaptable to human disturbance. Grazing of rangelands by cattle may result in Jackrabbits no longer using the area since there is about a 50 percent overlap between the diets of cattle and jackrabbits. Severe winter conditions increase mortality and may reduce reproduction the following spring as well as cause the Jackrabbits to be more susceptible to predators if the snow cover is scarce. Wet weather also increases juvenile mortality. As well as contending with a number of large predators, the white-tailed jackrabbit populations are controlled by diseases and parasites of several kinds, including tularaemia, Colorado tick fever, equine encephalitis, and fever caused by heavy infestations of botfly larvae.

Habitat Areas and Quality

Streams flowing into the Okanagan mainstem show high nutrient (nitrogen and phosphorus) loading, most of which is not immediately available for plant or algal growth. The rate of supply of nutrients that are available to plants and algae for growth appears to be the limiting factor for overall biological production in the Okanagan mainstem lakes. In larger, deeper lakes such as Okanagan Lake, oxygen tends to remain plentiful and is therefore thought to not be a limiting factor.

The following sections detail the areas of the subbasin in further detail.

Chute Creek

Flowing from the east, Chute Creek drains directly to Okanagan Lake.

Known fish species in the system include brook trout, kokanee, and rainbow trout. Summerland and Pennask Lake Hatcheries have also stocked Chute Creek with rainbow trout at the eyed egg life cycle stage.

Reach break description	Reach 1	Reach 2	Reach 3
Attribute Considered	Confluence to 200m u/s		
Water Quality			
Dissolved Oxygen	DG		
Stream Temperature	DG		
Turbidity/Suspended Sediment	DG		
Nutrient Loading	DG		

Table 32:	Chute	Creek	Limiting	Factors	Matrix
-----------	-------	-------	----------	---------	--------

Reach break description	Reach 1	Reach 2	Reach 3
	Confluence to		
Attribute Considered	200m u/s		
In Channel Habitat			
Fine Sediment (substrate)	DG		
Large Woody Debris	DG		
Percent Pool	P1		
<u><</u> 2%			
2-5%			
>5%			
Habitat Access			
Fish Passage	P1		
<u>Stream Flow</u>			
Resembles Natural Hydrograph	P1		
Impervious Surface	DG		
Stream Corridor			
Riparian Vegetation	DG		
Stream Bank Stability	DG		
Floodplain Connectivity	P1		

This system is extremely precipitous in the lower reaches thus limiting fish access further upstream. The steep nature of Chute Creek reduces the potential for rearing pool formation in addition to increasing potential washout of spawning gravel and large woody debris.

In response to this high stream energy and erosion potential, the lower 200 m of Chute Creek have been confined in a concrete flume as a flood control measure. The flume has effectively eliminated any possibility of restoring even a low level of salmonid production in lower Chute Creek.

A diversion dam located 17.3 m upstream of the confluence represents a potential barrier to further upstream migration by resident fish populations. There is also a cascade located approximately 430 m upstream of the confluence that would also restrict fish passage.

Projects Undertaken

Fish and fish habitat projects undertaken in the watershed include:

Project Name: Nicola/Similkameen/Okanagan River Reconnaissance (1:20 000) Fish and Fish Habitat Inventory

Description: 1:20K Reconnaissance Fish and Fish Habitat Inventory, performed according to RIC standards

Objective: A sample based survey covering whole watersheds, providing information regarding fish species distributions, characteristics and relative abundance, and stream reach and lake biophysical characteristics.

Project Status: Active Start Date: 01-APR-96

Lead Proponent: Gorman Brothers Lumber Limited

Activity: Inventory - 1:20000 Reconnaissance

Description: 1:20K Reconnaissance Fish and Fish Habitat Inventory

Activity Term: Start date: 01-APR-99 End date:

Location(s): Main Stem + Tributaries; Chute Creek (including tributaries Nuttall/Ratnip Creeks), tributary to Okanagan Lake/Okanagan/Columbia Rivers, near Naramata.

Eneas Creek

Eneas Creek is a third order stream that measures 19 km in length. The stream flows from the headwaters at Garnet Valley Dam and Reservoir, located about 14.5 km upstream. The confluence is located on Okanagan Lake just north of the town of Summerland, BC.

Brook trout, kokanee, rainbow trout and Redside Shiner are known to be present in Eneas Creek. The reach downstream of the Reservoir to the Highway 97 crossing, a distance of approximately 13 km, supports a substantial population of Eastern Brook Char, as does the Reservoir itself. In addition, fish stocking of rainbow trout as either eyed eggs or fry has occurred by Summerland and Pennask Lake Hatcheries.

Reach break description	Reach 1	Reach 2	Reach 3
Attribute Considered	Confluence to 0.5km u/s	U/s of 0.5km	
Water Quality			
Dissolved Oxygen	DG	DG	
Stream Temperature	DG	G1	
Turbidity/Suspended Sediment	P1	G1	
Nutrient Loading	P1	G1	
In Channel Habitat			
Fine Sediment (substrate)	DG	DG	
Large Woody Debris		DG	
Percent Pool	DG	DG	
<u><</u> 2% 2-5%			
>5%			
Habitat Access			
Fish Passage	P1	DG	
Stream Flow			
Resembles Natural Hydrograph	P1	DG	
Impervious Surface	DG	DG	
Stream Corridor			
Riparian Vegetation	DG	DG	
Stream Bank Stability		DG	
Floodplain Connectivity	DG	DG	

Table 33: Eneas Creek Limiting Factors Matrix

Less than 0.6 km of the lower reach of the stream is likely accessible to adult rainbow trout and kokanee from Okanagan Lake, owing to a series of difficult culvert obstructions. Despite access restrictions and some deterioration in water quality below Summerland, trout and kokanee production remains viable.

Okanogan/Similkameen Subbasin Summary 258

A fish kill in 1989 was the combined result of low stream flows and streamside pesticide applications.

A small groundwater tributary enters Eneas Creek about 0.5 km upstream of the confluence with Okanagan Lake. According to a local resident this stream has supported spawning by up to "8 pairs of trout and 135 kokanee" in years past. Water quality was apparently exceptionally good in this tributary.

Projects Undertaken

An incubation box was used for several years to enhance kokanee escapement in Eneas Creek. Gravel placement and cleaning took place in an effort to enhance spawning and egg incubation habitat.

There is an opportunity to view spawning kokanee on Eneas Creek that could be further developed for educational purposes. Very few areas for the enhancement of kokanee remain and should be preserved.

Other fish and fish habitat projects undertaken in the watershed include:

Project Name: Trout & Eneas Creek Watershed Restoration

Description: The Trout Creek watershed drains the Thompson Plateau on the west side of Okanagan Lake near Summerland. The watershed is 744 sq. km in size and ranges from 342 m to 1920 m. **Objective:** This watershed will be assessed to determine what work will need to be completed in order to restore the areas that were damaged by past activities, such as logging.

Project Status: Active Start Date: 01-APR-96

Lead Proponent: District of Summerland

Activity: Restoration - Overview Assessment

Description: For this activity an Integrated Watershed Restoration Plan was conducted. The objectives were defined and a summary of findings and recommendations were issued. It contains a Fish Habitat Assessment Procedure, Sediment Source Survey and Access Management Map. **Comment:** Report Title: Trout and Eneas Creek Integrated Watershed Restoration Plan Percentage of Work Completed: None Informal Monitoring in Progress

Activity Term: Start date: 01-MAR-98 End date:

Habitat(s): Upslope

Location(s): Watershed; Eneas Creek, tributary to Okanagan Lake. Located ~20-30 km North of Penticton.

Equesis Creek

Equesis Creek is a fourth order stream that measures 23.3 km in length. It flows from the headwaters of Pinaus Lake east into the northwest arm of Okanagan Lake. The confluence is located about 9.6 km west of Vernon, BC.

Fish species known to be present in this system include kokanee, rainbow trout, and yellow perch.

Table 34: Equesis Creek Limiting Factors Matrix

Reach break description	Reach 1	Reach 2	Reach 3
Attribute Considered			
Water Quality			
Dissolved Oxygen	DG		

Okanogan/Similkameen Subbasin Summary 259

Reach break description	Reach 1	Reach 2	Reach 3
Attribute Considered			
Stream Temperature	DG		
Turbidity/Suspended Sediment	P2		
Nutrient Loading	DG		
In Channel Habitat			
Fine Sediment (substrate)	P1		
Large Woody Debris			
Percent Pool <u><</u> 2% 2-5% >5%			
Habitat Access			
Fish Passage	P1		
Stream Flow Resembles Natural Hydrograph			
Impervious Surface	DG		
Stream Corridor			
Riparian Vegetation			
Stream Bank Stability			
Floodplain Connectivity	DG		

The lower 13 km of Equesis Creek are thought to be productive. However, persistent organic debris in the system is blocking the creek and restricting fish migration into this reach. Several small dams located on Equesis Creek also limit fish passage to upper reaches.

An earth dam was constructed to stop yellow perch migration, and several other diversion irrigation dams further upstream also restrict other fish migration. An irrigation dam located 2.6 km upstream of the confluence with Okanagan Lake is likely passable to larger trout in the spring, but is impassable to kokanee in the fall. Apparently this dam was originally designed to pass fish, but accommodation for fish passage during installation was not made. An irrigation dam situated approximately 3.7 km upstream of the confluence with Okanagan Lake likely limits further upstream trout migration except during certain conditions such as spring freshet. The dam appears to have been designed and installed with no special provision for fish passage. These obstructions in the lower reaches may have seriously reduced the level of trout and kokanee recruitment to Okanagan Lake from the creek.

It is noteworthy that Pinaus Lake, located at the headwaters of Equesis Creek, does support an intensive trout fishery.

Habitat quality varies considerably over the entire length of the system. However, it appears much of the stream is capable of producing and supporting trout in the presence of adequate flows during late summer and early fall. Stable winter discharge is also necessary to sustain overwintering trout juveniles and incubating kokanee eggs. Additional reservoir storage would make a big difference in the ability of the system to meet total annual water use higher than this level.

Projects Undertaken

A fishway present on Equesis Creek was modified and reconstructed in 1990 to allow for rainbow trout access to upper reaches.

Other fish and fish habitat projects undertaken in the watershed include:

Project Name: Equesis/Naswhito/Whiteman Creek Fish Habitat and Passage Assessments
Description: Habitat assessment for approx. 8km.
Project Status: Active Start Date: 22-NOV-99 End Date: 31-MAR-00
Lead Proponent: Okanagan Nation Fisheries Commission
Activity: Assessment - Habitat Assessment
Description: Assessment of the quality of fish habitat and the diversion structures for ease of fish passage, according to Level 1 fish and fish habitat assessment methods.
Activity Term: Start date: 22-NOV-99 End date: 31-MAR-00
Habitat(s): Stream
Location(s): Main Stem + Tributaries; Equesis Creek tributary to Okanagan
Lake/Okanagan/Columbia River near Vernon.

Project Name: Naswhito Creek Watershed Restoration

Description: The Naswhito Creek watershed is a tributary to Okanagan Lake situated approximately 20km west of Vernon. The watershed area is approximately 80 sq. km.

Objective: The objectives of this project are to restore the watershed to some level of pre harvest condition, to restore natural hydrology to the area, and to enhance and rehabilitate riparian habitat. Specific actions undertaken may be road deactivation, gully and landslide rehabilitation and sediment source detection.

Project Status: Active Start Date: 01-APR-96

Lead Proponent: Riverside Forest Products Limited

Activity: Restoration - Overview Assessment

Description: This activity report outlines the overview fish habitat assessment procedure conducted for the Equesis, Naswhito, Whiteman and Shorts watersheds. The objective of this report was to assess the present condition of watersheds by reviewing historical fish studies, forest harvesting, water quality and discharge, maps and airphotos. The watersheds are located on the west side of Okanagan Lake, west of Vernon, BC

Comment: Report Title: Overview Fish Habitat Assessment Procedure: Equesis, Naswhito, Whiteman and Shorts watersheds Percentage of Work Completed: N/A

Activity Term: Start date: 25-APR-97 End date:

Habitat(s): Stream

Location(s): Main Stem + Tributaries; Equesis Watershed is located north of Naswhito Creek (20km west of Vernon) and drains into the west side of Okanagan Lake. It is a main tributary of the Okanagan River. Equesis Creek WSC: 310-966900.

Inkaneep Creek

Inkaneep Creek measures 23.5 km in length and flows adjacent to reserve land.

Known fish populations within this stream include brook trout and rainbow trout. Fish access is limited to the lower 3 km.

Reach break description	Reach 1	Reach 2	Reach 3
Attribute Considered	Confluence to	Falls at 3km u/s of	
Attribute Considered	3km u/s	confluence	
Water Quality			
Dissolved Oxygen	DG		
Stream Temperature	DG		
Turbidity/Suspended Sediment	P2		
Nutrient Loading	DG		
In Channel Habitat			
Fine Sediment (substrate)	DG		
Large Woody Debris	F2		
Percent Pool	DG		
< 2%			
2-5% >5%			
Habitat Access			
Fish Passage	DG		
	20		
Stream Flow			
Resembles Natural Hydrograph	DG		
Impervious Surface			
Stream Corridor			
Riparian Vegetation	DG		
Stream Bank Stability			
Floodplain Connectivity	G2		

 Table 35:
 Inkaneep Creek Limiting Factors Matrix

Several falls located on Inkaneep Creek restrict fish passage upstream of these barriers. There is a 23 percent gradient over 11 m with fast water and a 5.8 m high falls further upstream.

Forestry and agriculture in the area have contributed to the degradation of spawning habitat in the lower reaches. Agricultural related clearing to the streambanks in the lower and some upper reaches has exacerbated the situation.

A road related slide located on Gregoire Creek has contributed significant bedload to Inkaneep Creek.

Streambank stability in the lower reaches is considered poor. Flood events and deposition are changing the direction of the stream.

Kelowna (Mill) Creek

Kelowna (Mill) Creek is a fourth order stream. It flows through the city of Kelowna, BC where it drains directly to Okanagan Lake. Urban development, particularly in the lower

reaches of Kelowna Creek, has heavily influenced and placed a strain on the fish populations within this creek.

Fish presence in Kelowna Creek includes brook trout, kokanee, largescale sucker, prickly sculpin, rainbow trout, and redside shiner. Brook trout fry and fingerling have been stocked in Kelowna Creek by the Summerland Hatchery.

Reach break description	Reach 1	Reach 2	Reach 3
	Confluence to		
Attribute Considered	gradient increase		
Water Quality			
Dissolved Oxygen	DG		
Stream Temperature	DG		
Turbidity/Suspended Sediment	P2		
Nutrient Loading	DG		
In Channel Habitat			
Fine Sediment (substrate)			
Large Woody Debris			
Percent Pool < 2%			
2-5%			
>5% Habitat Access			
Fish Passage	G1		
Stream Flow			
Resembles Natural Hydrograph			
Impervious Surface	P1		
Stream Corridor			
Riparian Vegetation	P1		
Stream Bank Stability	DG		
Floodplain Connectivity	DG		

 Table 36:
 Kelowna Creek Limiting Factors Matrix

By virtue of intensive streamside development, particularly in the lower 4 km, water quality and productive salmonid habitat have drastically deteriorated. For this reason it is suspected the stream is at best only marginally productive for trout and kokanee. Eutrophication of gravel substrate has occurred, limiting spawning and egg incubation habitat. In the past, high suspended solid loads were observed during the kokanee spawning period. Apparently these suspended solids emanated from a storm drain cleaning program.

One of the few production assets of Kelowna Creek is its relatively stable discharge regime. Specific amounts of water are being released from the dam located at the outlet of Postill Lake to promote rapid flushing of lower stream pollutants. This release may be having the inadvertent benefit of perpetuating the small populations of trout and kokanee remaining

in the system. Failing restoration of flushing flows, artificial cleaning of natural and artificial spawning gravel could be initiated on an annual basis.

The city of Kelowna has recently expressed interest in incorporating fisheries needs (spawning gravel additions, settling ponds, and/or children's fishing ponds) into their planning for parks and other developments.

The dam located at the outlet of Postill Lake provides water storage for the city of Kelowna. Otherwise, no known single obstruction was considered impassable to trout and/or kokanee. Rapidly increasing stream gradient northeast of the Kelowna Airport could abruptly end all upstream migration.

Projects Undertaken

Several surveys have been conducted on this watershed, and gravel placement has occurred to enhance spawning and egg incubation habitat. The protection of kokanee, rainbow trout, and brook trout spawning and rearing habitat should be considered the foremost priority to management of this creek.

Other fish and fish habitat projects undertaken in the watershed include:

Project Name: Kelowna Creek Watershed Restoration

Description: Forest Renewal BC (FRBC) has funded the restoration of the Kelowna Creek Watershed which is located approximately 20 km NE of the City of Kelowna. The area is approx. 7900 ha and has been used historically for irrigation, recreation and timber harvesting. This was a joint project and the Vernon District office has the same report with a different number. In Vernon it is FRBC project #KA34-96-006. Also includes FRBC project #TOM98242.

Objective: The objectives of this project are to rehabilitate and restore the watershed from past disturbances such as logging, mining and mineral extraction activities.

Project Status: Active Start Date: 01-APR-96

Lead Proponent: Glenmore-Ellison Improvement District

Activity: Restoration - Overview Assessment

Description: This is an extremely large activity that includes 7 different sub activities. They are a Level I Interior Watershed Assessment Procedure (IWAP), Summary report for Level I Road Assessment in Kelowna Creek, Postill Lake Road- Preliminary Level II Rehabilitation Plan, Results of Gully Assessment Procedure, Results of Channel Assessment Procedure and Results of Riparian Vegetation Assessment.

Comment: Report Title: Kelowna Creek Watershed- Results of the Watershed Restoration Project Percentage of Work Completed: N/A Informal Monitoring in Progress

Activity Term: Start date: 01-MAR-96 End date:

Habitat(s): Upslope

Location(s): Watershed; Kelowna Creek, tributary to the Okanagan River. Located just West of Kelowna.

Activity: Restoration - Overview Assessment

Description: This activity contains an Access Management Strategy for the Kelowna Creek Watershed. The objectives and methodology were explained at a public viewing and

recommendations for access management were made in a later report. A special section dealt with Postill Lake Road (the main road in the drainage). It has drainage assessments and recommended improvements for the road.

Comment: Report Title: Kelowna Creek Watershed Access Management Strategy Percentage of Work Completed: N/A Informal Monitoring in Progress

Activity Term: Start date: 01-JUN-96 End date:

Okanogan/Similkameen Subbasin Summary 264

Habitat(s): Upslope

Location(s): Watershed; Kelowna Creek, tributary to the Okanagan River. Located just West of Kelowna.

Project Name: Kelowna (Mill) Creek Watershed Restoration

Description: Part of Forest Renewal British Columbia's Watershed Restoration Program, the Kelowna (Mill) Creek watershed is located approximately 20 km northeast of the city of Kelowna, BC The watershed area is approximately 7,900 ha. The watershed has been used historically for irrigation, recreation, and timber harvesting. The Kelowna Creek watershed has been divided into 5 sub-units: Bulman, Conroy, Postill, South, and Residual. Mill Creek is now the official name for Kelowna Creek.

Objective: The objectives of this project are to rehabilitate and restore the watershed from past disturbances such as logging, mining and road construction.

Project Status: Active Start Date: 01-APR-95

Lead Proponent: Glenmore-Ellison Improvement District

Activity: Restoration - Overview Assessment

Description: Within this watershed assessment, the following tasks were identified: - update Equivalent Clearcut Area (ECA) calculations; - update the watershed report card; - provide a risk assessment of the potential hydrologic impacts associated with the proposed forest development for the period of 1998 to 2003 and; - initial and final Watershed Assessment Committee (WAC) meetings to discuss and make recommendations for the proposed forest development plans.

Comment: Report Title: Kelowna (Mill) Creek: Interior Watershed Assessment Percentage of Work Completed: N/A

Activity Term: Start date: 01-DEC-98 End date:

Habitat(s): Riparian, Stream, Upslope

Location(s): Watershed; The Kelowna (Mill) Creek watershed is located approximately 20 km northeast of the city of Kelowna, BC Kelowna Creek is a main tributary of OKANAGAN RIVER. Kelowna Creek WSC: 310-808200

Activity: Restoration - Overview Assessment

Description: The intent of the Access Management Strategy (AMS) is to propose management strategies for existing and proposed roads within the entire watershed. Options to be considered will include: - ongoing maintenance for continued use and; - deactivation measures ranging from temporary to permanent with full rehabilitation to leaving the road as is, if stable.

Comment: Report Title: Kelowna Creek: Access Management Strategy Percentage of Work Completed: N/A

Activity Term: Start date: 28-OCT-96 End date:

Habitat(s): Upslope

Location(s): Watershed; The Kelowna (Mill) Creek watershed is located approximately 20 km northeast of the city of Kelowna, BC Kelowna Creek is a main tributary of OKANAGAN RIVER. Kelowna Creek WSC: 310-808200

Activity: Restoration - Overview Assessment

Description: This activity consisted of stream channel assessment work carried out in the Kelowna Creek watershed. The purpose of the channel assessment procedure was to identify significant changes to stream channels that appear to be the result of past logging activities. A total of 10 sites were assessed in the 1995/96 field seasons. Five sites were found to be requiring remedial work. **Comment:** Report Title: Kelowna Creek: Results of Channel Assessment Procedure and Riparian Vegetation Assessment Percentage of Work Completed: N/A

Activity Term: Start date: 01-JUN-97 End date:

Habitat(s): Riparian, Stream

Location(s): Watershed; The Kelowna Creek watershed is located approximately 20 km northeast of the city of Kelowna, BC Kelowna Creek is a main tributary of OKANAGAN RIVER. Kelowna Creek WSC: 310-808200

Activity: Restoration - Detailed Assessments and Prescriptions

Description: This activity consisted of Level II Road Assessments carried out for selected roads and hillslopes identified as having high priority hazards within the Kelowna Creek Watershed. A total of 10 roads were assessed in October, 1996, nine of which require remedial work which could be completed in November, 1996, if conditions are appropriate. The prescriptions for the nine roads in this report should be considered temporary due to the presence of snow at the time of inspection. **Comment:** Report Title: Kelowna Creek: Level II Road Assessment for selected roads Percentage of Work Completed: Uncertain

Activity Term: Start date: 01-NOV-96 End date:

Habitat(s): Upslope

Location(s): Watershed; The Kelowna Creek watershed is located approximately 20 km northeast of the city of Kelowna, BC Kelowna Creek is a main tributary of OKANAGAN RIVER. Kelowna Creek WSC: 310-808200

Activity: Restoration - Other

Description: This activity consisted of a reconnaissance survey undertaken by Tolko Industries Ltd. to relocate sections of the Postill Lake / Kelowna Creek Road to minimize adverse road sections and debris deposition from road maintenance into Kelowna Creek. The report focuses only on the sections of road to be relocated. An additional report under separate cover is also available which provides field notes as well as site and aerial photos.

Comment: Report Title: Kelowna Creek: Postill Road Relocation Percentage of Work Completed: 76-99 percent Scheduled to finish in Spring 2000

Activity Term: Start date: 01-AUG-97 End date:

Habitat(s): Upslope

Location(s): Watershed; The Kelowna Creek watershed is located approximately 20 km northeast of the city of Kelowna, BC Kelowna Creek is a main tributary of OKANAGAN RIVER. Kelowna Creek WSC: 310-808200

Activity: Restoration - Effectiveness Monitoring & Evaluation

Description: This activity consisted of the collection of water quality data in 1995 from the Kelowna Creek watershed. The water quality monitoring portion of this Watershed Restoration Project was conducted between April 5, 1995 and August 30, 1995. Samples were taken at 11 sites and each sample was tested for ten parameters. The monitoring program will provide data to assist with determining the impacts of timber harvesting on water quality and to evaluate the effectiveness of any remedial work undertaken.

Comment: Report Title: Kelowna Creek: Water Quality Monitoring Percentage of Work Completed: N/A

Activity Term: Start date: 08-FEB-96 End date:

Habitat(s): Stream

Location(s): Watershed; The Kelowna Creek watershed is located approximately 20 km northeast of the city of Kelowna, BC Kelowna Creek is a main tributary of OKANAGAN RIVER. Kelowna Creek WSC: 310-808200

Activity: Restoration - Upslope Restoration / Rehabilitation

Description: This activity consisted of a summary of the work completed in the Kelowna Creek Watershed. The components of the Kelowna Creek watershed assessment are: - Level I Watershed Assessment; - Level I Road Condition Assessment; - Level II Road Assessment and; - Gully Assessment.

Comment: Report Title: Kelowna Creek: Results of the Watershed Restoration Project Percentage works completed is: Uncertain

Activity Term: Start date: 01-MAR-96 End date:

Habitat(s): Riparian, Stream, Upslope

Location(s): Watershed; The Kelowna Creek watershed is located approximately 20 km northeast of the city of Kelowna, BC Kelowna Creek is a main tributary of OKANAGAN RIVER. Kelowna Creek WSC: 310-808200

Project Name: Kelowna Creek Watershed Restoration Plan (WRP)

Description: Kelowna Creek watershed is located approximately 20 km NE of the City of Kelowna. The area is approx. 7900 ha and has been used historically for irrigation, recreation and timber harvesting.

Objective: The objectives of this project are to rehabilitate and restore the watershed from past disturbances such as logging, mining and mineral extraction activities.

Project Status: Active Start Date: 01-APR-98

Lead Proponent: Riverside Forest Products Limited

Activity: Restoration - Overview Assessment

Description: This report contains an introduction, methods, current watershed conditions, risks of future development, conclusions, and recommendations. There is a map of the area.

Comment: Report Title: Interior Watershed Assessment for the Kelowna (Mill) Creek Watershed Percentage of Work Completed: N/A Informal Monitoring in Progress

Activity Term: Start date: 01-DEC-98 End date:

Habitat(s): Upslope

Location(s): Watershed; Kelowna Creek, tributary to the Okanagan Lake, is located approximately 20 km NE of the City of Kelowna. WSC Kelowna Creek: 310-808200

Project Name: Lower Mill Creek Watershed Restoration Project

Description: Habitat Restoration; 450 m of streambank stabilized, 450 m of instream complexing and 1400 m of riparian planting. Education; project open houses for public and senior staff and two newspaper articles published.

Project Status: Active Start Date: 01-AUG-99 End Date: 15-OCT-99

Lead Proponent: City of Kelowna

Activity: Restoration - Instream Restoration / Rehabilitation

Activity Term: Start date: 01-AUG-99 End date: 15-OCT-99

Habitat(s): Stream

Location(s): Main Stem + Tributaries; Kelowna Creek (alias Mill Creek), tributary to Postill Lake/Thompson/Fraser River watershed near Kelowna.

Activity: Restoration - Instream Restoration / Rehabilitation

Activity Term: Start date: 01-AUG-99 End date: 15-OCT-99

Habitat(s): Stream

Location(s): Main Stem + Tributaries; Kelowna Creek (alias Mill Creek), tributary to Postill Lake/Thompson/Fraser River watershed near Kelowna.

Project Name: Snehumption Creek- Fish Absence/Presence Inventory and Preliminary Habitat Assessment

Description: Completion of a fish absence/presence site reconnaissance inventory in the lower reaches of Snehumption Creek for purposes of gathering baseline data.

Project Status: Active Start Date: 01-AUG-99 End Date: 31-JAN-00

Lead Proponent: Lower Similkameen Indian Band

Activity: Assessment - Habitat Assessment

Description: Approx. 4 km of stream treated. Report completed of fish inventory and preliminary habitat assessment.

Activity Term: Start date: 01-AUG-99 End date: 31-JAN-00
Habitat(s): Stream
Location(s): Main Stem + Tributaries; Snehumption creek tributary to Chopaka
Creek/Similkameen/Okanagan River near Osoyoos.
Activity: Assessment - Habitat Assessment
Description: Approx. 4 km of stream treated. Report completed of fish inventory and preliminary habitat assessment.
Activity Term: Start date: 01-AUG-99 End date: 31-JAN-00
Habitat(s): Stream
Location(s): Main Stem + Tributaries; Snehumption creek tributary to Chopaka
Creek/Similkameen/Okanagan River near Osoyoos.

Project Name: Mill Creek Interpretive Signage
Description: Education/public awareness; installation of four interpretive signs.
Project Status: Active Start Date: 31-OCT-99 End Date: 31-MAR-00
Lead Proponent: City of Kelowna
Activity: Other - General
Description: Installation of four interpretive signs.
Activity Term: Start date: 01-OCT-99 End date: 31-MAR-00
Habitat(s): Stream
Location(s): Main Stem + Tributaries; Kelowna Creek (alias Mill Creek), tributary to Okanagan Lake/Okanagan/Columbia Rivers, near Westbank.

Project Name: Kelowna/McDougall/Vernon Creeks Urban Referral Compliance Evaluation Description: Review of Water Act compliance and applications for 4 urban creeks. Objective: Ensure that streams and riparian corridors in urban areas function properly and provide habitat for wild fish species. Project Status: Active Start Date: 01-FEB-00 End Date: 31-MAR-00 Lead Proponent: Penticton Indian Band/Columbia Environmental Consulting Activity: Inventory - Urban Description: 4 urban creeks reviewed for the level of compliance to the Water Act for all approved and non-approved works in and about the streams. Activity Term: Start date: 01-FEB-99 End date: 31-MAR-00 Habitat(s): Riparian, Stream Location(s): Main Stem of Stream; Kelowna Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, near Kelowna. Activity: Inventory - Urban **Description:** 4 urban creeks reviewed for the level of compliance to the Water Act for all approved and non-approved works in and about the streams. Activity Term: Start date: 01-FEB-99 End date: 31-MAR-00 Habitat(s): Riparian, Stream Location(s): Main Stem of Stream; Kelowna Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, near Kelowna.

Project Name: Okanagan Storm Drain Marking (88)

Description: Implementation of a Storm Drain Marking program in the Okanagan: Coordination of school groups and volunteers, marking of storm drains, and distribution of pamphlets. **Objective:** To appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Active Start Date: 01-APR-88

Lead Proponent: BC Ministry of Environment Lands and Parks
Activity: Other - General
Description: Implementation of a Storm Drain Marking program in the Okanagan: coordination of school groups and volunteers, marking of storm drains, and distribution of pamphlets.
Activity Term: Start date: 01-APR-88 End date:
Location(s): Point; City of Kelowna, Okanagan region.

Project Name: Kelowna (Mill) Creek Enhancement

Description: Planning and identification of potential enhancement projects for spawning habitat with public involvement, following the construction of a flood control project.

Objective: To appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Active Start Date: 01-APR-88

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Restoration - Assessment & Planning

Description: Planning and identification of potential enhancement projects for spawning habitat.

Activity Term: Start date: 01-APR-88 End date:

Target Species: Kokanee

Habitat(s): Stream

Location(s): Main Stem of Stream; Kelowna Creek (alias Mill Creek), tributary to Okanagan Lake, Okanagan/Columbia Rivers, runs through Kelowna.

Lambly Creek

Lambly Creek flows from the west to the east, and discharges into Okanagan Lake. The confluence is located approximately 6.4 km north of Siwash Point. This fourth order stream is 23 km in length.

Fish species present in the system include kokanee, rainbow trout, longnose sucker, and other suckers. Stocking of Lambly Creek with eyed egg rainbow trout was conducted by Beaver Lake and Summerland Hatcheries.

Reach break description	Reach 1	Reach 2	Reach 3
		30m Vertical	
Attribute Considered	Confluence to 1.2km u/s	Obstruction at 1.2km u/s	
	1.2KIII U/S	1.2KIII U/S	
Water Quality			
Dissolved Oxygen	DG		
Stream Temperature	DG		
Turbidity/Suspended Sediment	DG		
Nutrient Loading	DG		
In Channel Habitat			
Fine Sediment (substrate)	F1		
Large Woody Debris			
Percent Pool	F1		
<u><</u> 2%			
2-5%			
>5%			
Habitat Access	D1		
Fish Passage	P1		
Stream Flow			
Resembles Natural Hydrograph	P1		
Impervious Surface			
·			
Stream Corridor			
Riparian Vegetation	DG		
Stream Bank Stability	DG		
Floodplain Connectivity	DG		

Table 37: Lambly Creek Limiting Factors Matrix

Historically this stream was reputed to be an important trout producer, although only approximately 1.5 km is accessible to migrating fish populations. A large impassable obstruction, namely a 30 m vertical falls, prevents further upstream passage.

This stream has apparently experienced severe stock size reductions. These reductions are attributed to minimal summer and fall flows that result from an almost complete water diversion at a point just over 4.8 km upstream of the confluence with Okanagan Lake. At this location a diversion dam redirects Lambly Creek flow south to the Rose Valley Reservoir. Apparently no requirement was stipulated in the original water license to provide minimum fish maintenance flows downstream. A study indicated that there should be adequate flows to meet both the Lakeview Irrigation District diversion requirements and fish flows. Establishment of upstream storage in Terrace Meadows would significantly improve flows for both kokanee and trout.

It should be noted that Lambly Creek historically has experienced natural low flows, particularly during August. This condition is only exacerbated by the presence of the Rose Valley Reservoir Dam. Habitat qualities downstream of the falls remain compatible with

some trout production. However, given the lack of suitably sized gravel in the lower reaches of this stream, establishing some flood-protected spawning refuges may improve recruitment to Okanagan Lake.

Projects Undertaken

A management plan exists for the Lambly Creek watershed to protect and manage wild fish stocks and habitat. The kokanee spawning grounds in this creek are considered sensitive and it is important to protect these areas.

Fish and fish habitat projects undertaken in the watershed include:

Project Name: Lambly Creek Watershed Restoration

Description: The Lambly Creek watershed is a community watershed located on the west shore of Okanagan Lake northwest of Kelowna. Elevation ranges from 324 m to 1800 m. Dams regulate flow into Lambly Creek. Its area is approx. 24410 ha. Access into the watershed is excellent.

Objective: The objectives of this project are to protect, restore and rehabilitate fisheries, aquatic and forest resources that have been adversely impacted by past disturbances such as logging, mining and road construction within this watershed.

Project Status: Active Start Date: 01-APR-97

Lead Proponent: Riverside Forest Products Limited

Activity: Restoration - Overview Assessment

Description: An Integrated Watershed Restoration Plan (IWRP) was conducted on the Lambly Creek Watershed. The activity report includes: Introduction, types of overview assessments conducted, summary of existing watershed conditions, prescription phase of the IWRP, significant problems requiring prescription work, project priorities, time and cost estimates, and recommendations. Appendices include timing of prescription work and overview maps.

Comment: Report Title: Integrated Watershed Restoration Plan (IWRP) for Lambly Creek Watershed (Vol. 1 of 5) Percentage of Work Completed: Uncertain Informal Monitoring in Progress **Activity Term:** Start date: 01-DEC-97 End date:

Habitat(s): Upslope

Location(s): Watershed; Lambly Creek flows from the northwest into Okanagan Lake just northwest of Kelowna, BC across the Lake. Lambly WSC: 310-822600

Activity: Restoration - Overview Assessment

Description: An Interior Watershed Assessment Procedure (IWAP) was conducted within the Lambly Creek Watershed. The activity report includes: Introduction, methods, watershed characteristics, results of office analysis, results of field assessment, and recommendations. Appendices include: Maps, watershed assessment procedure details, IWAP report cards, IWAP Forms 1-9, and roundtable meeting minutes.

Comment: Report Title: Interior Watershed Assessment for Lambly Creek Watershed (Vol. 5 of 5) Percentage of Work Completed: N/A Informal Monitoring in Progress

Activity Term: Start date: 01-DEC-97 End date:

Habitat(s): Upslope

Location(s): Watershed; Lambly Creek flows from the northwest into Okanagan Lake just northwest of Kelowna, BC across the Lake. Lambly WSC: 310-822600 Lambly WSC: 310-822600

Activity: Restoration - Overview Assessment

Description: This is an Access Management Strategy for Lambly Creek Watershed. The activity report includes: Introduction, overview, objectives, methodology, results, and conclusions. Appendices include: Definition of Road Deactivation Levels, Stakeholders and Resource Users Contact lists and Comments, Land Tenure and Permits Status List, and Maps.

Comment: Report Title: Access Management Strategy (AMS) for Lambly Creek Watershed (Vol. 3 of 5) Percentage of Work Completed: N/A Informal Monitoring in Progress

Activity Term: Start date: 01-DEC-97 End date:

Habitat(s): Upslope

Location(s): Watershed; Lambly Creek flows from the northwest into Okanagan Lake just northwest of Kelowna, BC across the Lake. Lambly WSC: 310-822600 Lambly WSC: 310-822600 Activity: Restoration - Overview Assessment

Description: A Fish Habitat Assessment Procedure was conducted on the Lambly Creek Watershed. The activity report includes: Introduction, materials, methodology, results and discussion (Fish Habitat Assessment and Fish Distribution Assessment), and recommendations. Appendices include: Fish Distribution Summary Form, Habitat Condition Data Form, Preliminary Habitat Assessment Form and Maps.

Comment: Report Title: Lambly Creek Watershed Fisheries Habitat Assessment Procedure (FHAP) Percentage of Work Completed: N/A Informal Monitoring in Progress

Activity Term: Start date: 01-OCT-96 End date:

Habitat(s): Stream

Location(s): Watershed; Lambly Creek flows from the northwest into Okanagan Lake just northwest of Kelowna, BC across the Lake. Lambly WSC: 310-822600 Lambly WSC: 310-822600 Activity: Restoration - Overview Assessment

Description: A Sediment Source Survey was conducted within the Lambly Creek Watershed. The activity report includes: Introduction, objectives, methodology, assessment results, planning and scheduling for prescription phase, conclusions and recommendations. Appendices include: Combined Tables 1 to 5, photo documentation and maps. Some recommendations were: complete field prescriptions and remedial work for the high risk road sections as well as at approx. 200 stream crossings and to initiate an assessment of the gully as soon as possible.

Comment: Report Title: Sediment Source Survey Report for Lambly Creek Watershed (Vol. 2 of 5) Percentage of Work Completed: N/A Works done in 1998 and 1999 and some informal monitoring in progress

Activity Term: Start date: 01-DEC-97 End date:

Habitat(s): Upslope

Location(s): Watershed; Lambly Creek flows from the northwest into Okanagan Lake just northwest of Kelowna, BC across the Lake. Lambly WSC: 310-822600 Lambly WSC: 310-822600

Activity: Restoration - Overview Assessment

Description: These are the final Watershed Assessment Committee (WAC) recommendations. The objective of this report is to provide information regarding both the current watershed condition and the risks associated with proposed forest development. The report includes: Introduction, watershed characteristics, methods, results of office analysis, results of field assessment, risk of future forest development, conclusions and recommendations. Appendices include: Watershed Assessment Plan requirements, Re-Cap Procedure Details, Maps, Peak Flow analysis, longitudinal profiles for Lambly watershed and Re-Cap office and field forms.

Comment: Report Title: Interior Watershed Assessment Procedure (IWAP) for Lambly Creek Watershed (Update Report) Percentage of Work Completed: N/A Informal Monitoring in progress **Activity Term:** Start date: 01-NOV-98 End date:

Habitat(s): Upslope

Location(s): Watershed; Lambly Creek flows from the northwest into Okanagan Lake just northwest of Kelowna, BC across the Lake. Lambly WSC: 310-822600.

Project Name: Tadpole Lake Water Storage

Description: Collection of information and development of a plan for sharing water storage in Tadpole Lake with Westbank Irrigation District to secure minimum flow for Powers Creek.

Objective: To appropriately conserve and, where necessary, enhance wild fish populations and their habitats.
Project Status: Active Start Date: 01-APR-88
Lead Proponent: BC Ministry of Environment Lands and Parks
Activity: Other - General
Description: Collection of information and development of a plan for sharing water storage in Tadpole Lake with Westbank Irrigation District to secure minimum flow for Powers Creek.
Activity Term: Start date: 01-APR-88 End date:
Target Species: Kokanee
Habitat(s): Lake, Stream
Location(s): Lake; Tadpole Lake, tributary to North Lambly/Lambly Creeks, Okanagan Lake, Okanagan/Columbia Rivers, NW of Westbank.

Mission Creek

This fifth order stream measures 74.3 km in length and flows from the east to Okanagan Lake. The confluence is located approximately 5 km south of the City of Kelowna. The importance of Mission Creek to the fish populations of this watershed is considered to be very high.

Several enhancement projects have been conducted on Mission Creek. The most noteworthy of such projects is the construction of a spawning channel.

Fish species present in Mission Creek include burbot, kokanee, longnose dace, peamouth chub, rainbow trout, redside shiner, and suckers. Extensive stocking of kokanee fry by the Skaha Hatchery has also occurred in Mission Creek.

Reach break description	Reach 1	Reach 2	Reach 3
Attribute Considered	Confluence to 19km u/s	Gallagher's Falls at 19km u/s	
Water Quality			
Dissolved Oxygen	DG		
Stream Temperature	P2		
Turbidity/Suspended Sediment	DG		
Nutrient Loading	DG		
In Channel Habitat			
Fine Sediment (substrate)	DG		
Large Woody Debris	P2		
Percent Pool	DG		
<u><</u> 2% 2-5% >5%			
Habitat Access			
Fish Passage	F2		
Stream Flow			
Resembles Natural Hydrograph	P2		
Impervious Surface	DG		

Table 38: Mission Creek Limiting Factors Matrix

Reach break description	Reach 1	Reach 2	Reach 3
	Confluence to	Gallagher's Falls	
Attribute Considered	19km u/s	at 19km u/s	
Stream Corridor			
Riparian Vegetation	P2		
Stream Bank Stability	G2		
Floodplain Connectivity	P2		

Construction of flood control dikes has resulted in extensive stream channelization. These measures protect surrounding land from spring freshet and other flood events. This process has resulted in the redistribution of gravel beds, and thus decreased the amount of suitable spawning habitat. At least half of the accessible stream length (which is nearly 19 km) has been channelized, dredged, and straightened. Diking of these lower reaches has, however, resulted in stable streambanks in this area.

Falls located approximately 19 km upstream of the confluence to Okanagan Lake are a migration barrier to all species of fish. A cascade located upstream of the falls represents an additional potential barrier to further upstream migration.

Dams have been located on Mission Creek to provide Kelowna City District with an ample water supply. Decreases in water discharge flows have reduced the amount of available gravel for spawning and egg incubation purposes. If low water flows continued into a warm September, the water temperature could become lethal for kokanee eggs. It appears that fisheries flow objectives cannot be met without provision of additional storage at considerable cost. Annual cleaning of spawning gravel may have a high benefit to cost ratio.

Projects Undertaken

The closing of the kokanee fishery in addition to rebuilding the spawning channel is expected to increase kokanee escapement to Mission Creek. Protection and enhancement of fish habitat, water flows, and water quality should be considered top priorities for this watershed.

Other fish and fish habitat projects undertaken in the watershed include:

Project Name: Mission Creek Watershed Restoration

Description: Mission Creek watershed is 858 sq. km in area with elevations ranging from 342 m at its confluence with Okanagan Lake to a max of 2,171 m at the summit of Little White Mountain. Sixty percent of the watershed is above 1300 m in elevation. The watershed is located on the Okanagan Highland physiographic division with the dominant bedrock in this area being Monashee Gneiss. Mission Creek is the largest tributary of Okanagan Lake and is part of the Columbia drainage basin. A total of 1,157 km of forest road was identified in the watershed.

Objective: The objective of this project is to rehabilitate and restore the watershed from past disturbances such as road construction by logging companies.

Project Status: Active Start Date: 01-APR-97

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Restoration - Overview Assessment

Description: This activity includes three sections 1) Integrated Watershed Restoration Plan (IWRP), 2) Access Management Strategy (AMS), and 3) Interior Watershed Assessment (IWAP). The result of the assessment work that has been carried out in the watershed provides recommendations for the

Okanogan/Similkameen Subbasin Summary 274

subsequent phases involving prescription work and restoration. Watershed-level planning objectives and an access management strategy was produced.

Comment: Report Title: Integrated Watershed Restoration Plan for the Mission Creek Watershed (including Access Management and IWAP) Percentage of Work Completed: Uncertain MoF works done in 1997 and some informal monitoring was done

Activity Term: Start date: 01-MAR-97 End date:

Habitat(s): Upslope

Location(s): Watershed; Mission Creek, tributary to Okanagan Lake. Located just East of Kelowna.

Project Name: Kelowna Education, Streamkeeper, and Habitat Project Coordination Description: Coordination of school classroom incubation, Streamkeepers, bank stabilization, interpretive fieldtrips. Project involves numerous community organizations. Project Status: Active Start Date: 01-JAN-96 Lead Proponent: City of Kelowna Activity: Other - General Description: Project coordination. Activity Term: Start date: 01-JAN-96 End date: Target Species: Kokanee Habitat(s): Stream Location(s): Main Stem of Stream; Mission Creek, Kelowna. Activity: Enhancement - Fish Culture Activities Activity Term: Start date: 01-JAN-96 End date: Target Species: Kokanee Habitat(s): Stream Location(s): Main Stem of Stream; Mission Creek, Kelowna. Activity: Restoration - Riparian Restoration / Rehabilitation Activity Term: Start date: 01-JAN-96 End date: Target Species: Kokanee Habitat(s): Riparian, Stream Location(s): Main Stem of Stream; Mission Creek, Kelowna. Activity: Restoration - Riparian Restoration / Rehabilitation Activity Term: Start date: 01-JAN-96 End date: Target Species: Kokanee Habitat(s): Riparian, Stream Location(s): Main Stem of Stream; Mission Creek, Kelowna. Project Name: Okanagan Timber Supply Area (TSA) Small Lakes Inventory **Description:** 1:20K reconnaissance lake inventory Project Status: Active Start Date: 01-APR-98 Lead Proponent: BC Ministry of Environment Lands and Parks Activity: Inventory - 1:20000 Reconnaissance **Description:** 1:20K Lake Reconnaissance F+FH Inventory Activity Term: Start date: 01-APR-98 End date: Habitat(s): Lake; Un-named lake, WB KEY WG: 00685OKAN, tributary to un-named creek, tributary to Loch Katrine/Mission Creeks/Okanagan/Columbia Rivers, south of Lumby; Loch Oichie (too small to display in FPR), tributary to Stanley Creek, tributary to Mission Creek/Okanagan/Columbia Rivers, south of Lumby.

Project Name: Mission Creek Kokanee Habitat Enhancement

Description: Planning phase for water management and fish enhancement goals for the lower 8km of Mission Creek.
Project Status: Active Start Date: 01-FEB-99 End Date: 31-MAR-00
Lead Proponent: Okanagan University College
Activity: Other - General
Description: Planning to increase spawning habitat capacity.
Activity Term: Start date: 01-FEB-99 End date: 31-MAR-00
Target Species: Kokanee
Habitat(s): Stream
Location(s): Main Stem + Tributaries; Mission Creek tributary to Okanagan
Lake/Okanagan/Columbia River near Kelowna.

Project Name: Mission Creek Spawning Channel Improvements

Description: The existing 1000 m long diversion channel improved for spawning kokanee: existing intake structures realigned, gravel placed, and channel regraded.

Objective: To appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Active Start Date: 01-APR-88

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Enhancement - Habitat Enhancement

Description: Improvements to the existing 1000 m long diversion channel for spawning kokanee:

existing intake structures realigned, gravel placed, and channel regraded.

Activity Term: Start date: 01-APR-88 End date:

Target Species: Kokanee

Habitat(s): Stream

Location(s): Main Stem of Stream; Mission Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, near Kelowna.

Project Name: Kelowna/Nelson Spawning Gravel Cleaning Equipment Tests

Description: UBC testing and evaluations of gravel cleaning equipment which remove fine sediments from spawning substrates through hydraulic agitation and suction discharge.

Objective: To appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Active Start Date: 01-APR-89

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Assessment - Other

Description: UBC testing and evaluations of gravel cleaning equipment which remove fine sediments from spawning substrates through hydraulic agitation and suction discharge.

Activity Term: Start date: 01-APR-88 End date:

Location(s): Point; Kelowna region, mid Okanagan.

Project Name: Okanagan Storm Drain Marking Program (89)

Description: Implementation of a Storm Drain Marking program in the Okanagan: coordination of school groups and volunteers, marking of storm drains, and distribution of pamphlets.

Objective: To appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Active Start Date: 01-APR-89

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Other - General

Description: Coordination of school groups and volunteers, marking of storm drains, and distribution of pamphlets.

Activity Term: Start date: 01-APR-89 End date: Location(s): Point; City of Kelowna.

Project Name: Mission Creek Spawning Channel Evaluation (90) **Description:** Evaluation of spawning channel enhancements with estimates of kokanee egg to fry survival rates. **Objective:** To appropriately conserve and, where necessary, enhance wild fish populations and their habitats. Project Status: Active Start Date: 01-APR-90 Lead Proponent: BC Ministry of Environment Lands and Parks Activity: Assessment - Habitat Assessment **Description:** Evaluation of spawning channel enhancements with estimates of kokanee egg to fry survival rates. Activity Term: Start date: 01-APR-90 End date: Target Species: Kokanee Habitat(s): Stream Location(s): Main Stem of Stream; Mission Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, near Kelowna. Activity: Assessment - Habitat Assessment Description: Evaluation of spawning channel enhancements with estimates of kokanee egg to fry survival rates. Activity Term: Start date: 01-APR-90 End date: Target Species: Kokanee Habitat(s): Stream Location(s): Main Stem of Stream; Mission Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, near Kelowna.

Project Name: Mission Creek Spawning Channel Evaluation (91) **Description:** Enumeration of fry and adult kokanee to assess effectiveness of the spawning channel. **Objective:** To appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Active Start Date: 01-APR-91

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Assessment - Habitat Assessment

Description: Enumeration of fry and adult kokanee to assess effectiveness of the spawning channel. **Activity Term:** Start date: 01-APR-91 End date:

Target Species: Kokanee

Habitat(s): Stream

Location(s): Main Stem of Stream; Mission Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, near Kelowna.

Activity: Assessment - Habitat Assessment

Description: Enumeration of fry and adult kokanee to assess effectiveness of the spawning channel. **Activity Term:** Start date: 01-APR-91 End date:

Target Species: Kokanee

Habitat(s): Stream

Location(s): Main Stem of Stream; Mission Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, near Kelowna.

Project Name: Mission Creek Spawning Channel Evaluation (92)

Description: Enumeration of fry and adult kokanee to assess effectiveness of the spawning channel **Objective:** To appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Active Start Date: 01-APR-92

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Assessment - Habitat Assessment

Description: Enumeration of fry and adult kokanee to assess effectiveness of the spawning channel **Activity Term:** Start date: 01-APR-92 End date:

Target Species: Kokanee

Habitat(s): Stream

Location(s): Main Stem of Stream; Mission Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, near Kelowna.

Activity: Assessment - Habitat Assessment

Description: Enumeration of fry and adult kokanee to assess effectiveness of the spawning channel **Activity Term:** Start date: 01-APR-92 End date:

Target Species: Kokanee

Habitat(s): Stream

Location(s): Main Stem of Stream; Mission Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, near Kelowna.

Project Name: Mission Creek Spawning Channel Evaluation (93)
Description: Final year of fry output studies. Required to firm up egg-fry survival estimator for Okanagan spawning channels.
Project Status: Active Start Date: 01-APR-93
Lead Proponent: BC Ministry of Environment Lands and Parks
Activity: Assessment - Stock Assessment
Description: Final year of fry output studies.

Activity Term: Start date: 01-APR-93 End date:

Target Species: Kokanee

Habitat(s): Stream

Location(s): Main Stem of Stream; Mission Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, near Kelowna.

Project Name: Mission Creek Awareness
Description: Construct a 12-panel information kiosk, and prepare a brochure to promote fisheries awareness.
Objective: To appropriately conserve and, where necessary, enhance wild fish populations and their habitats.
Project Status: Active Start Date: 01-APR-89
Lead Proponent: BC Ministry of Environment Lands and Parks
Activity: Other - General
Description: Construct a 12-panel information kiosk, and prepare a brochure to promote fisheries awareness.
Activity Term: Start date: 01-APR-89 End date:
Target Species: All species
Location(s): Main Stem + Tributaries; Mission Creek tributary to Okanagan

lake/Okanagan/Columbia Rivers.

Naramata Creek

Flowing through the village of Naramata is Naramata Creek, a third order stream measuring 12.7 km in length.

Fish species present in the system include kokanee and rainbow trout.

	D 1 (
Reach break description	Reach 1	Reach 2	Reach 3	
Attribute Canaidarad	Confluence to	1.6km to 2.4km		
Attribute Considered	1.6km u/s	u/s of confluence		
Water Quality				
Dissolved Oxygen	DG	DG		
Stream Temperature	DG	DG		
Turbidity/Suspended Sediment	DG	DG		
Nutrient Loading	DG	DG		
In Channel Habitat				
Fine Sediment (substrate)	F1	DG		
Large Woody Debris	DG	DG		
Percent Pool < 2% 2-5% >5%	DG	DG		
Habitat Access				
Fish Passage	DG	P1		
Stream Flow				
Resembles Natural Hydrograph	DG	DG		
Impervious Surface	DG	DG		
Stream Corridor				
Riparian Vegetation	DG	DG		
Stream Bank Stability	DG	DG		
Floodplain Connectivity	DG	DG		

Table 39.	Naramata	Creek	Limiting	Factors	Matrix
1 4010 57.	Taramata	CIUCK		1 401015	Iviau IA

Habitat complexity and trout rearing opportunities appear to improve with increasing distance from the confluence with Okanagan Lake. However, it is unlikely that more than 1.6 to 2.4 km of this system is accessible to migrating trout. A culvert and the rapidly increasing stream grade would restrict further fish passage. Most suitable substrate available for kokanee spawning is located within the lower reaches of Naramata Creek.

Approximately 3.4 km upstream of the confluence with Okanagan Lake is a 3.5 m high dam that prevents fish access upstream. Further upstream, a 5 m high falls may possibly be an additional fish barrier.

Projects Undertaken

Naramata citizens installed spawning platforms to increase potential habitat for spawning and egg incubation purposes. Fish and fish habitat inventories have also been conducted on Naramata Creek.

Okanogan/Similkameen Subbasin Summary 279

Other fish and fish habitat projects undertaken in the watershed include:

Project Name: Naramata Creek Watershed Restoration

Description: The project area is located 15 km northeast of the City of Penticton and consists of three watersheds: Naramata Creek, Robinson Creek, and Upper Chute Creek. Naramata watershed has an area of 2931 ha and is used for both domestic and irrigation purposes.

Objective: The objectives of this project are to protect, restore and rehabilitate fisheries, aquatic and forest resources that have been adversely impacted by past disturbances such as logging, mining and road construction within this watershed.

Project Status: Active Start Date: 01-APR-96

Lead Proponent: Gorman Brothers Lumber Limited

Activity: Restoration - Detailed Assessments and Prescriptions

Description: Summarizes the results of a surface and ground water hydrology assessments carried out in the Naramata watersheds. Primary concern is the impact of forest development on water quality and quantity due to ongoing infestations of mountain pine beetle and spruce bark beetle. Activity report includes: Introduction, objectives, study area description, previous work description, assessment methods, groundwater hydrology and results.

Comment: Report Title: Surface and Groundwater Hydrology Assessments in the Naramata Watersheds Percentage of Work Completed: None Informal Monitoring in Progress

Activity Term: Start date: 01-NOV-96 End date:

Habitat(s): Stream

Location(s): Watershed; Naramata Creek, tributary to the Okanagan River. Located just North of Penticton. WSC: 310-660700

Activity: Restoration - Overview Assessment

Description: An Integrated Watershed Restoration Plan including a Sediment Source Survey (SSS) and Access Management Plan for the Naramata-Robinson-Chute Creek was conducted. The SSS has identified 3 high, 3 moderate and 13 low priority sites for rehabilitation. Access management maps have recommended 15 km of roads to be permanently deactivated. Activity report includes: photo documentation, SSS, access management maps, watershed characteristics, and objectives.

Comment: Report Title: Integrated Watershed Restoration Plan Percentage of Work Completed: None Informal Monitoring in Progress

Activity Term: Start date: 01-DEC-97 End date:

Habitat(s): Upslope

Location(s): Watershed; Naramata Creek, tributary to the Okanagan River. Located just North of Penticton. WSC: 310-660700

Activity: Restoration - Detailed Assessments and Prescriptions

Description: This activity produced the prescriptions for the priority sites notes in Contract #DPE-WRP-98-GORMANS-1 in the Naramata Creek Watershed. The activity report include: Location Map, Table 1's and Site location maps, and Keys to Codes in Tables.

Comment: Report Title: Major Works Prescriptions for Priority Sites in the Naramata Creek Watershed Percentage of Work Completed: None Informal Monitoring in Progress **Activity Term:** Start date: 01-SEP-98 End date:

Habitat(s): Upslope

Location(s): Watershed; Naramata Creek, tributary to the Okanagan River. Located just North of Penticton. WSC: 310-660700

Activity: Restoration - Overview Assessment

Description: This Geotechnical Evaluation of landslides presents the results of a terrain stability mapping project for the Naramata watershed (approx. 13,400 ha) located in the Okanagan Valley. The report discusses previous work, physiography, drainage, bedrock geology, terrain types and slope stability. Also included are photos, maps, and a section describing the methods used.

Comment: Report Title: Terrain Stability, Naramata Creek Watershed including Geotechnical Evaluation of Landslides along Naramata Creek Percentage of Work Completed: N/A Informal Monitoring in Progress

Activity Term: Start date: 01-MAR-96 End date:

Habitat(s): Upslope

Location(s): Watershed; Naramata Creek, tributary to the Okanagan River. Located just North of Penticton. WSC: 310-660700

Activity: Restoration - Detailed Assessments and Prescriptions

Description: A geological engineering assessment of possible landslide was conducted in the Naramata Creek Watershed. The activity report summarizes a review of existing information regarding the landslide site and presents the findings of the field reconnaissance. The nature, condition and potential for reactivation of the landslide is discussed and a hazard and risk rating is presented. The report also includes recommendations regarding forest development in the subbasin that impacts the potential landslide.

Comment: Report Title: Geological Engineering Assessment of Possible Naramata Creek Landslide Percentage of Work Completed: None Informal Monitoring in Progress

Activity Term: Start date: 01-JUL-97 End date:

Habitat(s): Upslope

Location(s): Watershed; Naramata Creek, tributary to the Okanagan River. Located just North of Penticton. WSC: 310-660700

Activity: Restoration - Detailed Assessments and Prescriptions

Description: Naramata Creek and Robinson Creek are tributaries of Okanagan Lake. The activity report includes: Introduction, methods, report format and project deliverables, description of watersheds, conclusions and recommendations. Aerial photos, (SIS) forms, photo documentation and video tape transcripts are available.

Comment: Report Title: Final Report Watershed Restoration Program Naramata and Robinson Creeks Stream Assessment Percentage of Work Completed: None Informal Monitoring in Progress **Activity Term:** Start date: 01-DEC-95 End date:

Habitat(s): Stream

Location(s): Watershed; Naramata Creek, tributary to the Okanagan River. Located just North of Penticton. WSC: 310-660700

Activity: Restoration - Overview Assessment

Description: Report type - Channel Assessment: The objectives of this report are to: Videotape and provide audio commentary of the streams, review video and identify sites as being potentially degraded, conduct ground truthing, review existing literature, compile an inventory of sediment sources to each stream, collect anecdotal info on the streams, prioritize degraded streams, and to identify and recommend further assessment procedures.

Comment: Report title: Naramata and Robinson Creeks Stream Assessment Percentage of Work Completed: N/A Informal monitoring in progress.

Activity Term: Start date: 01-DEC-95 End date:

Habitat(s): Stream

Location(s): Main Stem + Tributaries; Naramata Creek, tributary to the Okanagan River. Located just North of Penticton.

Project Name: Nicola/Similkameen/Okanagan River Reconnaissance (1:20 000) Fish and Fish Habitat Inventory

Description: 1:20K Reconnaissance Fish and Fish Habitat Inventory, performed according to the Resource Inventory Committee (RIC) standards

Objective: A sample based survey covering whole watersheds, providing information regarding fish species distributions, characteristics and relative abundance, and stream reach and lake biophysical characteristics.

Project Status: Active Start Date: 01-APR-96
Lead Proponent: Gorman Brothers Lumber Limited
Activity: Inventory - 1:20000 Reconnaissance
Description: 1:20K Reconnaissance Fish and Fish Habitat Inventory
Activity Term: Start date: 01-APR-99 End date:
Location(s): Main Stem + Tributaries; Naramata Creek, tributary to Okanagan
Lake/Okanagan/Columbia Rivers, near Naramata.

Naswhito Creek

Naswhito Creek is a third order stream that measures 25.3 km in length. The stream flows to Okanagan Lake from the west. The confluence is located approximately 2.8 km south of that of Equesis Creek.

Kokanee and rainbow trout are known to exist in Naswhito Creek.

Reach break description	Reach 1	Reach 2	Reach 3
Attribute Considered	Confluence to 5km u/s		
Water Quality			
Dissolved Oxygen	DG		
Stream Temperature	DG		
Turbidity/Suspended Sediment	DG		
Nutrient Loading	DG		
In Channel Habitat			
Fine Sediment (substrate)	DG		
Large Woody Debris			
Percent Pool	DG		
<u><</u> 2% 2-5%			
>5%			
Habitat Access			
Fish Passage	P1		
Stream Flow			
Resembles Natural Hydrograph	P1		
Impervious Surface	DG		
Stream Corridor			
Riparian Vegetation	DG		
Stream Bank Stability	DG		
Floodplain Connectivity	P1		

Table 40:	Naswhito	Creek Limiti	ing Factors Matrix
-----------	----------	--------------	--------------------

Several dams located in the lower reaches of Naswhito Creek restrict fish passage upstream. A crude irrigation diversion dam has been constructed approximately 0.8 km upstream of the confluence with the lake. This dam creates a site of difficult trout passage and limits further upstream migration by kokanee in the fall.

Habitat qualities below this dam remain compatible with trout production. There is evidence that severe spring flows result in bank erosion. Freshet conditions combined with flood control measures have likely reduced stream productivity. Low flows in late summer and during the fall of most years has reduced the original kokanee population in this stream to remnant numbers.

Approximately 5 km upstream of the confluence the stream becomes too steep to accommodate game fish spawning.

Projects Undertaken

Fish and fish habitat projects undertaken in the watershed include:

Project Name: Equesis/Naswhito/Whiteman Creek Fish Habitat and Passage Assessments
Description: Habitat assessment for approx. 8km.
Project Status: Active Start Date: 22-NOV-99 End Date: 31-MAR-00
Lead Proponent: Okanagan Nation Fisheries Commission
Activity: Assessment - Habitat Assessment
Description: Assessment of the quality of fish habitat and the diversion structures for ease of fish passage, according to Level 1 fish and fish habitat assessment methods.
Activity Term: Start date: 22-NOV-99 End date: 31-MAR-00
Habitat(s): Stream
Location(s): Main Stem + Tributaries; Naswhito Creek tributary to Okanagan Lake/Okanagan Columbia River near Vernon.
Project Name: Naswhito Creek Watershed Restoration
Description: The Naswhito Creek watershed is a tributary to Okanagan Lake situated approximately

20 km west of Vernon. The watershed area is approximately 80 sq. km. **Objective:** The objectives of this project are to restore the watershed to some level of pre harvest condition, to restore natural hydrology to the area, and to enhance and rehabilitate riparian habitat. Specific actions undertaken may be road deactivation, gully and landslide rehabilitation and sediment source detection.

Project Status: Active Start Date: 01-APR-96

Lead Proponent: Riverside Forest Products Limited

Activity: Restoration - Upslope Restoration / Rehabilitation

Description: This activity report outlines the a summary of implemented work at a failure on Browns Creek Forest Service Road, a summary report of road deactivation prescriptions in the watershed, and a summary report for road relocation and road upgrade for the Browns Creek Forest Service Road.

Comment: Report Title: Naswhito Creek Road (aka Browns Creek Forestry Service Road)

Relocation and Upgrade, Slide and Stream Channel Restoration and Road Deactivation Percentage of Work Completed: Uncertain

Activity Term: Start date: 01-MAR-98 End date:

Habitat(s): Upslope

Location(s): Watershed; The Naswhito Creek watershed is a tributary to Okanagan Lake situated approximately 20 km west of Vernon. Naswhito Creek WSC: 310-958000 Activity: Restoration - Overview Assessment **Description:** This activity report outlines the overview fish habitat assessment procedure conducted for the Equesis, Naswhito, Whiteman and Shorts watersheds. The objective of this report was to assess the present condition of watersheds by reviewing historical fish studies, forest harvesting, water quality and discharge, maps and airphotos. The watersheds are located on the west side of Okanagan Lake, west of Vernon, BC

Comment: Report Title: Overview Fish Habitat Assessment Procedure: Equesis, Naswhito, Whiteman and Shorts watersheds Percentage of Work Completed: N/A

Activity Term: Start date: 25-APR-97 End date:

Habitat(s): Stream

Location(s): Main Stem + Tributaries; Shorts Watershed is located just south of Naswhito Creek (20 km west of Vernon) and drains into the West side of Okanagan Lake. It is a main tributary of the Okanagan River. Shorts Creek WSC: 310-946900; Whiteman Watershed is located South of Naswhito Creek (20 km west of Vernon) and drains into the West side of Okanagan Lake. It is a main tributary of the Okanagan River. Whiteman Creek WSC: 310-905500; Naswhito Creek is located 20 km west of Vernon and drains into the West side of Okanagan Lake. It is a main tributary of the Okanagan River. Naswhito Creek WSC: 310-958000

Activity: Restoration - Overview Assessment

Description: This report outlines the results of the interior watershed assessment procedure conducted on the Naswhito Creek Watershed. The objectives of this report were to document watershed characteristics and conditions, and to determine the potential for cumulative hydrologic impacts that may be associated with past forest development in the watersheds. The Naswhito Creek watershed is a tributary to Okanagan Lake situated approximately 20 km west of Vernon. The watershed area is approximately 80 sq. km.

Comment: Report Title: Interior Watershed Assessment for the Naswhito Creek Watershed Percentage of Work Completed: N/A

Activity Term: Start date: 01-DEC-98 End date:

Habitat(s): Upslope

Location(s): Watershed; The Naswhito Creek watershed is a tributary to Okanagan Lake situated approximately 20 km west of Vernon. Naswhito Creek WSC: 310-958000.

Okanagan Mainstem

The Okanagan Valley is an extended finger of the semi-arid sonoran desert ecotype, which has been made much more attractive to fish and humans by a chain of main valley lakes that unfortunately are fed by relatively few tributaries. Many of these streams are ephemeral in nature, connecting to the main system only during spring freshet flows. Of the 46 named tributaries in the Okanagan region, only 20 are known to support either kokanee salmon or rainbow trout spawning runs.

Kokanee are known to exist in Okanagan and Skaha lakes. Anadromous sockeye are known to spawn just above Lake Osoyoos. No bull trout are known to be in the Okanagan watershed on the Canadian side of the border. The tributaries of this watershed are addressed separately (Matthews and Cannings, pers comm).

Reach break description	Reach 1	Reach 2	Reach 3
	"channelized"		
	from Penticton to		
Attribute Considered	US border		
Water Quality			

 Table 41: Okanagan Mainstem Limiting Factors Matrix

Reach break description	Reach 1	Reach 2	Reach 3
	"channelized"		
Attribute Considered	from Penticton to US border		
Dissolved Oxygen			
Stream Temperature	_		
Turbidity/Suspended Sediment			
Nutrient Loading			
In Channel Habitat			
Fine Sediment (substrate)			
Large Woody Debris			
Percent Pool	P-F2		
<u><</u> 2% 2-5%			
>5%			
Habitat Access			
Fish Passage	F2		
Stream Flow			
Resembles Natural Hydrograph			
Impervious Surface	DG		
Stream Corridor			
Riparian Vegetation	P2		
Stream Bank Stability			
Floodplain Connectivity			

Kokanee is currently a key management focus within the Okanagan Basin. Currently the number of kokanee present in Okanagan Lake represent 10 percent of historical numbers supported by this system. The decline in stocks culminated in the 1995 closure of the kokanee sport fishery. This decline also led to the formation of the Okanagan Lake Action Plan, the focus of which was to define limiting factors to kokanee production and to identify and implement remedial measures.

The increase in urbanization and agricultural land use in the Okanagan Valley has lead to the development of lands adjacent to lakes and streams within the watershed. To protect valuable land, diking and channelization of streams has occurred on many stream within the watershed. Most of the meandering length of the Okanagan River between Penticton and the U.S. border has been converted into a straight channel.

Decline in black cottonwood stands adjacent to streams and lakes within the valley has decreased the amount of large woody debris recruitment potential. In addition, recruitment is poor particularly due to the presence of dikes which remain bare (no planting has occurred on the dikes). Any recruitment of large woody debris at this point is primarily due to beaver activity in the area.

Pools are limited to the natural section of the Okanagan River mainstem. Within the channelized section, drop structures, and weirs create some artificial pools that may serve as fish habitat.

Spawning habitat is currently not a limiting factor to salmonid production in the Okanagan system. However, unstable hydraulic profiles may limit the amount of accessible spawning habitat or may strand emerging fry. Regulating hydraulic profiles to benefit sockeye has a negative effect on kokanee. Off channel rearing habitat in Osoyoos Lake in particular is a problem due to temperature ranges and other external influences.

DO is not likely to be a limiting factor to salmonid use in the mainstem. There appears to be good mixing by the presence of riffles that allows for oxygen absorption. In larger, deeper lakes such as Okanagan Lake, oxygen tends to remain plentiful and is therefore thought to not be a limiting factor.

Temperature is considered to be an issue. Ranges can be in excess of 26 degrees Celsius which can be lethal to salmonids. Regulatory control of water levels greatly influences the water temperature as water quantity influences temperature. In addition, the limited amount of riparian vegetation does little to provide shade, which would also enable a stable water temperature regime to develop. Furthermore, temperature and the amount of dissolved oxygen present in a waterbody are related, and combined can result in negative incubation and migration impacts.

Periodic presence of inorganic debris resulting in water turbidity is not considered to be an issue. Vaseux Creek however does add suspended sediments to the system when flash floods occur. This tributary is the main contributor to fine sediments to the Okanagan River mainstem between Osoyoos and Vaseux lakes.

Streams flowing into the mainstem show high nutrient element (nitrogen and phosphorous) loading. However, most of this loading is not immediately available for plant or algal growth. The rate of supply of nutrients that are available to plants and algae for growth appear to be the limiting factor for overall biological production in the Okanagan mainstem lakes. Some management consideration is apparently being given to adding nutrients into the Okanagan system so as to improve production.

No specific data is available for the determination of contaminants within the system, however, inferences from adjacent land use such as agricultural, urbanization, golf courses, and forestry suggest that inputs into the system are quite likely.

Projects Undertaken

Fish and fish habitat projects undertaken in the watershed include:

Project Name: Okanagan Lake - Mysis Beam Trawl Harvesting Feasibility
Description: In-lake population estimate for mysis shrimp, development of more efficient harvesting techniques, harvest product acceptability, and harvest technique cost benefits.
Project Status: Active Start Date: 01-SEP-99 End Date: 01-MAR-00
Lead Proponent: BC Ministry of Environment Lands and Parks
Activity: Inventory - Mapping
Description: Graphed and mapped seven stations and 75+ trawls.
Activity Term: Start date: 01-SEP-99 End date: 01-MAR-00
Target Species: Kokanee, Shrimp
Habitat(s): Lake
Location(s): Lake; Okanagan Lake tributary to Okanagan/Columbia Rivers, near Penticton.
Activity: Assessment - Stock Assessment

Description: 15 kg per 1/2 hour trawl of stock assessed. Activity Term: Start date: 01-SEP-99 End date: 01-MAR-00 Target Species: Shrimp Habitat(s): Lake; Okanagan Lake, tributary to Okanagan/Columbia Rivers, near Penticton.

Project Name: Nicola/Similkameen/Okanagan River Reconnaissance (1:20 000) Fish and Fish Habitat Inventory

Description: 1:20K Reconnaissance Fish and Fish Habitat Inventory, performed according to Resource Inventory Committee (RIC) standards

Objective: A sample based survey covering whole watersheds, providing information regarding fish species distributions, characteristics and relative abundance, and stream reach and lake biophysical characteristics.

Project Status: Active Start Date: 01-APR-96

Lead Proponent: Gorman Brothers Lumber Limited Activity: Inventory - 1:20000 Reconnaissance Description: 1:20K Reconnaissance Fish and Fish Habitat Inventory Activity Term: Start date: 01-APR-99 End date: Location(s): Okanagan River Watershed

Project Name: Okanagan Basin- Fish Species Presence and Distribution **Description:** Review of existing materials/reports within the Ministry of the Environment, Lands and Parks regional office compiled into one report.

Project Status: Active Start Date: 26-JUL-99 End Date: 31-JAN-00

Lead Proponent: Okanagan Nation Fisheries Commission

Activity: Other - General

Description: Compilation of data.

Activity Term: Start date: 26-JUL-99 End date: 31-JAN-00

Location(s): Point; Okanagan Basin entered by point as Okanagan lake tributary to the Columbia River near WestBank/Kelowna.

Project Name: Okanagan Lake Spawning Habitat Construction

Description: Beach gravel moved to below high water mark from above to create kokanee spawning habitat. Identification of spawning sites during the first year.

Objective: Create shore spawning habitat for kokanee as part of Habitat Conservation Trust Fund's (HCTF) overall objective to appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Active Start Date: 01-APR-83

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Enhancement - Habitat Enhancement

Description: Shore spawning habitat created for kokanee by moving beach gravel to below the high water mark from above the high water mark.

Activity Term: Start date: 01-APR-83 End date:

Target Species: Kokanee

Habitat(s): Lake

Location(s): Lake; Okanagan Lake, tributary to Okanagan/Columbia Rivers, near Kelowna.

Activity: Inventory - Other

Description: Spawning sites identified in the first year of the new spawning habitat.

Activity Term: Start date: 01-APR-83 End date:

Target Species: Kokanee

Habitat(s): Lake

Location(s): Lake; Okanagan Lake, tributary to Okanagan/Columbia Rivers, near Kelowna.

Project Name: Okanagan River Habitat Enhancement (86)
Description: Creation of spawning habitat for kokanee in the Okanagan River channel by scarifying 160 m and excavating and replacing gravel throughout 400 m of the channel.
Objective: Create spawning habitat for kokanee as part of Habitat Conservation Trust Fund's (HCTF) overall objective to appropriately conserve and, where necessary, enhance wild fish populations and their habitats.
Project Status: Active Start Date: 01-APR-86
Lead Proponent: BC Ministry of Environment Lands and Parks
Activity: Enhancement - Habitat Enhancement
Description: 160 m of scarification and 400 m of gravel excavation and replacement.
Activity Term: Start date: 01-APR-86 End date:
Target Species: Kokanee
Habitat(s): Stream

Location(s): Main Stem of Stream; Okanagan River, tributary to Columbia River, near Penticton.

Another effort to further the Habitat Conservation Trust Fund's (HCTF) objective to conserve and enhance wild fish populations and their habitats was conducted in the form of a video, information pamphlet, and slide show. The purpose of which is to increase public awareness of the importance of Okanagan lake fisheries and to facilitate habitat protection. BC Ministry of Environment Lands and Parks was the lead proponent for the project.

Project Name: Okanagan Storm Drain Marking (88)

Description: Implementation of a Storm Drain Marking program in the Okanagan: Coordination of school groups and volunteers, marking of storm drains, and distribution of pamphlets.

Objective: To appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Active Start Date: 01-APR-88

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Other - General

Description: Implementation of a Storm Drain Marking program in the Okanagan: coordination of school groups and volunteers, marking of storm drains, and distribution of pamphlets.

Activity Term: Start date: 01-APR-88 End date:

Location(s): Point; City of Kelowna, Okanagan region.

Project Name: Okanagan Storm Drain Marking Program (89)

Description: Implementation of a Storm Drain Marking program in the Okanagan: coordination of school groups and volunteers, marking of storm drains, and distribution of pamphlets.

Objective: To appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Active Start Date: 01-APR-89

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Other - General

Description: Coordination of school groups and volunteers, marking of storm drains, and distribution of pamphlets.

Activity Term: Start date: 01-APR-89 End date:

Location(s): Point; City of Kelowna.

Peachland Creek

Peachland Creek flows from the west, and drains directly to Okanagan Lake south of the town of Peachland, BC. It is a third order waterway, and is 31.2 km long. This stream is headwatered by Peachland Lake, a dammed reservoir whose inflow and outflow are largely regulated by Brenda Mines, the primary water licensee.

Fish species known to be present in Peachland Creek include brook trout, kokanee, and rainbow trout. The Skaha Hatchery has also stocked Peachland Creek with kokanee fry. Peachland Creek is an important kokanee spawning channel and provides viewing of spawning grounds for school programs and other educational purposes.

Reach break description	Reach 1	Reach 2	Reach 3
Attribute Considered	Confluence to 1.2km u/s	Hardy Falls (10m) at 1.2km u/s	
Water Quality			
Dissolved Oxygen	DG		
Stream Temperature	DG		
Turbidity/Suspended Sediment	DG		
Nutrient Loading	DG		
In Channel Habitat			
Fine Sediment (substrate)			
Large Woody Debris			
Percent Pool < 2%	F1		
<u> </u>			
>5%			
Habitat Access			
Fish Passage	F1		
Stream Flow			
Resembles Natural Hydrograph	P1		
Impervious Surface	DG		
Stream Corridor			
Riparian Vegetation	DG		
Stream Bank Stability			
Floodplain Connectivity	DG		

Table 42: Peachland Creek Limiting Factors Matrix

Only the lower reaches of this system are accessible to spawning trout and kokanee. Hardy Falls, located approximately 1.0 km upstream of the confluence with Okanagan Lake, are 10 m high and represent an impassable barrier to all migrating fish. A dam located at the outlet of Peachland Lake is a barrier to resident fish migration.

The lower reaches of the stream appear to be deficient in trout rearing habitat. The area is relatively homogeneous, and would be even more so without the presence of the rock wing deflectors installed by a local rod and gun club. Despite this provision, gravel

abundance and quality appears to be inadequate, particularly in terms of trout spawning requirements.

Although a reliable flow regime is reported to be the greatest fish production asset of this stream, it remains susceptible to periods of periodic flow interruptions as witnessed in late August 1977. It would be desirable to have the release of this stored water be part of an overall plan for the cooperative release of stored volumes held by Brenda Mines and the District of Peachland. An agreement between these two agencies to address the collective needs of all water users on both Peachland and Trepanier creeks would assist in ensuring that fish flow requirements are sustained.

Projects Undertaken

Local rod and gun club members have participated in a modest habitat improvement project in the stream below Hardy Falls. This project entailed building alternate rock wing dams to enhance holding areas and to provide sites for gravel deposition. These measures are primarily intended to benefit kokanee spawning.

A Water Survey Canada station located on Peachland Creek collects water quality and quantity data.

Other fish and fish habitat projects undertaken in the watershed include:

Project Name: Peachland Creek and Trepanier Creek Watershed Restoration

Description: The Peachland and Trepanier Creeks lie within two adjacent watersheds and are located on the west side of Okanagan Lake by Peachland, BC. The Peachland Creek watershed is 14,150 ha in size and drains into Okanagan Lake approximately 3 km SW of Peachland. The Trepanier Creek watershed is 25, 990 ha in size and also drains into Okanagan Lake at the North end of Peachland. There are approximately 543 km of roads in the watersheds. Both creeks flow approximately 25 km in an easterly direction from their headwaters to their confluences. Urbanization and agriculture occur along the lower 3 km of both watersheds. The Brenda Mine is located near the headwaters of both watersheds are currently under forest licenses to Riverside Forest Products Limited, Gorman Brothers Lumber Ltd. and the Small Business Forest Enterprise Program.

Objective: This watershed will be assessed to determine what work will need to be completed in order to restore the areas that were damaged by past activities, such as logging.

Project Status: Active Start Date: 01-APR-96

Lead Proponent: District of Peachland

Activity: Restoration - Overview Assessment

Description: The purpose of the Interior Watershed Restoration Plan (IWRP) activity is to integrate the results of the Sediment Source Survey, Access Management Strategy, Fish Habitat Assessment Procedure and Interior Watershed Assessment Procedure to recommend an action plan for the prescription phase. The IWRP incorporates the results of the watershed-level and project planning objectives, as well as summarizing the existing conditions in the watershed and identifying significant problems associated with the roads and streams. It also provides a cost estimate and work schedule to complete prescription work. This procedure was completed within these watershed.

Comment: Report Title: Integrated Watershed Restoration Plan for the Peachland Creek & Trepanier Creek Watersheds Vol. 1 of 5 Percentage of Work Completed: Uncertain Informal Monitoring in Progress

Activity Term: Start date: 01-FEB-98 End date: Habitat(s): Upslope

Location(s): Watershed; Peachland Creek, tributary to Okanagan Lake. Located ~ just South of Peachland.

Activity: Restoration - Overview Assessment

Description: This activity outlines the results of the overview Sediment Source Survey work carried out as part of phase two of the Integrated Watershed Restoration Plan on the Peachland/ Trepanier watersheds.

Comment: Report Title: Sediment Source Survey Report for Peachland Creek & Trepanier Creek Watersheds Vol. 2 of 5 Percentage of Work Completed: N/A Informal Monitoring in Progress **Activity Term:** Start date: 01-FEB-98 End date:

Habitat(s): Riparian, Stream, Upslope

Location(s): Watershed; Peachland Creek, tributary to Okanagan Lake. Located ~ just South of Peachland.

Activity: Restoration - Overview Assessment

Description: Report type - Access Management Plan: The purpose of the report is to identify the current and proposed future uses of all roads on the watershed based on the needs of stakeholders and other users. Deactivation strategies were proposed for roads where use is suspended for up to three years or more. Also identified on the Access Management Strategy maps are sites or areas on roads, hillslopes and gullies that are causing environmental degradation and require stabilization prescriptions. The report includes a detailed results section that contains review of Sediment Source Survey, review of Forest Industry 5 year development plans, identifies status and non status roads, preliminary maps, public viewing and roads eligible for funding. There are many tables, appendices and maps.

Comment: Report title: Access Management Strategies for the Peachland Creek & Trepanier Creek Watersheds Vol. 3 of 5 Percentage of Work Completed: N/A Informal Monitoring in Progress **Activity Term:** Start date: 01-FEB-98 End date:

Habitat(s): Upslope

Location(s): Main Stem + Tributaries; Peachland Creek, tributary to Okanagan Lake

Activity: Restoration - Overview Assessment

Description: Report type - Fish Habitat Assessment: This report contains an introduction to the study area with description, methodology section, extensive results and discussion section including fish habitat assessment and fish distribution assessment for both watersheds and a final recommendations section detailing each watershed. There are photos and many maps available.

Comment: Report title: Peachland/Trepanier Creek Watershed- Fisheries Habitat Assessment Procedure 1996 Percentage of Work Completed: N/A Informal Monitoring in Progress **Activity Term:** Start date: 29-MAY-97 End date:

Habitat(s): Stream

Location(s): Main Stem + Tributaries; Peachland Creek, tributary to Okanagan Lake. Located ~ just South of Peachland.

Activity: Restoration - Overview Assessment

Description: Report type - Level 1 Coastal or Interior Watershed Assessment Procedure (CWAP or IWAP): This report contains an introduction and description, methods, results, conclusions and recommendations for both of the watersheds based on the assessment. There are many tables and appendices including Watershed Assessment Procedure Details, IWAP Report Cards and IWAP forms 1 to 9. There are maps that accompany the report in a separate tube.

Comment: Report title: Interior Watershed Assessment for the Peachland & Trepanier Creek Watersheds Vol. 5 of 5 Percentage of Work Completed: N/A Informal Monitoring in Progress **Activity Term:** Start date: 01-SEP-97 End date:

Habitat(s): Stream

Location(s): Main Stem + Tributaries; Peachland Creek, tributary to Okanagan Lake. Located ~ just South of Peachland.

Activity: Restoration - Overview Assessment

Description: Report type - Terrain Stability: This report contains sections with an introduction, methods, site description, surficial materials and associated landforms, active geomorphological processes and a discussion of terrain hazards. There is a 1:125,000 scale map and several photos that accompany the report.

Comment: Report title : Peachland and Trepanier Creek Stability Mapping Percentage of Work Completed: N/A Works done in 1998 and some informal monitoring in progress

Activity Term: Start date: 22-JAN-99 End date:

Habitat(s): Upslope

Location(s): Main Stem + Tributaries; Peachland Creek, tributary to Okanagan Lake. Located ~ just South of Peachland.

Project Name: Peachland Creek Kokanee Spawning Enhancement (86)

Description: Enhancement of kokanee spawning habitat by constructing 300 sq. m of gravel platforms upstream from previous enhancement activities.

Objective: To appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Active Start Date: 01-APR-86

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Enhancement - Habitat Enhancement

Description: Construction of 300 sq. m of gravel platforms upstream from previous enhancement activities.

Activity Term: Start date: 01-APR-86 End date:

Target Species: Kokanee

Habitat(s): Stream

Location(s): Main Stem of Stream; Peachland Creek, tributary to Okanagan Lake and Okanagan/Columbia Rivers, runs through Peachland.

Project Name: Peachland Creek Kokanee Spawning Enhancement (87)

Description: Enhancement of kokanee spawning habitat by constructing more gravel platforms, cleaning sediment basins, and removing excess debris. Also, eggs collected and kokanee spawners enumerated.

Objective: To appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Active Start Date: 01-APR-87

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Enhancement - Habitat Enhancement

Description: More gravel platforms constructed, sediment basins cleaned, and excess debris removed.

Activity Term: Start date: 01-APR-87 End date:

Target Species: Kokanee

Habitat(s): Stream

Location(s): Main Stem of Stream; Peachland Creek, tributary to Okanagan Lake,

Okanagan/Columbia Rivers, runs through Peachland.

Activity: Enhancement - Fish Culture Activities

Description: Kokanee eggs collected.

Activity Term: Start date: 01-APR-87 End date:

Target Species: Kokanee

Habitat(s): Stream
Location(s): Main Stem of Stream; Peachland Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, runs through Peachland.
Activity: Assessment - Stock Assessment
Description: Enumeration of kokanee spawners.
Activity Term: Start date: 01-APR-87 End date:
Target Species: Kokanee
Habitat(s): Stream
Location(s): Main Stem of Stream; Peachland Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, runs through Peachland.

Project Name: Peachland Creek Tours (88)

Description: Educational tours of kokanee spawning ecology prepared and conducted for school groups and the public.

Objective: To appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Active Start Date: 01-APR-88

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Other - General

Description: Educational tours of kokanee spawning ecology prepared and conducted for school groups and the public.

Activity Term: Start date: 01-APR-88 End date:

Target Species: Kokanee

Habitat(s): Lake, Stream

Location(s): Main Stem of Stream; Peachland Creek, tributary to Okanagan Lake,

Okanagan/Columbia Rivers, runs through Peachland.

Project Name: Peachland Creek Kokanee Spawning Enhancement (88)

Description: Maintenance and evaluation of previous projects: gravel platforms, siltation control measures, incubation boxes. Construction of an enumeration fence and collection of kokanee eggs. **Objective:** To appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Active Start Date: 01-APR-88

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Restoration - Effectiveness Monitoring & Evaluation

Description: Maintenance and evaluation of previous projects: gravel platforms, siltation control measures, and incubation boxes.

Activity Term: Start date: 01-APR-88 End date:

Target Species: Kokanee

Habitat(s): Stream

Location(s): Main Stem of Stream; Peachland Creek, tributary to Okanagan Lake,

Okanagan/Columbia Rivers, runs through Peachland.

Activity: Inventory - Escapement

Description: Construction of an enumeration fence.

Activity Term: Start date: 01-APR-88 End date:

Target Species: Kokanee

Habitat(s): Stream

Location(s): Main Stem of Stream; Peachland Creek, tributary to Okanagan Lake,

Okanagan/Columbia Rivers, runs through Peachland.

Activity: Enhancement - Fish Culture Activities

Description: Collection of kokanee eggs. Activity Term: Start date: 01-APR-88 End date: Target Species: Kokanee Habitat(s): Stream Location(s): Main Stem of Stream; Peachland Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, runs through Peachland. **Project Name:** Peachland Creek Kokanee Spawning Enhancement (89) **Description:** Maintenance of gravel platforms, siltation control measures, and incubation boxes. Evaluations of previous projects by assessing kokanee fry. **Objective:** To appropriately conserve and, where necessary, enhance wild fish populations and their habitats. Project Status: Active Start Date: 01-APR-89 Lead Proponent: BC Ministry of Environment Lands and Parks Activity: Enhancement - Habitat Enhancement **Description:** Maintenance of gravel platforms, siltation control measures, and incubation boxes. Activity Term: Start date: 01-APR-89 End date: Target Species: Kokanee Habitat(s): Stream Location(s): Main Stem of Stream; Peachland Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, runs through Peachland. Activity: Assessment - Stock Assessment **Description:** Evaluation of previous projects by assessing kokanee fry. Activity Term: Start date: 01-APR-89 End date: Target Species: Kokanee Habitat(s): Stream Location(s): Main Stem of Stream; Peachland Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, runs through Peachland. Activity: Assessment - Stock Assessment **Description:** Evaluation of previous projects by assessing kokanee fry. Activity Term: Start date: 01-APR-89 End date: Target Species: Kokanee Habitat(s): Stream Location(s): Main Stem of Stream; Peachland Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, runs through Peachland. **Project Name:** Peachland Creek Kokanee Spawning Enhancement (90) **Description:** Maintenance of gravel platforms, and incubation boxes, and control of siltation. Previous projects evaluated by assessing kokanee fry. **Objective:** To appropriately conserve and, where necessary, enhance wild fish populations and their habitats. Project Status: Active Start Date: 01-APR-90 Lead Proponent: BC Ministry of Environment Lands and Parks Activity: Enhancement - Habitat Enhancement Description: Maintenance of gravel platforms and incubation boxes, and control of siltation. Activity Term: Start date: 01-APR-90 End date: Target Species: Kokanee Habitat(s): Stream

Location(s): Main Stem of Stream; Peachland Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, runs though town of Peachland. Activity: Assessment - Stock Assessment **Description:** Evaluation of previous projects by assessing kokanee fry Activity Term: Start date: 01-APR-90 End date: Target Species: Kokanee Habitat(s): Stream Location(s): Main Stem of Stream; Peachland Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, runs through Peachland. Activity: Assessment - Stock Assessment **Description:** Evaluation of previous projects by assessing kokanee fry Activity Term: Start date: 01-APR-90 End date: Target Species: Kokanee Habitat(s): Stream Location(s): Main Stem of Stream; Peachland Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, runs through Peachland. Project Name: Peachland Creek Kokanee Spawning Enhancement (91) Description: Gravel platforms maintained, siltation controlled, and rock weirs repaired. Previous projects evaluated by assessing kokanee fry. **Objective:** To appropriately conserve and, where necessary, enhance wild fish populations and their habitats. Project Status: Active Start Date: 01-APR-91 Lead Proponent: BC Ministry of Environment Lands and Parks Activity: Enhancement - Habitat Enhancement Description: Gravel platforms maintained, siltation controlled, and rock weirs repaired. Activity Term: Start date: 01-APR-91 End date: Target Species: Kokanee Habitat(s): Stream Location(s): Main Stem of Stream; Peachland Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, runs though Peachland. Activity: Assessment - Stock Assessment Description: Assessment of kokanee fry to evaluate previous projects. Activity Term: Start date: 01-APR-91 End date: Target Species: Kokanee Habitat(s): Stream Location(s): Main Stem of Stream; Peachland Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, runs through Peachland. **Project Name:** Peachland Creek Tours (89) Description: Preparation and follow through of educational tours of kokanee spawning ecology for school groups and the public. Objective: To appropriately conserve and, where necessary, enhance wild fish populations and their habitats. Project Status: Active Start Date: 01-APR-89 Lead Proponent: BC Ministry of Environment Lands and Parks Activity: Other - General **Description:** Educational tours of kokanee spawning ecology prepared and conducted for school

groups and the public.

Activity Term: Start date: 01-APR-89 End date:

Target Species: Kokanee Habitat(s): Stream Location(s): Main Stem of Stream; Peachland Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, runs through Peachland.

Project Name: Peachland Creek Erosion Control

Description: Construct a series of check dams to minimize siltation in the creek and to stabilize the entire gully that is used by kokanee.

Objective: To appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Completed Start Date: 01-APR-89
Lead Proponent: BC Ministry of Environment Lands and Parks
Activity: Restoration - Instream Restoration / Rehabilitation
Description: Construct a series of check dams to minimize siltation in the creek and to stabilize the entire gully, which is used by kokanee.
Activity Term: Start date: 01-APR-89 End date:
Target Species: Kokanee
Location(s): Main Stem of Stream; Peachland Creek tributary to Okanagan Lake/
Okanagan/Columbia Rivers

Project Name: Peachland Creek Erosion Control

Description: Construct a series of check dams to minimize siltation in the creek and to stabilize the entire gully, which is used by kokanee.

Objective: To appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Completed Start Date: 01-APR-90

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Enhancement - Habitat Enhancement

Description: Construct a series of check dams to minimize siltation in the creek and to stabilize the entire gully, which is used by kokanee.

Activity Term: Start date: 01-APR-90 End date:

Target Species: Kokanee

Habitat(s): Stream

Location(s): Main Stem of Stream; Peachland Creek tributary to Okanogan/Osoyoos Lakes,

Okanogan/Columbia Rivers.

Activity: Enhancement - Habitat Enhancement

Description: Construct a series of check dams to minimize siltation in the creek and to stabilize the entire gully, which is used by kokanee.

Activity Term: Start date: 01-APR-90 End date:

Target Species: Kokanee

Habitat(s): Stream

Location(s): Main Stem of Stream; Peachland Creek tributary to Okanogan/Osoyoos Lakes,

Okanogan/Columbia Rivers.

Activity: Enhancement - Habitat Enhancement

Description: Construct a series of check dams to minimize siltation in the creek and to stabilize the entire gully that is used by kokanee.

Activity Term: Start date: 01-APR-90 End date:

Target Species: Kokanee

Habitat(s): Stream

Location(s): Main Stem of Stream; Peachland Creek tributary to Okanogan/Osoyoos Lakes, Okanogan/Columbia Rivers.

Penticton Creek

Penticton Creek flows from the east and drains to Okanagan Lake at the city of Penticton, BC. This third order stream measures 28.8 km in length.

Brook trout, kokanee, longnose dace, and rainbow trout are present in the system. Additional stocking of kokanee fry by the Skaha Hatchery has also occurred.

Reach break description	Reach 1	Reach 2	Reach 3
Attribute Considered			
Water Quality			
Dissolved Oxygen	DG		
Stream Temperature	DG		
Turbidity/Suspended Sediment	DG		
Nutrient Loading	DG		
In Channel Habitat			
Fine Sediment (substrate)	DG		
Large Woody Debris			
Percent Pool			
<u>< 2%</u>			
2-5% >5%			
Habitat Access			
Fish Passage			
Stream Flow	- /		
Resembles Natural Hydrograph			
Impervious Surface	DG		
Stream Corridor			
Riparian Vegetation	DG		
Stream Bank Stability	G1		
Floodplain Connectivity	P1		

Table 43: Penticton Creek Limiting Factors Matrix

Urban development within this watershed resulted in the construction of a concrete stream channel in 1950 in an effort to stop flooding in the lower reaches of Penticton Creek. The city of Penticton has launched an initiative to improve the esthetic appearance of this stream by naturalizing the lower reaches and modifying and stepping the existing weirs. This process could include a formal agreement with the city of Penticton for maintenance of base fish flows in the downstream reaches of this stream.

A dam located approximately 4.5 km upstream of the confluence to Okanagan Lake is a barrier to upstream migration of all fish. Several other dams are located on Penticton Creek.

Approximately 30 km upstream of the confluence to Okanagan Lake there is a 16 m high and 32 m long cascade that is probably a migration barrier to resident fish populations.

Projects Undertaken

Water quality and quantity are measured at the Water Survey of Canada station.

Fishway ladders were constructed from the confluence with Okanagan Lake to the spawning grounds of Penticton Creek.

Gravel placement has occurred to enhance potential habitat for spawning and egg incubation and a viewing area has been constructed for educational purposes.

Other fish and fish habitat projects undertaken in the watershed include:

Project Name: Hedley / McNulty / Cahill / Winters Creek Watershed Restoration **Description:** Part of Forest Renewal British Columbia's Watershed Restoration Program, the study area contains the Hedley / McNulty Creek Watershed, the Cahill Creek Watershed and Winters Creek Watershed that together have an area of about 600 sq. km. The study area is located on the Thompson Plateau northeast of the town of Hedley, and north of the Similkameen River valley and Highway 3

between Princeton and Keremeos in southern BC

Objective: The objectives of this project are to rehabilitate and restore the watershed from past disturbances such as logging, mining and road construction.

Project Status: Active Start Date: 01-APR-95

Lead Proponent: Weyerhaeuser Canada Limited

Activity: Restoration - Overview Assessment

Description: The purpose of the Access Management Strategies (AMS) is to identify the current and proposed future uses of all roads in the watershed based on the needs of stakeholders and other watershed users. The report includes: Overview, objectives, methodology, results and conclusions. The appendices include: definitions of road deactivation levels, stakeholders and resource users contact list and comments, land tenure and permit status list and maps.

Comment: Report Title: Access Management Strategies (AMS) for Penticton and Ellis Creek Watersheds (Volume 3 of 5) Percentage of Work Completed: N/A Informal Monitoring in Progress **Activity Term:** Start date: 01-FEB-98 End date:

Habitat(s): Upslope

Location(s): Watershed; Penticton Creek, tributary to the Okanagan River. Located Just North of Penticton.

Activity: Restoration - Overview Assessment

Description: This report includes the results and discussion of fish habitat assessment and distribution, recommendations and photo documentation. The objective of the Fish Habitat Assessment Procedure (FHAP) was to assess, restore, protect and maintain aquatic and fish habitats that have been impacted by forestry practices.

Comment: Report Title: Fisheries Habitat Assessment Procedure for Penticton and Ellis Creek Watersheds (Vol. 4 of 5) Percentage of Work Completed: N/A Informal Monitoring in Progress **Activity Term:** Start date: 01-MAY-97 End date:

Habitat(s): Stream

Location(s): Watershed; Penticton Creek, tributary to the Okanagan River. Located Just North of Penticton.

Activity: Restoration - Overview Assessment

Description: The purpose of this report is to integrate results from the Sediment Source Survey (SSS), Access Management Strategy (AMS), Fish Habitat Assessment Procedure (FHAP), and Interior Watershed Assessment Procedure (IWAP). The report also includes a description of the types

of overview assessments conducted, watershed conditions, prescriptions for IWRP, problems, priority list and photo documentation.

Comment: Report Title: Integrated Watershed Restoration Plan (IWRP) for Penticton and Ellis Creek Watersheds (Vol. 1 of 5) Percentage of Work Completed: Uncertain Informal Monitoring in progress **Activity Term:** Start date: 01-FEB-98 End date:

Habitat(s): Stream, Upslope

Location(s): Watershed; Penticton Creek, tributary to the Okanagan River. Located Just North of Penticton.

Activity: Restoration - Overview Assessment

Description: This report includes: Introduction, methods, watershed characteristics, results, conclusions and recommendations. Maps are available in separate tubes. Appendices include: Watershed Assessment Procedure Details, IWAP Report Cards, IWAP Forms and round table minutes.

Comment: Report Title: Interior Watershed Assessment for Penticton Creek and Ellis Creek Watersheds (Vol. 5 of 5) Percentage of Work Completed: N/A Informal Monitoring in progress **Activity Term:** Start date: 01-FEB-98 End date:

Habitat(s): Upslope

Location(s): Watershed; Penticton Creek, tributary to the Okanagan River. Located Just North of Penticton.

Activity: Restoration - Overview Assessment

Description: Outlines the Sediment Source Survey (SSS) work carried out as part of Phase 2 of the Integrated Watershed Restoration Plan. The report includes: Introduction, objectives, methodology, assessment results, planning and scheduling for the prescription phase, conclusions and recommendations. Photo documentation also provided.

Comment: Report Title: Sediment Source Survey Report for Penticton and Ellis Creek Watersheds (Vol. 2 of 5) Percentage of Work Completed: N/A Informal Monitoring in progress

Activity Term: Start date: 01-FEB-98 End date:

Habitat(s): Upslope

Location(s): Watershed; Penticton Creek, tributary to the Okanagan River. Located Just North of Penticton.

Activity: Restoration - Overview Assessment

Description: The terrain stability mapping was conducted at Terrain Survey Intensity Level C. It incorporated detailed terrain stability information and interpretations to be used by forest planners to identify areas that require on-site assessments of terrain stability prior to the approval of road construction, cutblock boundaries, timber harvesting methods and silvicultural systems.

Comment: Report Title: Terrain Stability and Terrain Stability Mapping for Penticton Creek

Watershed Percentage of Work Completed: N/A Informal Monitoring in progress

Activity Term: Start date: 01-NOV-98 End date:

Habitat(s): Upslope

Location(s): Watershed; Penticton Creek, tributary to the Okanagan River. Located Just North of Penticton.

Activity: Restoration - Detailed Assessments and Prescriptions

Description: This report contains the prescriptions for the priority sites noted in Contract #98-WRP-Prescriptions for the Penticton, Shuttleworth, and Vaseux Watersheds. Also included are the prescriptions for Priority site `S11` and Road #1603.

Comment: Report Title: Upslope Prescriptions for the Priority Sites in the Penticton Creek,

Shuttleworth Creek and Vaseux Creek Watersheds. Percentage of Work Completed: Uncertain Works done in 1999 and some informal monitoring in progress

Activity Term: Start date: 01-SEP-98 End date:

Habitat(s): Upslope

Location(s): Watershed; Penticton Creek, tributary to the Okanagan River. Located Just North of Penticton.

Project Name: Penticton Creek Interpretive Signage Project
Description: 4 interpretive signs designed and developed. Signs pertain to issues to do with Okanagan Lake kokanee and habitat issues on Penticton Creek.
Project Status: Active Start Date: 22-NOV-99 End Date: 15-MAR-00
Lead Proponent: Penticton Flyfishers
Activity: Other - General
Description: Education: design and development of 4 signs to do with issues of Okanagan Lake kokanee and habitat issues on Penticton Creek.
Activity Term: Start date: 22-NOV-99 End date: 15-MAR-00
Target Species: All species, Kokanee
Habitat(s): Lake, Stream
Location(s): Main Stem of Stream; Penticton Creek, tributary to Okanagan Lake, Okanagan/Columbia, near Penticton.

Project Name: Penticton Creek Resting and Leaping Pool
Description: Improvement of fish ladder to provide access to an additional 0.6 km of stream.
Objective: Increase kokanee production.
Project Status: Active
Lead Proponent: Penticton Flyfishers
Activity: Restoration - Restore Fish Passage
Description: Improvement of fish ladder to provide access to an additional 0.6 km of stream.
Activity Term: Start date: 22-NOV-99 End date: 15-MAR-00
Target Species: Kokanee
Habitat(s): Stream
Location(s): Main Stem of Stream; Penticton Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, near Penticton.

Powers Creek

Powers Creek flows from the west to Okanagan Lake. It is a fourth order stream, and 29.4 km long. It passes through the community of Westbank, BC.

There are known kokanee and rainbow trout populations in Powers Creek.

Reach break description	Reach 1	Reach 2	Reach 3
	Confluence to	Bedrock chutes at	
Attribute Considered	2.6km u/s	2.6km u/s	
Water Quality			
Dissolved Oxygen	DG		
Stream Temperature	DG		
Turbidity/Suspended Sediment	DG		
Nutrient Loading	DG		
In Channel Habitat			
Fine Sediment (substrate)	P1		

 Table 44: Powers Creek Limiting Factors Matrix

Reach break description	Reach 1	Reach 2	Reach 3
	Confluence to	Bedrock chutes at	
Attribute Considered	2.6km u/s	2.6km u/s	
Large Woody Debris	DG		
Percent Pool	P1		
<u>< 2%</u>			
2-5%			
>5%			
Habitat Access			
Fish Passage	P2		
Stream Flow			
Resembles Natural Hydrograph	F1		
Impervious Surface	DG		
Stream Corridor			
Riparian Vegetation	P1		
Stream Bank Stability	DG		
Floodplain Connectivity	DG		

A chute located 0.8 km upstream of the confluence with Okanagan Lake has been modified in the past by the Fish and Wildlife Branch to more easily pass trout spawners in the spring. Downstream of this chute the creek is bordered by several private properties, including a large ranch. Past channelization measures to protect this private land have contributed to a reduction in pool numbers and a limited amount of suitable spawning gravel.

The section upstream of this chute is confined within a short, steep-sided canyon. Flat "benches" over the next 1.8 km appear to be highly productive for rainbow trout. The lower chute remains, however, a total barrier to stream spawning kokanee in the fall. Falls and a series of bedrock chutes, located approximately 2.6 km upstream of the confluence, represent an obstruction to further upstream migration.

A dam is located approximately 3.3 km upstream of the confluence with Okanagan Lake.

The greatest natural asset of Powers Creek appears to be its generally favorable flow regime. This condition, combined with relatively undisturbed habitat upstream of the first chute appears promising for future enhancement.

Projects Undertaken

Gravel was added and cleaned to enhance kokanee spawning and egg incubation habitat.

A rock chute was blasted in 1989 to remove this particular obstruction and allow for upstream fish migration. A fishway has been installed at this location to further facilitate fish passage.

Other fish and fish habitat projects undertaken in the watershed include:

Project Name: Powers Creek Screening

Description: Replacement of an existing unscreened diversion with a screened irrigation diversion to prevent migrating Rainbow trout fry from becoming trapped in an irrigation canal.

Okanogan/Similkameen Subbasin Summary 301

Objective: Protect Rainbow trout as part of Habitat Conservation Trust Fund's (HCTF) overall objective to appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Active Start Date: 01-APR-86

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Enhancement - Barrier Modification / Obstruction Removal

Description: Replacement of an existing unscreened diversion with a screened irrigation diversion.

Activity Term: Start date: 01-APR-86 End date:

Target Species: Rainbow Trout

Habitat(s): Stream

Location(s): Main Stem of Stream; Powers Creek, tributary to Okanagan Lake and Okanagan/Columbia Rivers, near Westbank.

Project Name: Powers Creek Fishway Construction

Description: Construction of a fishway to assist kokanee in bypassing a rock obstruction and reaching their spawning habitat.

Objective: Increase the success of kokanee spawners as part of the Habitat Conservation Trust Fund's (HCTF) overall objective to appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Active Start Date: 01-APR-86

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Enhancement - Barrier Modification / Obstruction Removal

Description: Construction of a fishway to assist kokanee in bypassing a rock obstruction and reaching their spawning habitat.

Activity Term: Start date: 01-APR-86 End date:

Target Species: Kokanee

Habitat(s): Stream

Location(s): Main Stem of Stream; Powers Creek, tributary to Okanagan Lake and Okanagan/Columbia Rivers, near Westbank.

Project Name: Tadpole Lake Water Storage

Description: Collection of information and development of a plan for sharing water storage in Tadpole Lake with Westbank Irrigation District to secure minimum flow for Powers Creek. **Objective:** To appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Active Start Date: 01-APR-88

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Other - General

Description: Collection of information and development of a plan for sharing water storage in Tadpole Lake with Westbank Irrigation District to secure minimum flow for Powers Creek. **Activity Term:** Start date: 01-APR-88 End date:

Target Species: Kokanee

Habitat(s): Lake, Stream

Location(s): Main Stem of Stream; Powers Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, NW of Westbank.

Robinson Creek

Robinson Creek flows directly to Okanagan Lake from the east. The confluence with the lake is located just over 0.8 km north of the village of Naramata. The stream itself is a second order stream that measures 8.7 km in length.

Okanogan/Similkameen Subbasin Summary 302

Kokanee and rainbow trout populations are present in the system. Kokanee apparently only use the lower reaches. Local residents claim large rainbow trout can be observed in the stream during spring runoff.

Reach break description	Reach 1	Reach 2	Reach 3
Attribute Considered			
Water Quality			
Dissolved Oxygen	DG		
Stream Temperature	DG		
Turbidity/Suspended Sediment	DG		
Nutrient Loading	DG		
In Channel Habitat			
Fine Sediment (substrate)	P1		
Large Woody Debris			
Percent Pool 2% 2-5% >5%	DG		
Habitat Access Fish Passage	P1		
Stream Flow			
Resembles Natural Hydrograph	P1		
Impervious Surface	DG		
Stream Corridor			
Riparian Vegetation	P1		
Stream Bank Stability	DG		
Floodplain Connectivity	P1		

Table 45: Robinson Creek Limiting Factors Matrix

Near the confluence with Okanagan Lake, Robinson Creek is contained within extensive bank armoring. This armoring features a number of internal drop structures.

A culvert located approximately 1.1 km upstream of the confluence with Okanagan Lake is a migration barrier for all species of fish. Upstream of the lowest road crossing the stream is bordered by orchards and more natural habitat qualities are apparent.

Dams located at the outlets of Naramata and Elinor lakes are also present. These two small headwater reservoirs appear to produce reasonably stable flow, resulting in a strong incentive for some level of trout production. Stream flows are considered to be a low to medium constraint to increasing the fisheries potential of Robinson Creek.

Gravel is not abundant in the stream, and where present the gravel beds have a high fraction of fine materials.

Projects Undertaken

Fish and fish habitat projects undertaken in the watershed include:

Project Name: Robinson Creek Riparian Fencing
Description: Fencing construction was completed for 2 km.
Objective: Protection of rainbow trout and riparian areas.
Project Status: Active Start Date: 01-APR-99
Lead Proponent: Naramata Citizens Association
Activity: Restoration - Other
Description: Habitat restoration for 2 km; fencing construction completed.
Activity Term: Start date: 01-APR-99 End date:
Habitat(s): Riparian
Location(s): Main Stem + Tributaries; Robinson Creek, tributary to Okanagan Lake/Okanagan/Columbia Rivers, near Naramata

Project Name: Naramata Creek Watershed Restoration

Description: The project area is located 15 km northeast of the City of Penticton and consists of three watersheds: Naramata Creek, Robinson Creek, and Upper Chute Creek. Naramata watershed has an area of 2931 ha and is used for both domestic and irrigation purposes.

Objective: The objectives of this project are to protect, restore and rehabilitate fisheries, aquatic and forest resources that have been adversely impacted by past disturbances such as logging, mining and road construction within this watershed.

Project Status: Active Start Date: 01-APR-96

Lead Proponent: Gorman Brothers Lumber Limited

Activity: Restoration - Detailed Assessments and Prescriptions

Description: Naramata Creek and Robinson Creek are tributaries of Okanagan Lake. The activity report includes: Introduction, methods, report format and project deliverables, description of watersheds, conclusions and recommendations. Aerial photos, SIS forms, photo documentation and video tape transcripts are available.

Comment: Report Title: Final Report Watershed Restoration Program Naramata and Robinson Creeks Stream Assessment Percentage of Work Completed: None Informal Monitoring in Progress **Activity Term:** Start date: 01-DEC-95 End date:

Habitat(s): Stream

Location(s): Watershed; Robinson Creek, tributary to the Okanagan River. Located just north of Penticton. WSC: 310-665200

Activity: Restoration - Overview Assessment

Description: Report type - Channel Assessment: The objectives of this report are to: Videotape and provide audio commentary of the streams, review video and identify sites as being potentially degraded, conduct ground truthing, review existing literature, compile an inventory of sediment sources to each stream, collect anecdotal info on the streams, prioritize degraded streams, and to identify and recommend further assessment procedures.

Comment: Report title: Naramata and Robinson Creeks Stream Assessment Percentage of Work Completed: N/A Informal monitoring in progress.

Activity Term: Start date: 01-DEC-95 End date:

Habitat(s): Stream

Location(s): Main Stem + Tributaries; Robinson Creek, tributary to the Okanagan River. Located just north of Penticton. WSC: 310-665200.

Similkameen Mainstem and Watershed

The Similkameen River is a seventh order stream. In total it traverses 198 km from its source to its mouth. It generally flows from the west. The confluence with the Okanogan River is located in Washington State near Oroville. The basin drains approximately 9,600 square km of the Pacific Northwest, 7,600 square km of which are located within Canada. The Similkameen Valley is one of the hottest and driest areas of Canada. Dominant tree species within the basin include spruce, lodgepole pine, Douglas-fir, and balsam. Soils in the area are stony and have a low capacity to retain moisture limiting arable land to valley bottoms.

American placer gold prospectors just traveling through the basin resulted in the first major influx of people into the Similkameen. Cattle ranching in Princeton and mixed agriculture farming by the Hudson's Bay Company was also introduced into the area during this period.

Since WWII, ranching, agriculture, forestry and mining have increasingly developed. In addition, the building of the Hope-Princeton Highway opened the area to recreation and tourism.

The area south of Hedley became an important tree fruit producing region. The introduction of intensified orcharding practices and other technological advances resulted in higher crop yields. Grape production became prominent in the valley during the 1970's at which time five commercial vineyards were in operation. Significant limitations to agricultural production in the basin include adverse topography, low rainfall, and stony soil that has low moisture-holding capacity. Arable land is typically located in the valley bottom.

Forestry has been a major economic element in the basin. The largest employer in the region as of 1984 was Weyerhaeuser Canada Ltd. which operates a sawmill in Princeton. Several smaller mills operate in the basin as well. Dominant species in the Similkameen are spruce, Lodgepole pine, Douglas fir and balsam.

Mining opportunities significantly increased over the years as the basin is part of a highly mineralized area which contains several commercial deposits of copper, gold, silver, lead and zinc as well as reserves of low-sulphur thermal coal in the Tulameen area. Several mining companies operate in the basin.

Tourism in the valley was facilitated by the opening of the Hope-Princeton Highway in 1949. The basin offers a variety of activities for both summer and winter tourists. There are ten provincial parks in the basin.

Falls located at the mouth of the Similkameen River have been replaced by a dam. The falls were the historical natural barrier to the upstream migration of anadromous species. There is no passage for anadromous fish beyond the dam. Introducing these fish to the Similkameen may result in disease and habitat competition with resident non-anadromous fish.

Fish species known to be present in the Similkameen River include black bullhead, bridgelip sucker, Dolly varden, largescale sucker, longnose dace, mottled sculpin, mountain whitefish, northern mountain sucker, northern pikeminnow, rainbow trout, redside shiner, sculpins, slimy sculpin, suckers, torrent sculpin, Umatilla dace, and whitefish. Fish stocking of rainbow trout has also occurred in the Similkameen River by the Fraser Valley Hatchery.

Reach break description	Reach 1	Reach 2	Reach 3
Attribute Considered			
Water Quality			
Dissolved Oxygen	DG		
Stream Temperature	DG		
Turbidity/Suspended Sediment	DG		
Nutrient Loading	DG		
la Obernel Llebitet			
In Channel Habitat Fine Sediment (substrate)	DG		
Fine Sediment (substrate) Large Woody Debris			
Percent Pool			
<u> </u>			
2-5%			
>5%			
Habitat Access			
Fish Passage	DG		
Stream Flow			
	P1		
Resembles Natural Hydrograph Impervious Surface			
	DG		
Stream Corridor			
Riparian Vegetation	DG		
Stream Bank Stability			
Floodplain Connectivity	P1		

 Table 46:
 Similkameen Creek Limiting Factors Matrix

The Enloe Dam located near the mouth of the Similkameen River is the barrier to upstream migration to anadromous fish. Historically anadromous fish have not migrated past this point due to the presence of impassable falls. Concessions made to enable anadromous fish into this system may increase disease and competition for habitat with resident fish populations.

As of 1984 there were over 1,000 water licenses within the Canadian portion of the basin in operation. The majority of these licenses were used for irrigation purposes, typically in the lower part of the river between Princeton and the border. Estimated diversions during irrigation season were equivalent to a continuous flow of 6.13 cubic m per second at that time. By the end of the summer streams are reduced to base flows and irrigation exacerbates the issue. There is very little lake/reservoir storage within the basin to supplement the late summer low flows.

The other water supply problem is periodic flooding. In the spring and early summer the river experiences its freshet. These freshets commonly results in flooding in the lower valley. Extensive diking has been constructed to protect much of these lands.

Projects Undertaken

Fish and fish habitat projects undertaken in the watershed include:

Okanogan/Similkameen Subbasin Summary 306

Project Name: Tulameen Main Line Watershed Restoration

Description: This watershed is 1,780 sq. km in size and is located in southwestern BC, 299 km east of Vancouver. The western portion of the watershed is located in the Cascade Mountains, while the eastern portion is situated within the Thompson Plateau. Elevation in the watershed range between 600 and 2300 m.

Objective: The objectives of this project are to protect, restore and rehabilitate fisheries, aquatic and forest resources that have been adversely impacted by past disturbances such as logging, mining and road construction within this watershed.

Project Status: Active Start Date: 01-APR-96

Lead Proponent: Tolko Industries Limited

Activity: Restoration - Overview Assessment

Description: Report type - Channel Assessment: This report contains an introduction and background information, objectives, methods of assessment results and summary. The appendices include filed notes, photo plates, photo documentation forms 1 and 2, water survey of Canada stream flow data, water licenses and watershed maps. (Please note that this is a draft copy and none of the appendices are present).

Comment: Report title: Reconnaissance Channel Assessments in selected tributaries of the Tulameen River Percentage of Work Completed: N/A

Activity Term: Start date: 01-FEB-99 End date:

Habitat(s): Stream

Location(s): Main Stem + Tributaries; Tributaries of the Tulameen River, near Princeton.

Project Name: Nicola/Similkameen/Okanagan River Reconnaissance (1:20 000) Fish and Fish Habitat Inventory

Description: 1:20K Reconnaissance Fish and Fish Habitat Inventory, according to Resource Inventory Committee (RIC) standards

Objective: A sample based survey covering whole watersheds, providing information regarding fish species distributions, characteristics and relative abundance, and stream reach and lake biophysical characteristics.

Project Status: Active Start Date: 01-APR-96

Lead Proponent: Gorman Brothers Lumber Limited

Activity: Inventory - 1:20000 Reconnaissance

Description: 1:20K Reconnaissance Fish and Fish Habitat Inventory

Activity Term: Start date: 01-APR-99 End date:

Type: Main Stem + Tributaries; South Keremeos Creek (tributary to Keremeos Creek), Snehumption Creek, Shoudy Creek, Robert Creek, Red Bridge Creek (tributary to Ashnola River), Duruisseau Creek (tributary to Ashnola River), Easygoing Creek (tributary to Ashnola River), tributaries to Similkameen/Okanagan/Columbia Rivers.

Project Name: Merritt Timber Supply Area (TSA) Enhanced Forestry

Description: 1:20K Reconnaissance Fish and Fish Habitat Inventory, according to Resource Inventory Committee (RIC) standards

Objective: A sample based survey covering whole watersheds, providing information regarding fish species distributions, characteristics and relative abundance, and stream reach and lake biophysical characteristics.

Project Status: Active Start Date: 01-APR-96

Lead Proponent: Weyerhaeuser Canada Limited

Activity: Inventory - Other

Description: 1:20K Reconnaissance Fish and Fish Habitat Inventory; Planning only.

Activity Term: Start date: 01-APR-96 End date:

Habitat(s): Stream

Location(s): Main Stem + Tributaries; Dillard Creek, tributary to Summers/Allison Creeks, Summers Creek tributary to Allison Creek, Spukunee Creek tributary to Hayes Creek, Siwash Creek tributary to Hayes Creek, Rampart Creek tributary to Summers Creek – tributaries to Similkameen/Okanagan/Columbia River.

Project Name: Tolko Multi Activity Land-Based 1996

Description: 1:20K Reconnaissance Fish and Fish Habitat Inventory, according to Resource Inventory Committee (RIC) standards

Objective: A sample based survey covering whole watersheds, providing information regarding fish species distributions, characteristics and relative abundance, and stream reach and lake biophysical characteristics.

Project Status: Active Start Date: 01-APR-96

Lead Proponent: Tolko Industries Limited

Activity: Inventory - 1:20000 Reconnaissance

Description: 1:20K Reconnaissance Fish and Fish Habitat Inventory

Activity Term: Start date: 01-APR-96 End date:

Habitat(s): Stream

Location(s): Main Stem and tributaries of Tulameen River, Holmes Creek, tributary to Granite Creek, Fraser Gulch, Collins Creek, Otter Creek, Spearing Creek tributary to Otter Creek, Blakeburn Creek tributary to Granite Creek, Newton Creek tributary to Granite Creek, Manion Creek, tributaries to Tulameen/Similkameen/Okanagan/Columbia River.

Project Name: Tulameen River Watershed Restoration

Description: The Tulameen Watershed is located approximately 200 km east of Vancouver, BC in the Merritt Forest District, between Hope and Princeton, north of Manning Park and south of Merritt. The watershed is about 1780 sq. km in size. The western portion of the Tulameen watershed is located within the Cascade Mountains, while the eastern portion is situated within the Tulameen plateau. **Objective:** The objectives of this project were to restore the watershed to some level of pre harvest activity. This may include reestablishing natural hydrology and drainage patterns, revegetation plans and rehabilitating gullies and landslides for reclamation and visual quality purposes. Activities, which may be undertaken in order to accomplish such restoration work, include road deactivation, road rehabilitation or bioengineering.

Project Status: Active Start Date: 01-APR-96

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Restoration - Overview Assessment

Description: Report type - Channel Assessment: This report contains an introduction and objectives, physical setting information, land use impacts and changes in channel morphology, priorities for field inspection, recommendations for channel restoration, future work and certification. There are several figures and tables throughout the report detailing various information discussed within the report. There are also two other volumes that contain only maps and photo plates of the watershed. Three oversized maps accompany this report.

Comment: Report title: Tulameen River Watershed Overview Channel Assessment Percentage of Work Completed: N/A

Activity Term: Start date: 01-APR-99 End date:

Habitat(s): Stream

Location(s): Main Stem + Tributaries; Tulameen River, Tributary to the Similkameen River. Located near Princeton.

Activity: Restoration - Overview Assessment

Description: This report outlines the overview channel assessment for the Tulameen watershed. The objectives of this report were to determine how historic land use practices have affected stream channel processes in the watershed. The Tulameen Watershed is located approximately 200 km east of Vancouver, BC The watershed is about 1780 sq. km in size. The western portion of the Tulameen watershed is located within the Cascade Mountains, while the eastern portion is situated within the Tulameen plateau.

Comment: Report Title: Tulameen River Watershed Overview Channel Assessment (Volume 1 Text). Percentage works completed is: N/A

Activity Term: Start date: 01-APR-97 End date:

Habitat(s): Stream

Location(s): Watershed; Tulameen River, tributary of the Similkameen River, is located approximately 20km west of Princeton.

Activity: Restoration - Overview Assessment

Description: This report outlines the overview channel assessment for the Tulameen watershed. The objectives of this report were to determine how historic land use practices have affected stream channel processes in the watershed. The Tulameen Watershed is located approximately 200 km east of Vancouver, BC The watershed is about 1780 sq. km in size. The western portion of the Tulameen watershed is located within the Cascade Mountains, while the eastern portion is situated within the Tulameen plateau.

Comment: Report Title: Tulameen River Watershed Overview Channel Assessment (Volume 1 Text). Percentage works completed is: N/A

Activity Term: Start date: 01-APR-97 End date:

Habitat(s): Stream

Location(s): Watershed; Tulameen River, tributary of the Similkameen River, is located approximately 20 km west of Princeton.

Activity: Restoration - Overview Assessment

Description: This report outlines the overview channel assessment for the Tulameen watershed. The objectives of this report were to determine how historic land use practices have affected stream channel processes in the watershed. The Tulameen Watershed is located approximately 200 km east of Vancouver, BC The watershed is about 1780 sq. km in size. The western portion of the Tulameen watershed is located within the Cascade Mountains, while the eastern portion is situated within the Tulameen plateau.

Comment: Report Title: Tulameen River Watershed Overview Channel Assessment (Volume 3 Addendums 10-12 Historical Air Photo Analyses Otter Creek and Lower Tulameen Watershed). Percentage works completed is: N/A

Activity Term: Start date: 01-APR-97 End date:

Habitat(s): Stream

Location(s): Watershed; Tulameen River, tributary of the Similkameen River, is located approximately 20 km west of Princeton.

Activity: Restoration - Detailed Assessments and Prescriptions

Description: This report outlines the stream assessment conducted for the Tulameen River. The objective of this report was to compile existing historical information to identify factors that limit fish production and water quality in the watershed, and to determine trends in habitat quality in the watershed. The Tulameen River Watershed is located in the Merritt Forest district, between Hope and Princeton, north of Manning Park and south of Merritt.

Comment: Report Title: 1996 Tulameen River Watershed Stream Assessment: Volume 1 - Final Report. Percentage works completed is: uncertain

Activity Term: Start date: 01-JUL-97 End date:

Habitat(s): Stream

Location(s): Main Stem + Tributaries; Tulameen River, tributary to the Similkameen River, is located approximately 20 km west of Princeton.

Activity: Restoration - Effectiveness Monitoring & Evaluation

Description: This report outlines the stream restoration works, surveys, assessments and prescriptions which have taken place in the past year (1997). The objective of this work is to restore the streams to pre development conditions. The Tulameen River Watershed is located in the Merritt Forest district, between Hope and Princeton, north of Manning Park and south of Merritt.

Comment: Report Title: 1997 Tulameen River Watershed Stream Restoration Final Report. Percentage works completed is: N/A

Activity Term: Start date: 02-MAR-98 End date:

Habitat(s): Stream

Location(s): Main Stem + Tributaries; Tulameen River, tributary to the Similkameen River, is located approximately 20 km east of Princeton.

Activity: Restoration - Detailed Assessments and Prescriptions

Description: This report outlines the fish habitat rehabilitation prescriptions for the Granite Creek sub basin of the Tulameen River watershed. The objectives of these prescriptions are to stabilize stream banks and channels, create enhanced fish habitat in streambeds and reduce sediment delivery into the water system. The Tulameen River Watershed is located in the Merritt Forest district, between Hope and Princeton, north of Manning Park and south of Merritt.

Comment: Report Title: 1998 Granite Creek Rehabilitation Prescriptions. Percentage works completed is: uncertain

Activity Term: Start date: 01-SEP-98 End date:

Habitat(s): Riparian, Stream, Upslope

Location(s): Watershed; Granite Creek, tributary to Tulameen River which flows into the Similkameen River, is located approximately 20 km west of Princeton.

Project Name: Ashnola River Watershed Restoration

Description: The Ashnola River watershed lies on the Thompson Plateau and is bordered to the south by the Canada USA border. It flows northwest into the Similkameen River, and drains an area of 879.3 ha. The objectives of this project were to restore the watershed to some level of pre harvest activity. This may include reestablishing natural hydrology and drainage patterns, revegetation plans and rehabilitating gullies and landslides for reclamation and visual quality purposes. Activities, which may be undertaken in order to accomplish such restoration work, include road deactivation, road rehabilitation or bioengineering.

Objective: The objectives of this project are to protect, restore and rehabilitate fisheries, aquatic and forest resources that have been adversely impacted by past disturbances such as logging, mining and road construction within this watershed.

Project Status: Active Start Date: 01-APR-96

Lead Proponent: Lower Similkameen Indian Band

Activity: Restoration - Overview Assessment

Description: Report type - Level 1 Coastal or Interior Watershed Assessment Procedure (CWAP or IWAP): This report outlines the interior watershed assessment procedure for the Ashnola River Watershed. The objectives of this report were to determine the potential for any cumulative hydrologic impacts resulting from past forest development. The Ashnola River watershed lies on the Thompson Plateau and is bordered to the south by the Canada USA border. It flows northwest into the Similkameen River, and drains an area of 879.3 ha.

Comment: Report title: Interior Watershed Assessment Procedure: Ashnola River Watershed Percentage of Work Completed: N/A Works done in 1999 and some informal monitoring in progress **Activity Term:** Start date: 01-APR-98 End date:

Habitat(s): Riparian, Stream, Upslope

Location(s): Main Stem + Tributaries; Ashnola River, tributary to Similkameen River, near Princeton Activity: Restoration - Overview Assessment

Description: Report type - Sediment Source Survey: This report contains an introduction, methods, results and recommendations. The appendices include data cards and photos, fish sampling methods and results, Forms 1-3 and 8: Channel Assessment Procedure (CAP) Overview Documentation and Field Forms. There is another volume that includes only photos and maps. This report is intended to identify the sites of impact and recommend means of restoring habitats and ecosystem functions within the Ashnola River Watershed. To assist in the identification of potential impacts, the following assessments were conducted. An overview Channel Assessment Procedure was conducted on the channel morphology of selected streams within the Ashnola River watershed and a sediment source survey evaluated potential sediment sources from roads, cutblocks and natural sources including landslides.

Comment: Report title: Ashnola River Watershed Channel Assessment Procedure & Sediment Source Survey Percentage of Work Completed: N/A Works done in 1999 and some informal monitoring in progress

Activity Term: Start date: 01-JAN-98 End date:

Habitat(s): Stream

Location(s): Main Stem + Tributaries; Ashnola River, tributary to the Similkameen River, near Keremeos.

Project Name: Arrastra Creek Watershed Restoration

Description: The watershed is located 40 km SW of Princeton, BC and encompasses 150 sq. km which drains the east side of the Cascade Mountains into Granite Creek, Tulameen and eventually Similkameen Rivers. The watershed had been modified through timber harvesting and livestock free ranging. This area is also heavily used for recreation.

Objective: The objectives of this project are to protect, restore and rehabilitate fisheries, aquatic and forest resources that have been adversely impacted by past disturbances such as logging, mining and road construction within this watershed.

Project Status: Active Start Date: 01-APR-94

Lead Proponent: First Nations of Okanagan-Similkameen Environmental Protection Society Activity: Restoration - Instream Restoration / Rehabilitation

Description: Report type - In Stream & Off Channel Rehabilitation: This report contains executive summary, background, watershed characteristics, project design, implementation summary and recommendation for future work. There are some tables and figures as well as photos and diagrams. **Comment:** Report Title: Arrastra Creek Watershed Restoration Project Percentage of Work Completed: Uncertain

Activity Term: Start date: 01-NOV-98 End date:

Habitat(s): Stream

Location(s): Main Stem + Tributaries; Arrastra Creek, tributary to the Similkameen River watershed, is located about 40 km SW of Princeton, BC

Activity: Restoration - Instream Restoration / Rehabilitation

Description: Report type - In Stream & Off Channel Rehabilitation: This report contains executive summary, background, watershed characteristics, project design, implementation summary and recommendation for future work. There are some tables and figures as well as photos and diagrams.

Comment: Report Title: Arrastra Creek Watershed Restoration Project Percentage of Work Completed: Uncertain

Activity Term: Start date: 01-NOV-98 End date:

Habitat(s): Stream

Location(s): Main Stem + Tributaries; Arrastra Creek, tributary to the Similkameen River watershed, is located about 40 km SW of Princeton, BC

Project Name: Granite Creek Watershed Restoration

Description: The watershed is located in the Penticton Forest District west of Princeton, BC and drains into the Tulameen River.

Objective: The objectives of this project are to protect, restore and rehabilitate fisheries, aquatic and forest resources that have been adversely impacted by past disturbances such as logging, mining and road construction within this watershed.

Project Status: Active Start Date: 01-APR-98

Lead Proponent: Ardew Wood Products Ltd.

Activity: Restoration - Instream Restoration / Rehabilitation

Description: Report type - Work Summary: This report contains an introduction, methods, detailed work plan, results, recommendations and budget summary. There are a few tables and figures detailing costs, location site and collected data. The appendices include photographs, agency approval, daily work sheets and field data sheets.

Comment: Report title; 1998 Granite Creek Restoration Works Percentage of Work Completed: Uncertain Informal Monitoring in Progress

Activity Term: Start date: 01-FEB-99 End date:

Habitat(s): Stream

Location(s): Main Stem + Tributaries; Granite Creek, Similkameen River watershed, near Princeton.

Project Name: Wolfe Creek Watershed Restoration

Description: Part of Forest Renewal British Columbia's Watershed Restoration Program, Wolfe Creek originates in the Cascade Mountains and Wilbert Hills in southern BC It flows in a general northeast direction, discharging into the Similkameen River east of Princeton at the Wolf Indian Reserve No. 3. The watershed is 238 sq. km in area and has one major tributary named Willis Creek. **Objective:** The objectives of this project are to rehabilitate and restore the watershed from past disturbances such as logging, mining and road construction.

Project Status: Active Start Date: 01-APR-95

Lead Proponent: First Nations of Okanagan-Similkameen Environmental Protection Society Activity: Restoration - Overview Assessment

Description: The general objective of the Integrated Watershed Restoration Plan is to develop a strategy to adequately protect natural resources (fisheries, water, timber) while maintaining access to, and use of these resources by stakeholders in the watershed. Volume 1 of the report provides descriptions of this project's Sediment Source Survey, Fish Habitat Assessment Procedure, Channel Conditions and Prescriptions Assessment, Access Management Plan, as well as preliminary restoration recommendations.

Comment: Report Title: Wolfe and Willis Creeks: Integrated Watershed Restoration Plan (Vol.1 of 2). Percentage works completed is: uncertain

Activity Term: Start date: 01-MAR-98 End date:

Habitat(s): Riparian, Stream, Upslope

Location(s): Watershed; Willis Creek, tributary to Wolfe Creek which flows into the Similkameen River, is located less than 20km east of Princeton; Wolfe Creek, tributary to the Similkameen River, is located less than 20km east of Princeton.

Activity: Restoration - Overview Assessment

Description: The general objective of the Integrated Watershed Restoration Plan is to develop a strategy to adequately protect natural resources (fisheries, water, timber) while maintaining access to, and use of these resources by stakeholders in the watershed. Volume 2 of the report contains the

attachments, specifically the Sediment Source Survey map, the FHAP / CCPA map, and the Access Management Map.

Comment: Report Title: Wolfe and Willis Creeks: Integrated Watershed Restoration Plan (Vol.2 of 2). Percentage works completed is: uncertain

Activity Term: Start date: 01-MAR-98 End date:

Habitat(s): Riparian, Stream, Upslope

Location(s): Watershed; Willis Creek, tributary to Wolfe Creek which flows into Similkameen, is located less than 20km east of Princeton; Wolfe Creek, tributary to the Similkameen River, is located less than 20km east of Princeton.

Activity: Restoration - Overview Assessment

Description: The primary objective of this project is to identify potential watershed impacts in the Wolfe Creek drainage due to forest harvest practice. Further objectives include but are not limited to: - updating existing forest road and cutblock information; - evaluating forestry impacts relative to other land use impacts within the watershed; - investigating water quality conditions at two locations along Wolfe Creek; - preparing a report which includes 1:20,000 digital mapping and; - providing recommendations for further assessment, if required.

Comment: Report Title: Wolfe Creek: Level I Interior Watershed Assessment. Percentage works completed is: N/A

Activity Term: Start date: 06-SEP-96 End date:

Habitat(s): Riparian, Stream, Upslope

Location(s): Watershed; Wolfe Creek, tributary of the Similkameen River, is located less than 20km east of Princeton.

Project Name: Hedley / McNulty / Cahill / Winters Creek Watershed Restoration

Description: Part of Forest Renewal British Columbia's Watershed Restoration Program, the study area contains the Hedley / McNulty Creek Watershed, the Cahill Creek Watershed and Winters Creek Watershed that together have an area of about 600 sq. km. The study area is located on the Thompson Plateau northeast of the town of Hedley, and north of the Similkameen River valley and Highway 3 between Princeton and Keremeos in southern BC

Objective: The objectives of this project are to rehabilitate and restore the watershed from past disturbances such as logging, mining and road construction.

Project Status: Active Start Date: 01-APR-95

Activity: Restoration - Overview Assessment

Description: This Integrated Watershed Restoration Plan (IWRP) produced a report, which summarizes the overview assessments with the tabulated results within the Appendices. An Interior Watershed Assessment Procedure for the Hedley Watershed was prepared in 1996 by Dobson Engineering. The Watershed-level and Proposed Component Project Objectives as well as the details of the Watershed Restoration Plan (WRP) Access Management Plan are presented within this report. Appendix VI for this report is under separate cover.

Comment: Report Title: Hedley / McNulty, Cahill and Winters Creeks Watersheds: Integrated Watershed Restoration Plan. Percentage of Work Completed: Uncertain Informal Monitoring in Progress

Activity Term: Start date: 01-MAR-98 End date:

Habitat(s): Riparian, Stream, Upslope

Location(s): Watershed; Winters Creek, McNulty Creek, tributary of Hedley Creek, Hedley Creek, Cahill Creek, tributaries to the Similkameen River, is located just south of Princeton.

Activity: Restoration - Overview Assessment

Description: This activity presented an overview of the stability conditions of the roads, hillslopes and gullies in the study area. The goal of the Sediment Source Survey is to identify erosion problems with existing roads, hillslopes and gullies, and to determine sites that require rehabilitation. Each

feature is assessed for the level of risk it presents to environmental, social and economic values, and general prescriptions for rehabilitation are given if required.

Comment: Report Title: Hedley/ McNulty, Cahill and Winters Watersheds: Sediment Source Surveys. Percentage of Work Completed: N/A Informal Monitoring in Progress

Activity Term: Start date: 16-FEB-98 End date:

Habitat(s): Upslope

Location(s): Watershed; McNulty Creek tributary to Hedley Creek, Cahill Creek, Winters Creek, Hedley Creek, tributaries to the Similkameen River, is located just south of Princeton.

Activity: Restoration - Overview Assessment

Description: The objective of the Level I Interior Watershed Restoration Plan (IWAP) is to assess the potential for cumulative hydrologic impacts in the Winters and Cahill Creeks Watersheds associated with previous forest development and road construction. There are four primary impact categories that are assessed which include: - peak flows; - surface erosion; - riparian buffers and; - mass wasting. The results of this assessment should be considered in the review of restoration work that might be recommended for the watershed, as well as in the evaluation of future harvesting proposals in the watershed.

Comment: Report Title: Winters and Cahill Creeks Watersheds: Interior Watershed Assessment Procedure. Percentage of Work Completed: N/A Informal Monitoring in Progress

Activity Term: Start date: 01-NOV-97 End date:

Habitat(s): Riparian, Stream, Upslope

Location(s): Watershed; Winters Creek, Cahill Creek, tributaries to the Similkameen River, is located just south of Princeton.

Activity: Restoration - Overview Assessment

Description: The objective of the Level I Interior Watershed Assessment Procedure (IWAP) is to assess the potential for cumulative hydrologic impacts in the Hedley / McNulty Creek Watershed associated with previous forest development and road construction. There are four primary impact categories that are assessed which include: - peak flows; - surface erosion; - riparian buffers and; - mass wasting. The results of this assessment should be considered in the review of restoration work that might be recommended for the watershed, as well as in the evaluation of future harvesting proposals in the watershed.

Comment: Report Title: Hedley Creek Interior Watershed Assessment Procedure. Percentage of Work Completed: N/A Informal Monitoring in Progress

Activity Term: Start date: 01-MAR-96 End date:

Habitat(s): Riparian, Stream, Upslope

Location(s): Watershed; Hedley Creek, tributary to the Similkameen River, is located just south of Princeton.

Project Name: Willis Creek Watershed Restoration

Description: The Willis Creek watershed is located approximately 20 km south of Princeton, BC The study area consists of a 4 km section of the Willis Creek valley and valley sides.

Objective: The objectives of this project were to restore the watershed to some level of pre harvest activity. This may include reestablishing natural hydrology and drainage patterns, revegetation plans and rehabilitating gullies and landslides for reclamation and visual quality purposes. Activities, which may be undertaken in order to accomplish such restoration work, include road deactivation, road rehabilitation or bioengineering.

Project Status: Active Start Date: 01-APR-96

Activity: Restoration - Overview Assessment

Description: This report provides a summary of the results of two site visits conducted to view new slides in the spring of 1997, detailed prescriptions and a cost estimate for remediation of the new slide

areas, and prioritization of works to be completed. Willis and Commander forest service roads are near the community of Princeton.

Comment: Report Title: Prescriptions for Willis/Commander Road. Percentage works completed is: 100 percent

Activity Term: Start date: 19-SEP-97 End date:

Habitat(s): Upslope

Location(s): Watershed; Willis Creek, tributary of Wolfe Creek which flows into the Similkameen River, is located approximately 20 km south of Princeton.

Activity: Restoration - Overview Assessment

Description: This report outlines a field review of the remedial treatment measures carried out along a segment of the Old Commander road, just south of its junction with the Willis Creek Mainline. The purpose of the review was to assess the efficacy of site rehabilitation measures carried out to date. The Willis/ Commander area is located south of Princeton, BC

Comment: Report Title: 1998 Review of the Slide Reclamation Area: Old Commander Road, Willis Creek Basin. Percentage works completed is: 100 percent

Activity Term: Start date: 25-SEP-98 End date:

Habitat(s): Upslope

Location(s): Watershed; Willis Creek, tributary of Wolfe Creek which flows into the Similkameen River, is located approximately 20 km south of Princeton.

Activity: Restoration - Overview Assessment

Description: This report outlines the results of a study of an approximately 100 ha area of the Willis Creek Basin. The purpose of the study was to develop detailed prescriptions for restoration and rehabilitation of road, landslide and gully elements potentially having a detrimental impact on water quality and habitat in Willis Creek. The Willis Creek watershed is located approximately 20 km south of Princeton, BC The study area consists of a 4 km section of the Willis Creek valley and valley sides. **Comment:** Report Title: Willis Creek and Old Commander Road Rehabilitation Project. Percentage works completed is: 100 percent

Activity Term: Start date: 03-OCT-96 End date:

Habitat(s): Upslope

Location(s): Watershed; Willis Creek, tributary of Wolfe Creek which flows into the Similkameen River, is located approximately 20 km south of Princeton.

Project Name: Northwest Tulameen River Watershed Restoration

Description: Part of Forest Renewal British Columbia's Watershed Restoration Program, the Northwest Tulameen Watershed is located south of Merritt, BC and includes an area of approximately 42,500 ha. The study area is generally bounded by the Tulameen River and the Illal Creek to the south, Otter Creek to the east, Spearing Creek to the north, and the Coldwater River basin to the west. **Objective:** The objectives of this project are to rehabilitate and restore the watershed from past disturbances such as logging, mining and road construction.

Project Status: Active Start Date: 01-APR-95

Lead Proponent: Tolko Industries Limited

Activity: Restoration - Overview Assessment

Description: The Integrated Watershed Restoration Plan (IWRP) includes descriptions of the project's Sediment Source Survey, Stream Channel and Fish Habitat Assessment, and Access Management Plan, as well as a determination of Watershed Level Objectives.

Comment: Report Title: Northwest Tulameen River: Integrated Watershed Restoration Plan.

Percentage works completed is: uncertain

Activity Term: Start date: 31-MAR-98 End date:

Habitat(s): Riparian, Stream, Upslope

Location(s): Watershed; The Tulameen River, tributary to the Similkameen River, is located approximately 20 km west of Princeton.

Project Name: Old Arrastra Creek Watershed Restoration

Description: The Arrastra Creek Forest Service Road is located approximately 25 km west of Princeton, BC The area assessed consisted of approximately 1.3 km of the old Arrastra Creek Forestry Service Road.

Objective: The objectives of this project were to restore the watershed to some level of pre harvest activity. This may include reestablishing natural hydrology and drainage patterns, revegetation plans and rehabilitating gullies and landslides for reclamation and visual quality purposes. Activities, which may be undertaken in order to accomplish such restoration work, include road deactivation, road rehabilitation or bioengineering.

Project Status: Active Start Date: 01-APR-97

Lead Proponent: BC Ministry of Forests

Activity: Restoration - Upslope Restoration / Rehabilitation

Description: This report outlines road deactivation prescriptions conducted for the Old Arrastra Creek FSR area. Road deactivation prescriptions were developed for this area because of the need to reduce the potential delivery of sediment into Granite Creek and to stabilize existing sediment sources in order to protect fish and fish habitat in Granite Creek. The Arrastra Creek Forest Service Road is located approximately 25 km west of Princeton, BC The area assessed consisted of approximately 1.3 km of the old Arrastra Creek Forestry Service Road.

Comment: Report Title: Old Arrastra Creek Forestry Service Road. Percentage works completed is: 100 percent

Activity Term: Start date: 01-MAR-97 End date:

Habitat(s): Upslope

Location(s): Watershed; Arrastra Creek, tributary to Granite Creek which flows into the Tulameen River, is located approximately 25 km west of Princeton.

Activity: Restoration - Upslope Restoration / Rehabilitation

Description: This report summarizes the results of the equipment supervision carried out on Oct 10-12 for the slope failure on the Arrastra Creek forest service road near Princeton. The Arrastra Creek Forest Service Road is located approximately 25 km west of Princeton, BC The area assessed consisted of approximately 1.3 km of the old Arrastra Creek Forestry Service Road.

Comment: Report Title: Equipment Supervision for Slump on Arrastra Creek Forest Service Road at Blakeburn Bridge. Percentage works completed is: 100 percent

Activity Term: Start date: 30-OCT-96 End date:

Habitat(s): Upslope

Location(s): Watershed; Arrastra Creek, tributary to Granite Creek which flows into the Tulameen River, is located approximately 25 km west of Princeton.

Activity: Restoration - Upslope Restoration / Rehabilitation

Description: This report summarizes the results of field reconnaissance carried out on

September 30, 1996, of the slope failure on the Arrastra Creek Forest service road near Princeton. The failure is located on Arrastra Creek FSR at the east approach to the east approach of the bridge on Blakeburn Creek. The Arrastra Creek Forest Service Road is located approximately 25 km west of Princeton, BC The area assessed consisted of approximately 1.3 km of the old Arrastra Creek Forestry Service Road.

Comment: Report Title: Remedial Works for Slump on Arrastra Creek Forest Service Road at Blakeburn Bridge. Percentage works completed is: 100 percent

Activity Term: Start date: 09-OCT-96 End date:

Habitat(s): Upslope

Location(s): Watershed; Arrastra Creek, tributary to Granite Creek which flows into the Tulameen River, is located approximately 25 km west of Princeton.

Project Name: Tolko Multi-Year Plan 1998

Description: 1:20K Reconnaissance Fish and Fish Habitat Inventory, performed according to Resource Inventory Committee (RIC) standards

Objective: A sample based survey covering whole watersheds, providing information regarding fish species distributions, characteristics and relative abundance, and stream reach and lake biophysical characteristics.

Project Status: Active Start Date: 01-APR-98

Lead Proponent: Tolko Industries Limited

Activity: Inventory - 1:20000 Reconnaissance

Description: 1:20K Reconnaissance Fish and Fish Habitat Inventory

Activity Term: Start date: 01-APR-98 End date:

Habitat(s): Stream

Location(s): Main Stem + Tributaries; Britton Creek, Lawless Creek, Coates Creek tributary to Holding Creek, Blackeye Creek, Podunk Creek (including Chisholm and Cunningham Creek tribs), Packer Creek, Squakin Creek, Gellatly Creek, Otter Creek (including Manning, Myren, and Gulliford Creeks and other un-named tribs), tributary to Tulameen River, Allison Creek, tributary to Similkameen/Okanagan/Columbia Rivers, near Tulameen.

Project Name: Whipsaw, Smith and Willis Creek Watersheds 1:20K Reconnaissance Fish and Fish Habitat Inventory

Description: 1:20K Reconnaissance Fish and Fish Habitat Inventory, performed according to Resource Inventory Committee (RIC) standards

Objective: A sample based survey covering whole watersheds, providing information regarding fish species distributions, characteristics and relative abundance, and stream reach and lake biophysical characteristics.

Project Status: Active Start Date: 01-APR-99

Lead Proponent: Weyerhaeuser Canada Limited

Activity: Inventory - 1:20000 Reconnaissance

Description: 1:20K Reconnaissance Fish and Fish Habitat Inventory

Activity Term: Start date: 01-APR-99 End date:

Habitat(s): Stream

Location(s): Main Stem + Tributaries; Willis Creek, tributary to Wolfe Creek, Whipsaw Creek, tributary to Similkameen/Okanagan/Columbia Rivers, near Tulameen; Smith Creek, tributary to Tulameen river, tributary to Similkameen/Okanagan/Columbia Rivers, near Coalmont.

Project Name: Okanagan/Boundary/Similkameen Rivers-Barriers to Fish Passage (Phase 1)
Description: Identification of 186 potential obstructions to fish passage.
Project Status: Active Start Date: 01-OCT-99 End Date: 03-MAR-00
Lead Proponent: Okanagan Region Wildlife Heritage Fund Society
Activity: Assessment - Habitat Assessment
Description: Identification of 186 non-natural potential barriers to fish passage.
Activity Term: Start date: 01-OCT-99 End date: 03-MAR-00
Target Species: All species
Habitat(s): Stream
Location(s): Main Stem + Tributaries; Similkameen River, tributary to Okanagan/Columbia Rivers, near Princeton

Project Name: Okanagan Region Inventory of Non-natural Barriers to Fish Passage Description: 186 potential fish passage obstructions identified to date.
Project Status: Active Start Date: 01-OCT-99 End Date: 03-MAR-00
Lead Proponent: Okanagan Region Wildlife Heritage Fund Society
Activity: Other - General
Description: 186 potential fish passage obstructions identified to date.
Activity Term: Start date: 01-OCT-99 End date: 03-MAR-00
Habitat(s): Stream
Location(s): Main Stem + Tributaries; Similkameen River tributary to the Kettle/Columbia River near Osoyoos.

Project Name: Chain Lake Chemical Rehabilitation

Description: Chemical rehabilitation of Chain Lake to eradicate Finescale suckers and Peamouth Chub, which will enhance the Rainbow trout fishery.

Objective: To appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Active Start Date: 01-APR-81

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Enhancement - Other

Description: Chemical rehabilitation of Chain Lake to eradicate Finescale suckers and Peamouth Chub, which will enhance the Rainbow trout fishery.

Activity Term: Start date: 01-APR-81 End date:

Target Species: Rainbow Trout

Habitat(s): Lake

Location(s): Lake; Chain Lake, tributary to Hayes Creek, Similkameen/Okanagan/Columbia Rivers, west of Peachland.

Project Name: Allison Creek Fish Barrier Construction

Description: Construction of a coarse fish barrier to prevent the invasion of Bridgelip suckers, Longnose dace, and Torrent Sculpin in order to protect the productive Rainbow trout population. **Objective:** Protect the productive Rainbow trout population in Allison Creek as part of the Habitat Conservation Trust Fund's (HCTF) overall objective to appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Active Start Date: 01-APR-84

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Enhancement - Other

Description: Construction of a coarse fish barrier to prevent the invasion of Bridgelip suckers, Longnose dace, and Torrent Sculpin.

Activity Term: Start date: 01-APR-84 End date:

Target Species: Rainbow Trout, Sculpins (General), Suckers (General)

Habitat(s): Stream

Location(s): Main Stem of Stream; Allison Creek, tributary to Similkameen/Okanagan/Columbia Rivers, north of Princeton.

Project Name: Rampart Dam Construction

Description: Construct an earth-fill dam with overflow spillway to increase Rainbow trout production. Also, provide access into the lake to adult trout.

Objective: To appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Completed Start Date: 01-APR-89
Lead Proponent: BC Ministry of Environment Lands and Parks
Activity: Enhancement - Barrier Modification / Obstruction Removal
Description: Construct an earth-fill dam with overflow spillway to increase Rainbow trout production. Also, provide access into the lake to adult trout.
Activity Term: Start date: 01-APR-89 End date:
Target Species: Rainbow Trout
Location(s): Lake; Rampart Lake tributary to Dry/Summers/Allison Creeks and Similkameen/Okanagan/Columbia.

Trepanier Creek

Trepanier Creek is considered to be a fourth order stream. It measures 28.3 km in length, and flows from the west to Okanagan Lake. Its confluence with Okanagan Lake is located just north of Peachland, BC.

Burbot, kokanee, prickly sculpin, rainbow trout, and suckers are fish species known to be present in Trepanier Creek. Rainbow trout at the eyed egg and fingerling life stage cycles have been stocked in Trepanier Creek by the Summerland Hatchery.

Reach break description	Reach 1	Reach 2	Reach 3
Attribute Considered			
Water Quality			
Dissolved Oxygen	DG		
Stream Temperature	DG		
Turbidity/Suspended Sediment	DG		
Nutrient Loading	DG		
In Channel Habitat			
Fine Sediment (substrate)			
Large Woody Debris	DG		
Percent Pool	P1		
<u><</u> 2%			
2-5%			
>5%			
Habitat Access			
Fish Passage	P1		
Stream Flow			
Resembles Natural Hydrograph	P1		
Impervious Surface	DG		
Stream Corridor			
Riparian Vegetation	DG		
Stream Bank Stability			
Floodplain Connectivity			

Table 47: Trepanier Creek Limiting Factors Matrix

Only 1.3 km of this stream is accessible to migratory trout and kokanee due to the presence of a series of bedrock and boulder chutes which culminate in a 12 m vertical irrigation dam. Approximately 75 percent of the total stream length downstream of the irrigation dam has been channelized. This channelization has reduced availability of holding pools for adult trout, and reduced the diversity of rearing niches for juveniles. Due to channelization of the lower reaches of this stream, spawning gravel for trout and kokanee have almost totally disappeared due to washout during spring freshets. The best rearing habitat is presently located in the first 100 m downstream of a series of cascades and chutes. Falls located approximately 3.2 km upstream of the confluence with Okanagan Lake are considered a barrier to the upstream migration of resident fish.

Urban development has significantly impacted Trepanier Creek. The stream has a critical water shortage problem that impedes its ability to meet fish production needs. Flows are restricted by Peachland District water use. There have been extended periods of time when the lower reaches of this system have dried up completely. If the low flow situation can be resolved satisfactorily, there is a site in the lower reaches of this stream where a small freshet-protected side channel might be constructed to provide a spawning refuge for the remaining kokanee attempting to persist in this stream.

The most notable industrial development in Trepanier Creek's headwaters is Brenda Mine. The water treatment plant constructed by the Noranda/Brenda Mines group has worked well in removing molybdenum from water collecting in an open pit. Release of treated water at low-flow periods in both the summer and winter could be highly beneficial to downstream fish stocks.

Although Trepanier Creek appears to support comparatively high production of trout and kokanee, additional licenses water withdrawal and periodic flood control measures resulting in channelization in its lower reaches threaten to reduce present level of recruitment to Okanagan Lake. An agreement with the District of Peachland and Brenda mines that would address the collective needs of all water users and fisheries requirements on both Trepanier and Peachland Creeks would be beneficial.

Projects Undertaken

Placement of spawning gravel for kokanee was conducted in the lower 1.1 km of Trepanier Creek. Kokanee habitat in Trepanier Creek is considered sensitive and must be protected.

Other fish and fish habitat projects undertaken in the watershed include:

Project Name: Trepanier Creek Watershed Restoration Project

Description: Trepanier Creek watershed has an area of 255 sq. km. The watershed ranges in elevation from 342 m at Okanagan Lake to a max of 1,900 m at Mt Gottfriedsen. 60 percent of the watershed is above the 1,160 m elevation. The watershed is located on the eastern edge of the Thompson Highland physiographic division. Trepanier Creek watershed is a designated community watershed.

Objective: The focus of the Forest Renewal BC Watershed Restoration Program and this project is to accelerate the recovery of watersheds that have been adversely affected by resources extraction, particularly with respect to forestry.

Project Status: Active Start Date: 01-APR-98

Lead Proponent: Gorman Brothers Lumber Limited Activity: Restoration - Assessment & Planning **Description:** This activity provides final watershed assessment committee recommendations. It also describes current watershed conditions, a risk assessment of proposed forest development, and conclusions regarding future watershed activity. Activity # 105256

Comment: Report Title: Watershed Assessment Report for the Trepanier Creek Watershed **Activity Term:** Start date: 03-DEC-98 End date:

Habitat(s): Upslope

Location(s): Watershed; Located within the Penticton Forest District.

Project Name: Peachland Creek and Trepanier Creek Watershed Restoration

Description: The Peachland and Trepanier Creeks lie within two adjacent watersheds and are located on the west side of Okanagan Lake by Peachland, BC. The Peachland Creek watershed is 14,150 ha in size and drains into Okanagan Lake approximately 3 km SW of Peachland. The Trepanier Creek watershed is 25,990 ha in size and also drains into Okanagan Lake at the North end of Peachland. There are approximately 543 km of roads in the watersheds. Both creeks flow approximately 25 km in an easterly direction from their headwaters to their confluences. Urbanization and agriculture occur along the lower 3 km of both watersheds. The Brenda Mine is located near the headwaters of both watersheds are currently under forest licenses to Riverside Forest Products Limited, Gorman Brothers Lumber Ltd. and the Small Business Forest Enterprise Program.

Objective: This watershed will be assessed to determine what work will need to be completed in order to restore the areas that were damaged by past activities, such as logging.

Project Status: Active Start Date: 01-APR-96

Lead Proponent: District of Peachland

Activity: Restoration - Overview Assessment

Description: The purpose of the Integrated Watershed Restoration Plan (IWRP) activity is to integrate the results of the Sediment Source Survey, Access Management Strategy, Fish Habitat Assessment Procedure and Interior Watershed Assessment Procedure (IWAP) to recommend an action plan for the prescription phase. The IWRP incorporates the results of the watershed-level and project planning objectives, as well as summarizing the existing conditions in the watershed and identifying significant problems associated with the roads and streams. It also provides a cost estimate and work schedule to complete prescription work. This procedure was completed within these watershed.

Comment: Report Title: Integrated Watershed Restoration Plan for the Peachland Creek & Trepanier Creek Watersheds Vol. 1 of 5 Percentage of Work Completed: Uncertain Informal Monitoring in Progress

Activity Term: Start date: 01-FEB-98 End date:

Habitat(s): Upslope

Location(s): Watershed; Trepanier Creek, tributary to Okanagan Lake. Located just North of Peachland.

Activity: Restoration - Overview Assessment

Description: This activity outlines the results of the overview Sediment Source Survey work carried out as part of phase two of the Integrated Watershed Restoration Plan on the Peachland/ Trepanier watersheds.

Comment: Report Title: Sediment Source Survey Report for Peachland Creek & Trepanier Creek Watersheds Vol. 2 of 5 Percentage of Work Completed: N/A Informal Monitoring in Progress **Activity Term:** Start date: 01-FEB-98 End date:

Habitat(s): Riparian, Stream, Upslope

Location(s): Watershed; Trepanier Creek, tributary to Okanagan Lake. Located just North of Peachland.

Activity: Restoration - Overview Assessment

Description: Report type - Fish Habitat Assessment: This report contains an introduction to the study area with description, methodology section, extensive results and discussion section including fish habitat assessment and fish distribution assessment for both watersheds and a final recommendations section detailing each watershed. There are photos and many maps available.

Comment: Report title: Peachland/Trepanier Creek Watershed- Fisheries Habitat Assessment Procedure 1996 Percentage of Work Completed: N/A Informal Monitoring in Progress Activity Term: Start date: 29 MAX 97 End date:

Activity Term: Start date: 29-MAY-97 End date:

Habitat(s): Stream

Location(s): Main Stem + Tributaries; Trepanier Creek, tributary to Okanagan Lake. Located just North of Peachland.

Activity: Restoration - Overview Assessment

Description: Report type - Level 1 Coastal or Interior Watershed Assessment Procedure (CWAP or IWAP): This report contains an introduction and description, methods, results, conclusions and recommendations for both of the watersheds based on the assessment. There are many tables and appendices including Watershed Assessment Procedure Details, IWAP Report Cards and IWAP forms 1 to 9. There are maps that accompany the report in a separate tube.

Comment: Report title: Interior Watershed Assessment for the Peachland & Trepanier Creek Watersheds Vol. 5 of 5 Percentage of Work Completed: N/A Informal Monitoring in Progress Activity Term: Start date: 01-SEP-97 End date:

Habitat(s): Stream

Location(s): Main Stem + Tributaries; Trepanier Creek, tributary to Okanagan Lake. Located just North of Peachland.

Activity: Restoration - Overview Assessment

Description: Report type - Terrain Stability: This report contains sections with an introduction, methods, site description, surficial materials and associated landforms, active geomorphological processes and a discussion of terrain hazards. There is a 1:125,000 scale map and several photos that accompany the report.

Comment: Report title : Peachland and Trepanier Creek Stability Mapping Percentage of Work Completed: N/A Works done in 1998 and some informal monitoring in progress

Activity Term: Start date: 22-JAN-99 End date:

Habitat(s): Upslope

Location(s): Main Stem + Tributaries; Trepanier Creek, tributary to Okanagan Lake. Located just North of Peachland.

Project Name: Trout Creek Watershed Restoration Project

Description: Trout Creek watershed drains the Thompson Plateau on the west side of Okanagan Lake near Summerland. It encompasses an area of approx. 752 km with elevations ranging from 342 m to 1750 m. Timber harvesting has been carried out over the past 60 years.

Objective: The objectives of this project are to protect, restore and rehabilitate fisheries, aquatic and forest resources that have been adversely impacted by past disturbances such as logging, mining and road construction within this watershed.

Project Status: Active Start Date: 01-APR-98

Lead Proponent: Gorman Brothers Lumber Limited

Activity: Restoration - Overview Assessment

Description: Report type - Level 1 Coastal or Interior Watershed Assessment Procedure (CWAP or IWAP): This report contains the final watershed assessment committee recommendations. It also contains a section on current watershed conditions, risk assessment of proposed forest development and conclusions and recommendations. There are appendices containing Trepanier Creek and Trepanier Tributary Channels field forms and photos. Activity # 105256

Comment: Report title: Watershed Assessment Report for the Trepanier Creek Watershed Percentage of Work Completed: N/A Informal monitoring in progress

Activity Term: Start date: 03-DEC-98 End date:

Habitat(s): Stream

Location(s): Main Stem + Tributaries; Trepanier Creek, tributary to Okanagan Lake. Located near Peachland.

Project Name: Nicola/Similkameen/Okanagan River Reconnaissance (1:20 000) Fish and Fish Habitat Inventory

Description: 1:20K Reconnaissance Fish and Fish Habitat Inventory, performed according to Resource Inventory Committee (RIC) standards

Objective: A sample based survey covering whole watersheds, providing information regarding fish species distributions, characteristics and relative abundance, and stream reach and lake biophysical characteristics.

Project Status: Active Start Date: 01-APR-96

Lead Proponent: Gorman Brothers Lumber Limited

Activity: Inventory - 1:20000 Reconnaissance

Description: 1:20K Reconnaissance Fish and Fish Habitat Inventory

Activity Term: Start date: 01-APR-99 End date:

Location(s): Main Stem + Tributaries; Trepanier Creek (including tributaries MacDonald/Jack Creeks), tributary to Okanagan Lake/Okanagan/Columbia Rivers, near Peachland.

Project Name: Trepanier Creek Watershed Stewardship Action Plan
Description: Stewardship/community planning; partnerships built with 11 groups/organizations.
Project Status: Active Start Date: 01-FEB-99 End Date: 31-MAR-00
Lead Proponent: Trepanier Creek Linear Park Society
Activity: Other - General
Description: Stewardship/community planning; partnerships built with 11 groups/organizations.
Activity Term: Start date: 01-FEB-99 End date: 31-MAR-00
Habitat(s): Stream
Location(s): Main Stem + Tributaries; Trepanier Creek tributary to Okanagan
Lake/Okanagan/Columbia River near Peachland.

Project Name: Trepanier Creek Spawning Channel: Watershed Concerns

Description: Preliminary evaluation of a proposed spawning channel. Developed recommendations for four issues (low flows; sedimentation from the Macdonald Creek landslide; municipal issues and public/input stewardship) that may have an impact on the proposed spawning channel and fish habitat. **Project Status:** Active **Start Date:** 01-SEP-99 **End Date:** 15-DEC-99

Lead Proponent: Trepanier Creek Linear Park Society

Activity: Restoration - Assessment & Planning

Description: A preliminary engineering evaluation of proposed spawning channel was completed. This evaluation will lead to stewardship and community planning regarding the following issues: low flows, sedimentation from the MacDonald landslide and municipal issues, all which would impact the proposed channel.

Activity Term: Start date: 01-SEP-99 End date: 15-DEC-99

Location(s):

Location(s): Main Stem of Stream; Trepanier Creek, tributary to Kootenay Lake, Kootenay/Columbia Rivers, near Peachland.

Project Name: Trepanier Ditch Upgrade

Description: The Trepanier ditch water system upgraded to a pressurized system to contribute to upgrading the multi-user ditch system.

Objective: To appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Active Start Date: 01-APR-88

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Enhancement - Water Quality

Description: Upgrade the Trepanier ditch water system to a pressurized system to contribute to upgrading the multi-user ditch system.

Activity Term: Start date: 01-APR-88 End date:

Target Species: Kokanee

Habitat(s): Stream

Location(s): Main Stem of Stream; Trepanier Creek (alias Trepanier Ditch), tributary to Okanagan Lake, Okanagan/Columbia Rivers, near Peachland.

Trout Creek

Trout Creek is a fourth order stream that measures 80.1 km in length. This system flows from the west, and enters Okanagan Lake just south of Summerland, BC. The watershed area is approximately 150,000 hectares, and is very dry due to limited summer rainfall.

The Trout Creek watershed has been extensively altered by agriculture, urban development, and timber harvesting. This alteration has resulted in varying degrees of degradation, ranging from partial habitat degradation to complete elimination.

The watershed is located in several Biogeoclimatic zones that range from Engelman spruce and subalpine fir at the headwaters to Montane spruce, Interior Douglas-Fir to ponderosa pine and bunch grass at Okanagan Lake.

Agricultural and rangeland activities occur throughout the watershed, as do logging activities.

Fish species present in Trout Creek include brook trout, kokanee, largescale sucker, longnose dace, mountain whitefish, peamouth chub, prickly dculpin, and rainbow trout. The Summerland Hatchery has also stocked Trout Creek with brook trout at the eyed egg life cycle stage.

Reach break description	Reach 1	Reach 2	Reach 3
Attribute Considered			
Water Quality			
Dissolved Oxygen	DG		
Stream Temperature	DG		
Turbidity/Suspended Sediment	P1		
Nutrient Loading	DG		
In Channel Habitat			
Fine Sediment (substrate)	P1		
Large Woody Debris	DG		
Percent Pool	DG		

Table 48: Trout Creek Limiting Factors Matrix

Reach break description	Reach 1	Reach 2	Reach 3
Attribute Considered			
<u>< 2%</u> 2-5%			
>5%			
Habitat Access			
Fish Passage	P1		
Stream Flow			
Resembles Natural Hydrograph	P1		
Impervious Surface	DG		
Stream Corridor			
Riparian Vegetation	DG		
Stream Bank Stability	DG		
Floodplain Connectivity	P1		

Habitat does not appear to be conducive to kokanee production, primarily because the substrate is predominately large and heavily silted. Most kokanee spawning associated with Trout Creek occurs at or near the mouth of the stream.

Water clarity in lower Trout Creek is affected by high levels of suspended solids entering the stream via a large slide located nearly 4.4 km upstream of the confluence with Okanagan Lake. This major slide zone along the creek requires stabilization.

The elevation range of Trout Creek is from 342 m at the confluence to over 1920 m at the headwaters. A 2.5 m high falls and canyon located approximately 2.4 km upstream of the confluence with Okanagan Lake prevents upstream migration of kokanee. Downstream of the canyon the stream has been subjected to severe channelization and bank armoring for flood control. This practice has largely destroyed residual habitat qualities associated with trout and kokanee production.

A series of dams constructed on Trout Creek also represent fish migration barriers. Approximately 2 km upstream of Okanagan Lake a low-head irrigation diversion dam spans the stream at the lower extremity of the Trout Creek Canyon. This dam is about 2.0 - 2.2 m in height. It is likely passable to larger trout in the spring, but a complete barrier to kokanee in the fall. Approximately 0.8 km upstream of the first diversion dam (and still located within the canyon) is a natural obstruction reported to be just over 2 m in height. Another diversion and reservoir dam constructed and operated by Summerland Irrigation District to provide the town of Summerland with ample water supply is located 14 km upstream of Okanagan Lake.

Stream flows in Trout Creek are very low. Fish will likely get trapped in the flats and perish as the water flow continues to recede. There is a channel that diverts Trout Creek water to a reservoir that is used as water supply for the town of Summerland.

Projects undertaken

A Water Survey of Canada station collects water quality and quantity data for Trout Creek.

In 1995 a Trout Creek watershed restoration project was undertaken by the District of Summerland through Forest Renewal BC in conjunction with several other groups and agencies. Potential habitat restoration options for the most affected reaches of Trout Creek included re-establishment of a meandering stream channel, installation of in-stream structures to replace lost features, excavation of a new flow channel to replace lost habitat while retaining existing channel for flood control purposes, and the creation of a groundwater fed spawning channel for kokanee. Protection of spawning habitat should be made a priority in this watershed.

The mainstem and many lakes throughout the watershed provide recreational sites.

Other fish and fish habitat projects undertaken in the watershed include:

Project Name: Trout & Eneas Creek Watershed Restoration

Description: The Trout Creek watershed drains the Thompson Plateau on the west side of Okanagan Lake near Summerland. The watershed is 744 sq. km in size and ranges from 342 m to 1920 m. **Objective:** This watershed will be assessed to determine what work will need to be completed in order to restore the areas that were damaged by past activities, such as logging.

Project Status: Active Start Date: 01-APR-96

Lead Proponent: District of Summerland

Activity: Restoration - Overview Assessment

Description: For this activity an Interior Watershed Assessment Procedure (IWAP) was conducted, assessing the entire watershed including roads, gullies and streams. The current watershed conditions were detailed and recommendations were made based on the assessment as to what work should be completed in the future to restore the watershed.

Comment: Report Title: Interior Watershed Assessment for the Trout Creek Watershed Percentage of Work Completed: None Informal Monitoring in Progress

Activity Term: Start date: 01-JUL-96 End date:

Habitat(s): Upslope

Location(s): Watershed; Trout Creek, tributary to Okanagan Lake. Located ~ 20-30 km North of Penticton.

Activity: Restoration - Overview Assessment

Description: For this activity an Integrated Watershed Restoration Plan was conducted. The objectives were defined and a summary of findings and recommendations were issued. It contains a Fish Habitat Assessment Procedure, Sediment Source Survey and Access Management Map. **Comment:** Report Title: Trout and Eneas Creek Integrated Watershed Restoration Plan Percentage of

Work Completed: None Informal Monitoring in Progress

Activity Term: Start date: 01-MAR-98 End date:

Habitat(s): Upslope

Location(s): Watershed; Trout Creek, tributary to Okanagan Lake. Located ~20-30 km North of Penticton.

Project Name: Trout Creek Watershed Restoration Project

Description: Trout Creek watershed drains the Thompson Plateau on the west side of Okanagan Lake near Summerland. It encompasses an area of approx. 752 km with elevations ranging from 342 m to 1750 m. Timber harvesting has been carried out over the past 60 years.

Objective: The objectives of this project are to protect, restore and rehabilitate fisheries, aquatic and forest resources that have been adversely impacted by past disturbances such as logging, mining and road construction within this watershed.

Project Status: Active Start Date: 01-APR-98

Lead Proponent: Gorman Brothers Lumber Limited

Activity: Restoration - Overview Assessment

Description: An Interior Watershed Assessment Procedure for Trout Creek Watershed was conducted. The activity report includes: Introduction, key watershed assessment issues, watershed characteristics, methods, results of office analysis, results of past assessments and reports, risk of future forest development, conclusions and recommendations. These are the final watershed assessment committee recommendations. Appendices include: Maps, Equivalent Cut Area (ECA) Tables, and meeting minutes.

Comment: Report Title: Interior Watershed Assessment Procedure for Trout Creek Watershed (Update Report) Percentage of Work Completed: N/A Works done in 1998 and 1999 and some informal monitoring in progress

Activity Term: Start date: 01-DEC-98 End date:

Habitat(s): Stream

Location(s): Watershed; Trout Creek, tributary to the Okanagan River. Located in Summerland. **Activity:** Restoration - Detailed Assessments and Prescriptions

Description: This activity produced prescriptions for the priority sites noted in contract # DPE-WRP-98-GORMANS-1 in the Trout Creek Watershed. Appendices include: Location maps, table 1's, and keys to codes in tables.

Comment: Report Title: Major Works Prescriptions for Priority Sites in Trout Creek Watershed Percentage of Work Completed: Uncertain Informal monitoring in progress

Activity Term: Start date: 01-SEP-98 End date:

Habitat(s): Upslope

Location(s): Watershed; Trout Creek, tributary to the Okanagan River. Located in Summerland. **Activity:** Restoration - Upslope Restoration / Rehabilitation

Description: Road deactivation work was undertaken in the Trout Creek watershed. The objective of the work is to minimize the risk of sediment transport and surface erosion from the selected road. Appendices of activity report include: Location Map, equipment supervision summary and photo documentation.

Comment: Report Title: Results of Road Deactivation for Priority Sites in Trout Creek Watershed Percentage of Work Completed: Uncertain Informal monitoring in progress

Activity Term: Start date: 01-DEC-98 End date:

Habitat(s): Upslope

Location(s): Watershed; Trout Creek, tributary to the Okanagan River. Located in Summerland. **Activity:** Restoration - Effectiveness Monitoring & Evaluation

Description: Report type - Monitoring & Evaluation-In Stream: The primary goal of the 1996 water quality program was to establish benchmark data at four locations to determine current water quality conditions. The report contains: Objectives, Methods, Results (Water temp., Apparent Color, Turbidity, Phosphate, Nitrate, Ammonia, Conductivity, Hardness, pH, Coliform, Discharge), and

Recommendations/Conclusions.

Comment: Report title: Water Quality Monitoring Program for the Trout Creek Watershed Percentage of Work Completed: N/A

Activity Term: Start date: 01-OCT-96 End date:

Habitat(s): Stream

Location(s): Main Stem + Tributaries; Trout Creek, tributary to the Okanagan River. Located in Summerland.

Activity: Restoration - Detailed Assessments and Prescriptions

Description: This report contains a general introduction, Isintok Creek subbasin section,

Eastmere/Spring Creek Small Business Forest Enterprise Program (SBFEP) chart area, Glen Lake SBFEP chart area, Gorman Bros. Operating area, sediment source survey site #10 and summary and recommendations. There are photos in the report and several maps.

Comment: Report Title: Trout Creek Field Prescription and Implementation Monitoring Report Percentage of Work Completed: Uncertain Informal Monitoring in Progress Activity Term: Start date: 01-DEC-98 End date: Habitat(s): Upslope Location(s): Watershed; Trout Creek, tributary to the Okanagan River. Located in Summerland.

Project Name: Nicola/Similkameen/Okanagan River Reconnaissance (1:20 000) Fish and Fish Habitat Inventory

Description: 1:20K Reconnaissance Fish and Fish Habitat Inventory, performed according to Resource Inventory Committee (RIC) standards

Objective: A sample based survey covering whole watersheds, providing information regarding fish species distributions, characteristics and relative abundance, and stream reach and lake biophysical characteristics.

Project Status: Active Start Date: 01-APR-96

Lead Proponent: Gorman Brothers Lumber Limited

Activity: Inventory - 1:20000 Reconnaissance

Description: 1:20K Reconnaissance Fish and Fish Habitat Inventory

Activity Term: Start date: 01-APR-99 End date:

Location(s): Main Stem + Tributaries; Trout Creek (including tributaries

Darke/Liddel/Isintok/Bearpaw/Lost Chain/Rowley/Thirsk/Fenton/Bull/Kirton/Camp/Kathleen Creeks), tributary to Okanagan Lake/Okanagan/Columbia Rivers, south of Summerland.

Project Name: Trout Creek Intake Fish Screen

Description: Design, construction, installation and maintenance of a self cleaning fish screen, located immediately downstream of the diversion intake into the municipal water system.

Objective: Reduce fish mortalities.

Project Status: Active Start Date: 01-AUG-99 End Date: 31-MAY-00

Lead Proponent: District of Summerland

Activity: Restoration - Restore Fish Passage

Description: Design, construction, installation and maintenance of a self cleaning fish screen, located immediately downstream of the diversion intake into the municipal water system.

Activity Term: Start date: 01-AUG-99 End date: 31-MAY-00

Target Species: All species

Habitat(s): Stream

Location(s): Main Stem of Stream; Trout Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, near Summerland.

Vaseux Creek

Vaseux Creek flows directly to Okanagan Lake from the east. It is a fourth order stream that measures 34.8 km in length.

Fish species known to be present in Vaseux Creek include bridgelip sucker, longnose dace, mountain whitefish, prickly sculpin, rainbow trout, and sockeye salmon.

Reach break description	Reach 1	Reach 2	Reach 3
		Canyon at 3km	Falls at 5.5km u/s
Attribute Considered	Alluvial fan	u/s of confluence	of confluence
Water Quality			
Dissolved Oxygen	DG	DG	DG
Stream Temperature	P2	DG	DG

Table 49: Vaseux Creek Limiting Factors Matrix

Okanogan/Similkameen Subbasin Summary 328

Reach break description	Reach 1	Reach 2	Reach 3
		Canyon at 3km	Falls at 5.5km u/s
Attribute Considered	Alluvial fan	u/s of confluence	of confluence
Turbidity/Suspended Sediment	P1	DG	DG
Nutrient Loading	DG	DG	DG
In Channel Habitat			
Fine Sediment (substrate)	DG	DG	DG
Large Woody Debris	P2	DG	DG
Percent Pool <u><</u> 2% 2-5% >5%	DG	DG	DG
Habitat Access			
Fish Passage	P2	DG	DG
Stream Flow			
Resembles Natural Hydrograph	P2	DG	DG
Impervious Surface	DG	DG	DG
Stream Corridor			
Riparian Vegetation	P2	F2	G2
Stream Bank Stability	F2	DG	DG
Floodplain Connectivity	P2	DG	DG

Gravel beds present are considered to be suitable for trout spawning. However, water quality as well as quantity are issues in Vaseux Creek. The ephemeral nature of the stream would limit fish access and may strand emerging fry.

The riparian condition is poor in the lower reaches of the stream. During sudden flash flood events debris is washed into the stream and transported downstream to lower accessible reaches, limiting fish use. A flume dam has been constructed on this creek, exacerbating conditions during flash flood events. Riparian condition upstream of this point is unknown at this time.

A series of falls and pools are located approximately 5.8 km upstream of the confluence to Okanagan Lake. One fall is 2 m and the other is 2.6 m in height. Fish would have difficulty mounting these falls, thus limiting upstream migration.

Projects Undertaken

Extensive electrofishing has been conducted in Vaseux Creek for fish population assessment purposes.

Other fish and fish habitat projects undertaken in the watershed include:

Project Name: Hedley / McNulty / Cahill / Winters Creek Watershed Restoration **Description:** Part of Forest Renewal British Columbia's Watershed Restoration Program, the study area contains the Hedley / McNulty Creek Watershed, the Cahill Creek Watershed and Winters Creek Watershed that together have an area of about 600 sq. km. The study area is located on the Thompson Plateau northeast of the town of Hedley, and north of the Similkameen River valley and Highway 3 between Princeton and Keremeos in southern BC

Objective: The objectives of this project are to rehabilitate and restore the watershed from past disturbances such as logging, mining and road construction.

Project Status: Active Start Date: 01-APR-95

Lead Proponent: Weyerhaeuser Canada Limited

Activity: Restoration - Overview Assessment

Description: This report includes: Introduction, overview, objectives, methodology, results and conclusions. The objective of the Access Management Strategies (AMS) is to propose changes to the road system that will reduce the risk of environmental damage, particularly sediment delivery to streams while still maintaining the access into the watershed for the various stakeholders and watershed users. Appendices include: Definition of Road Deactivation Levels, Stakeholders and Resource Users Contact list and Comments, Land Tenure and Permit Status List and Maps. **Comment:** Report Title: Access Management Strategies (AMS) for Shuttleworth and Vaseux Creek Watersheds (Vol. 3 of 5) Percentage of Work Completed: N/A Informal Monitoring in progress

Activity Term: Start date: 01-FEB-98 End date:

Habitat(s): Upslope

Location(s): Watershed; Vaseux Creek, tributary to the Okanagan Lake. Located just North of Oliver. Activity: Restoration - Overview Assessment

Description: This report includes: Introduction, types of overview assessments conducted, summary of existing watershed conditions, prescription phase of the Interior Watershed Restoration Plan (IWRP), problems requiring prescription work, priority list, time and cost estimates, and recommendations. Appendices include an overview map and timing of prescription work.

Comment: Report Title: Integrated Watershed Restoration Plan (IWRP) for Shuttleworth and Vaseux

Creek Watersheds (Vol. 1 of 5) Percentage of Work Completed: Uncertain Informal Monitoring in progress

Activity Term: Start date: 01-FEB-98 End date:

Habitat(s): Stream, Upslope

Location(s): Watershed; Vaseux Creek, tributary to the Okanagan Lake. Located just North of Oliver. Activity: Restoration - Overview Assessment

Description: Both watersheds located in the Okanagan highlands region southeast of Okanagan and Vaseux Lakes cover 379 sq. km. This report includes: Introduction, methods, watershed characteristics, results, conclusions and recommendations. Appendices include: Watershed Assessment Procedure Details, Interior Watershed Assessment Procedure (IWAP) Report Cards,

IWAP Forms, and Roundtable Meeting Minutes. Maps are available in separate map tubes.

Comment: Report Title: Interior Watershed Assessment for Shuttleworth Creek and Vaseux Creek Watersheds (Vol. 5 of 5) Percentage of Work Completed: N/A Informal Monitoring in progress **Activity Term:** Start date: 01-FEB-98 End date:

Habitat(s): Upslope

Location(s): Watershed; Vaseux Creek, tributary to the Okanagan Lake. Located just North of Oliver. Activity: Restoration - Overview Assessment

Description: The objective of this report was to identify all unstable or potentially unstable land areas at a mapping scale of 1:20,000 for the total watershed area of 37,767 ha. The report discusses methods and results of the terrain stability mapping which involved a Terrain Survey Intensity Level D Analysis and an assessment of the potential effects of conventional forest harvesting on terrain stability. Photo documentation is also available.

Comment: Report Title: Reconnaissance Terrain Stability Mapping of Vaseux Creek and Shuttleworth Creek Watersheds Percentage of Work Completed: N/A Informal Monitoring in progress

Activity Term: Start date: 01-MAR-99 End date:

Habitat(s): Upslope

Location(s): Watershed; Vaseux Creek, tributary to the Okanagan Lake. Located just North of Oliver. Activity: Restoration - Overview Assessment

Description: The main objectives of this Sediment Source Survey (SSS) were: To review all roads corridors, hillslopes and gullies within both watersheds, to determine eligibility for restoration funding, to identify and inventory sites of road related mass wasting/surface erosion/stream sedimentation hazards and to confirm priority areas for future prescription work. The report includes: Introduction, objectives, methodology, assessment results, planning and scheduling for prescription phase, conclusions and recommendations.

Comment: Report Title: Sediment Source Survey (SSS) Report for Shuttleworth and Vaseux Creek Watershed (Vol. 2 of 5) Percentage of Work Completed: N/A Informal Monitoring in progress **Activity Term:** Start date: 01-FEB-98 End date:

Habitat(s): Upslope

Location(s): Watershed; Vaseux Creek, tributary to the Okanagan Lake. Located just North of Oliver. **Activity:** Restoration - Detailed Assessments and Prescriptions

Description: This report contains the prescriptions for the priority sites noted in Contract #98-WRP-Prescriptions for the Penticton, Shuttleworth, and Vaseux Watersheds. Also included are the prescriptions for Priority site `S11` and Road #1603.

Comment: Report Title: Upslope Prescriptions for the Priority Sites in the Penticton Creek, Shuttleworth Creek and Vaseux Creek Watersheds. Percentage of Work Completed: Uncertain Works done in 1999 and some informal monitoring in progress

Activity Term: Start date: 01-SEP-98 End date:

Habitat(s): Upslope

Location(s): Watershed; Vaseux Creek, tributary to the Okanagan Lake. Located just North of Oliver. Activity: Restoration - Overview Assessment

Description: The study area is located approx. 10 km south of Penticton where it drains into the Okanagan River. The report includes: Background information, methodology, results and discussion, and recommendations. Appendices include: fish distribution forms, habitat condition data forms, preliminary habitat forms and many maps. A short section of photos is also included.

Comment: Report Title: Vaseux Creek Watershed Fisheries Habitat Assessment Procedure

Percentage of Work Completed: N/A Informal Monitoring in progress

Activity Term: Start date: 01-MAY-97 End date:

Habitat(s): Stream

Location(s): Watershed; Vaseux Creek, tributary to the Okanagan Lake. Located just North of Oliver.

Project Name: Weyerhaeuser-OK Falls Div.-Multi-Year Plan (1998) 1:20K Reconnaissance Fish and Fish Habitat Inventory

Description: 1:20K Reconnaissance Fish and Fish Habitat Inventory, performed according to Resource Inventory Committee (RIC) standards

Objective: A sample based survey covering whole watersheds, providing information regarding fish species distributions, characteristics and relative abundance, and stream reach and lake biophysical characteristics.

Project Status: Active Start Date: 01-APR-98

Lead Proponent: Weyerhaeuser Canada Limited

Activity: Inventory - 1:20000 Reconnaissance

Description: 1:20K Reconnaissance Fish and Fish Habitat Inventory

Activity Term: Start date: 01-APR-98 End date:

Habitat(s): Stream

Location(s): Main Stem + Tributaries; Un-named creek (alias Angel Creek), WS Code: 310-522400-66300, tributary to Vaseux Creek, tributary to Okanagan/Columbia Rivers, near Okanagan Falls;

Dutton Creek, tributary to Vaseux Creek, tributary to Okanagan/Columbia Rivers, near Okanagan Falls; McIntyre Creek, tributary to Vaseux Creek, tributary to Okanagan/Columbia Rivers, near Okanagan Falls; Solco Creek, tributary to Vaseux Creek, tributary to Okanagan/Columbia Rivers, near Okanagan Falls; Underdown Creek, tributary to Vaseux Creek, tributary to Okanagan/Columbia Rivers, near Okanagan Falls; Underdown Creek, tributary to Vaseux Creek, tributary to Okanagan/Columbia Rivers, near Okanagan Falls; Underdown Creek, tributary to Vaseux Creek, tributary to Okanagan/Columbia Rivers, near Okanagan Falls; Underdown Creek, tributary to Vaseux Creek, tributary to Okanagan/Columbia Rivers, near Okanagan Falls.

Project Name: Okanagan Falls Reconnaissance (1:20,000) Stream Inventory

Description: 1:20K Reconnaissance Fish and Fish Habitat Inventory, performed according to Resource Inventory Committee (RIC) standards

Objective: A sample based survey covering whole watersheds, providing information regarding fish species distributions, characteristics and relative abundance, and stream reach and lake biophysical characteristics

Project Status: Active Start Date: 01-APR-97

Lead Proponent: Weyerhaeuser Canada Limited

Activity: Inventory - 1:20000 Reconnaissance

Description: 1:20K Reconnaissance Fish and Fish Habitat Inventory

Activity Term: Start date: 01-APR-97 End date:

Location(s): Main Stem + Tributaries; Unnamed Creek (alias Angel Creek), WS Code: 310-444700-66300, tributary to Vaseux Creek, Okanagan/Columbia Rivers, near Oliver; Dutton Creek, tributary to Vaseux Creek, Okanagan/Columbia Rivers, near Oliver; McIntyre Creek, tributary to Vaseux Creek, Okanagan/Columbia Rivers, near Oliver; Solco Creek, tributary to Vaseux Creek, Okanagan/Columbia Rivers, near Oliver; Underdown Creek, tributary to Vaseux Creek,

Okanagan/Columbia Rivers, near Oliver.

Vernon Creek

Vernon Creek enters Okanagan Lake west and slightly south of Vernon city limits. It is a fifth order stream that measures 36.1 km in length. The stream drains through a series of lakes, and is the principal outlet of Kalamalka Lake. The system can be readily divided into two distinct reaches or zones with the separating boundary located at Polson Park in downtown Vernon.

Agricultural and rangeland activities occur throughout the watershed, and include ranches located in the Winfield area.

Known fish present in Vernon Creek includes burbot, carp, kokanee, northern pikeminnow (formerly n. squawfish), prickly sculpin, rainbow trout, redside shiner, sculpins, and suckers. Fish stocking of kokanee fry has occurred in Vernon Creek by the Skaha Hatchery.

Reach break description	Reach 1	Reach 2	Reach 3
	Confluence to		
	Polson Park,	U/s of Polson	
Attribute Considered	Vernon	Park, Vernon	
Water Quality			
Dissolved Oxygen	DG	F2	
Stream Temperature	DG	DG	
Turbidity/Suspended Sediment	P1	F1	
Nutrient Loading	P1	F1	

Table 50: Ver	rnon Creek	Limiting F	Factors Mat	rix
---------------	------------	------------	-------------	-----

Reach break description	Reach 1	Reach 2	Reach 3
Attribute Considered	Confluence to Polson Park,	U/s of Polson	
Attribute Considered	Vernon	Park, Vernon	
In Channel Habitat			
Fine Sediment (substrate)	DG	P1	
Large Woody Debris	DG	DG	
Percent Pool <u><</u> 2% 2-5%		P1	
>5%			
Habitat Access			
Fish Passage	P1	DG	
Stream Flow			
Resembles Natural Hydrograph	P1	DG	
Impervious Surface	DG	DG	
Stream Corridor			
Riparian Vegetation	DG	DG	
Stream Bank Stability		DG	
Floodplain Connectivity	DG	DG	

Salmonid production is limited in Vernon Creek by poor water quality, disturbance to rearing habitat, and seasonal low flows. Downstream of Polson Park the water quality and productive habitat for salmonids rapidly deteriorates. Storm water discharge is also impacting water quality and is especially evident in the lower reaches of Vernon Creek as substrate embeddedness. Upstream of Polson Park the water quality is better, although habitat is generally unfavorable for good salmonid production. Pools are very scarce at discharge of less than 2.0 - 2.8 cubic m per second. The reach between Kalamalka Lake and Polson Park appears as a series of fast moving runs and riffles at this flow.

The most productive habitat appears to be a section extending approximately 0.5 km downstream of Kalamalka Lake proper. Kokanee were observed spawning here in October 1976 (most likely outlet spawners from Kalamalka Lake); it is unclear if they have spawned at this location since then. Cover, water velocity, and substrate characteristics appear compatible with trout spawning as well.

Water quality has also been degraded by a variety of waste products, including at one time treated sewage from the city's treatment plant. The impact of spray irrigation on groundwater quality and Lower Vernon Creek water quality should be investigated. While elevated levels of phosphorous have historically been found in well samples, it is not known if the nutrients are passing through to surface waters.

Vernon Creek is also subject to seasonal low flows, predominantly in the fall. A distillery had previously released water into the creek. However, this distillery no longer releases outfall into this section, and thus flows are lower than historical regimes. Water withdrawal from area ranches for irrigation purposes has exacerbated low flow conditions.

A large, flat-bottomed culvert located at the Okanagan Landing Road crossing of Vernon Creek approximately 1.5 km upstream of the lake is thought to be impassable to

kokanee in the fall. It is difficult for trout to migrate upstream in the spring as well. The culvert is also a complete barrier to spawning coarse fish species from Okanagan Lake.

Incidental kokanee ascent further upstream from this point would be hampered by a series of culverted residential road crossings. Also, a beaver dam blocks the outlet of Minn Lake. This dam is considered to be a barrier to fish migration.

Several suggestions have been made to further enhance the fish habitat quality in Vernon Creek. Annual gravel placement by hand would benefit both kokanee and rainbow trout spawning. The placement of boulder clusters in association with large woody debris would provide fish refuge sites. Stream bank stabilization and replanting of disturbed stream side areas with native plants to limit silt deposition. The removal of man-made debris and removal of beavers to prevent additional dam construction would also facilitate improved recruitment to Okanagan Lake.

Projects Undertaken

Several enhancement projects have occurred in the Vernon Creek Watershed. Gravel was placed to enhance spawning and egg incubation potential. Riprap was added at the bottom of Wood Lake Road to stabilize stream banks in this section. A debris jam was removed on upper Vernon Creek. Bank stabilization and creek bed widening was undertaken to increase habitat potential. Also the placement of weirs and gravel was conducted within Polson Park to create spawning platforms for kokanee.

A Water Survey of Canada station was located on Vernon Creek in 1973 to collect data on water quality and quantity in the creek.

Other fish and fish habitat projects undertaken in the watershed include:

Project Name: Vernon/Winfield Creeks Stewardship Action Plan
Description: Habitat assessment, inventory and mapping for 6km.
Project Status: Active Start Date: 01-FEB-00 End Date: 31-MAR-00
Lead Proponent: Oceola Fish and Game Club
Activity: Inventory - Mapping
Description: Inventory and mapping for 6km.
Activity Term: Start date: 01-FEB-99 End date: 31-MAR-00
Habitat(s): Stream
Location(s): Main Stem + Tributaries; Vernon Creek tributary to Okanagan Lake/Okanagan/Columbia River.

Project Name: Oyama Creek Watershed Restoration

Description: The Oyama Creek watershed is located on the south east side of Kalamalka Lake, near Oyama on the eastern corner of the Thompson Plateau. The watershed has an area of 4 400ha. This watershed supplies both domestic and irrigation water to the Wood Lake Improvement District. **Objective:** The objectives of this project are to restore the watershed to some level of pre harvest condition, to restore natural hydrology to the area, and to enhance and rehabilitate riparian habitat. Specific actions undertaken may be road deactivation, gully and landslide rehabilitation and sediment source detection.

Project Status: Active **Start Date:** 01-APR-96 **Lead Proponent:** Wood Lake Improvement District **Activity:** Restoration - Overview Assessment **Description:** This activity report outlines the access management strategy for the Oyama Creek Watershed. The objective of this report was to identify the long term access requirements for the current roads in the watersheds and determine an appropriate level of deactivation, based on road use that will reduce environmental impacts, particularly sediment delivery to streams. The Oyama Creek watershed is located on the south east side of Kalamalka Lake, near Oyama on the eastern corner of the Thompson Plateau. This watershed supplies both domestic and irrigation water to the Wood Lake Improvement District.

Comment: Report Title: Access Management Strategy for the Oyama Creek Watershed (Volume 1 of 1) Percentage of Work Completed: N/A All high priority works completed.

Activity Term: Start date: 01-MAR-98 End date:

Habitat(s): Upslope

Location(s): Watershed; The watershed is located in south central BC, in the Kal-Wood/Okanagan drainage basin. The Oyama Creek watershed is located on the south east side of Kalamalka Lake, near Oyama on the eastern corner of the Thompson Plateau. Oyama WSC: 310-939400-34700 **Activity:** Restoration - Overview Assessment

Description: This activity report outlines the integrated watershed restoration plan for the Oyama Creek watershed. The purpose of this report is to integrate the results of the sediment source survey, access management strategy, fish habitat assessment procedure, channel assessment procedure and interior watershed assessment procedure completed in the watershed. The Oyama Creek watershed is located on the south east side of Kalamalka Lake, near Oyama on the eastern corner of the Thompson Plateau. The watershed has an area of 4,400 ha. This watershed supplies both domestic and irrigation water to the Wood Lake Improvement District.

Comment: Report Title: Oyama Creek Watershed: Results of the Watershed Restoration Project Percentage of Work Completed: Uncertain All high priority works completed.

Activity Term: Start date: 01-MAR-96 End date:

Habitat(s): Stream, Upslope

Location(s): Watershed; The watershed is located in south central BC, in the Kal-Wood/Okanagan drainage basin. The Oyama Creek watershed is located on the south east side of Kalamalka Lake, near Oyama on the eastern corner of the Thompson Plateau. Oyama WSC: 310-939400-34700 **Activity:** Restoration - Upslope Restoration / Rehabilitation

Description: This report outlines the road design for the Oyama Creek Watershed. The objective of this report was to present the road alignments, volume estimates and construction considerations for approximately 1.7 km of proposed road upgrade of the Oyama Lake Road. The Oyama Creek watershed is located on the south east side of Kalamalka Lake, near Oyama on the Eastern corner of the Thompson Plateau. The watershed has an area of 4,400 ha. This watershed supplies both domestic and irrigation water to the Wood Lake Improvement District.

Comment: Report Title: Oyama Creek Road Design Percentage of Work Completed: 100 percent All high priority works completed.

Activity Term: Start date: 07-NOV-97 End date:

Habitat(s): Upslope

Location(s): Watershed; The watershed is located in south central BC, in the Kal-Wood/Okanagan drainage basin. The Oyama Creek watershed is located on the south east side of Kalamalka Lake, near Oyama on the eastern corner of the Thompson Plateau. Oyama WSC: 310-939400-34700 **Activity:** Restoration - Overview Assessment

Description: This activity report outlines the results of the interior watershed assessment procedure conducted on the Oyama Creek Watershed. The objectives of this report were to document watershed characteristics and conditions, and to determine the potential for cumulative hydrologic impacts that may be associated with past forest development in the watersheds. The Oyama Creek watershed is located on the south east side of Kalamalka Lake, near Oyama on the Easter corner of the Thompson Plateau. The watershed has an area of 4,400 ha. This watershed supplies both domestic and irrigation water to the Wood Lake Improvement District.

Okanogan/Similkameen Subbasin Summary 335

Comment: Report Title: Interior Watershed Assessment for the Oyama Creek Watershed Percentage of Work Completed: N/A All high priority works completed.

Activity Term: Start date: 01-MAR-98 End date:

Habitat(s): Upslope

Location(s): Watershed; The watershed is located in south central BC, in the Kal-Wood/Okanagan drainage basin. The Oyama Creek watershed is located on the south east side of Kalamalka Lake, near Oyama on the eastern corner of the Thompson Plateau. Oyama WSC: 310-939400-34700 **Activity:** Restoration - Effectiveness Monitoring & Evaluation

Description: This activity report outlines the water quality monitoring which was conducted for the Oyama Creek watershed. The objectives of this report were to provide baseline water quality data and document any changes that may occur as a result of timber harvesting or other activities. The Oyama Creek watershed has a drainage area of about 40 sq. km. The watershed is located in south central BC In the Kal-Wood/Okanagan drainage basin.

Comment: Report Title: Oyama Creek Watershed Water Quality Monitoring Percentage of Work Completed: N/A All high priority works completed

Activity Term: Start date: 01-MAR-97 End date:

Habitat(s): Stream

Location(s): Main Stem + Tributaries; The watershed is located in south central BC, in the Kal-Wood/Okanagan drainage basin. The Oyama Creek watershed is located on the south east side of Kalamalka Lake, near Oyama on the eastern corner of the Thompson Plateau. Oyama WSC: 310-939400-34700.

Project Name: Vernon Creek Watershed Restoration

Description: Vernon Creek is the community watershed for the town of Winfield. Vernon Creek originates in the Thompson Plateau about 22 km northeast of Winfield.

Objective: The objectives of this project are to restore the watershed to some level of pre harvest condition, to restore natural hydrology to the area, and to enhance and rehabilitate riparian habitat. Specific actions undertaken may be road deactivation, gully and landslide rehabilitation and sediment source detection.

Project Status: Active Start Date: 01-APR-95

Lead Proponent: Winfield and Okanagan Centre Irrigation District

Activity: Restoration - Upslope Restoration / Rehabilitation

Description: This activity report describes the restoration work completed on landslide #16 in the Vernon Creek watershed during 1997. The landslide took place on May 16, 1997. The restoration program consisted of emergency erosion control, engineering, logistical planning and site works. Vernon Creek is the community watershed for the town of Winfield. Vernon Creek originates in the Thompson Plateau about 22 km northeast of Winfield.

Comment: Report Title: Landslide Restoration Works on Landslide #16, Vernon Creek Fall 1997 Percentage of Work Completed: Uncertain

Activity Term: Start date: 21-DEC-97 End date:

Habitat(s): Upslope

Location(s): Watershed; Vernon Creek originates in the Thompson Plateau about 22 km northeast of Winfield, BC It flows west through a chain of lakes before descending into the Okanagan Valley at Winfield. Vernon Creek: 310-939400

Activity: Restoration - Overview Assessment

Description: This report outlines the landslide rehabilitation assessment procedure conducted in the Vernon Creek watershed. The objectives of this report were to reduce erosion and improve site stability, minimize sediment delivery off site and allow for revegetation, as well as mitigate visual impacts and initiate and enhance natural rehabilitation processes. Vernon Creek is the community

watershed for the town of Winfield. Vernon Creek originates in the Thompson Plateau about 22km northeast of Winfield.

Comment: Report Title: Vernon Creek Watershed Landslide Rehabilitation Assessment Procedure Percentage of Work Completed: N/A

Activity Term: Start date: 30-SEP-97 End date:

Habitat(s): Upslope

Location(s): Watershed; Vernon Creek originates in the Thompson Plateau about 22 km northeast of Winfield, BC It flows west through a chain of lakes before descending into the Okanagan Valley at Winfield. Vernon Creek: 310-939400

Activity: Restoration - Overview Assessment

Description: This report outlines the sediment source survey conducted for the Vernon Creek Watershed. The objectives of this report were to review all road corridors, hillslopes and gullies within the watersheds and determine eligibility for restoration funding; and identify and inventory sites of road related mass wasting, surface erosion and stream sedimentation hazards, as well as confirm priority areas for future prescription work. This report summarizes the stream channel assessment work carried out in the Vernon Creek Watershed. The purpose of the channel assessment procedure was to identify significant changes to stream channels that appear to be the result of past logging activities, and to develop recommendations for restoration work. Vernon Creek is the community watershed for the town of Winfield. Vernon Creek originates in the Thompson Plateau about 22 km northeast of Winfield.

Comment: Report Title: Stream Channel Assessment and Sediment Source Survey: Vernon Creek Watershed Percentage of Work Completed: N/A

Activity Term: Start date: 01-APR-97 End date:

Habitat(s): Upslope

Location(s): Watershed; Vernon Creek originates in the Thompson Plateau about 22 km northeast of Winfield, BC It flows west through a chain of lakes before descending into the Okanagan Valley at Winfield. Vernon Creek: 310-939400

Activity: Restoration - Overview Assessment

Description: This activity report details the stream channel assessment, sediment source survey and water quality monitoring program carried out in the Vernon Creek Watershed. The objectives of the stream channel assessment were to: - review aerial photos of the Vernon Creek system to identify any changes in channel characteristics and evaluate channel sensitivity; - complete field assessments to determine if past forestry activities have caused channel impacts, focusing on potential impacts identified by the Level I Interior Watershed Assessment Procedure (IWAP) analysis and the review of aerial photos; - identify any sites on the stream channel which have been impacted by forestry activities; - identify the need for detailed prescriptions for site restoration, as needed, and; - comment on possible effects of future harvest on the stream channel. The objectives of the Sediment Source Survey were to: - complete a Level I road condition assessment; - complete an inventory of existing landslides, gullies and other sources of sediment to the stream network and; - make recommendations on which sources require additional assessment in order to develop restoration prescriptions.

Comment: Report Title: Stream Channel Assessment and Sediment Source Survey: Vernon Creek Watershed Percentage of Work Completed: N/A

Activity Term: Start date: 01-APR-97 End date:

Habitat(s): Upslope

Location(s): Main Stem + Tributaries; Vernon Creek originates in the Thompson Plateau about 22 km northeast of Winfield, BC It flows west through a chain of lakes before descending into the Okanagan Valley at Winfield. Vernon Creek: 310-939400

Activity: Restoration - Overview Assessment

Description: This activity report outlines the access management strategy for the Vernon Creek Watershed. The objective of this report was to identify the long term access requirements for the current roads in the watersheds and determine an appropriate level of deactivation, based on road use

that will reduce environmental impacts, particularly sediment delivery to streams. Vernon Creek is the community watershed for the town of Winfield. Vernon Creek originates in the Thompson Plateau about 22 km northeast of Winfield.

Comment: Report Title: Vernon Creek Watershed Access Management Strategy Percentage of Work Completed: N/A

Activity Term: Start date: 01-MAR-99 End date:

Habitat(s): Upslope

Location(s): Watershed; Vernon Creek originates in the Thompson Plateau about 22 km northeast of Winfield, BC It flows west through a chain of lakes before descending into the Okanagan Valley at Winfield. Vernon Creek: 310-939400

Activity: Restoration - Effectiveness Monitoring & Evaluation

Description: Interim reports were submitted in July, September and November 1996 and March 1997. This is the final report. The general objective of this study was to measure water quality at specific locations within the Vernon Creek watershed to serve as baseline data for monitoring the effects of future watershed restorative activities.

Comment: Report Title: Vernon Creek: Water Quality Monitoring Report 1996-97 Percentage of Work Completed: N/A

Activity Term: Start date: 11-JUL-97 End date:

Habitat(s): Stream

Location(s): Main Stem + Tributaries; Vernon Creek originates in the Thompson Plateau about 22 km northeast of Winfield, BC It flows west through a chain of lakes before descending into the Okanagan Valley at Winfield. Vernon Creek: 310-939400.

Project Name: King Edward Lake Watershed Restoration

Description: King Edward Creek (known locally as Deer Creek) originates on the Thompson Okanagan Plateau in the southern interior approximately 15 km southeast of the community of Vernon, and is a tributary of Coldstream Creek. The two creeks meet about 5 km upstream of the outlet to Kalamalka Lake.

Objective: The objectives of this project are to restore the watershed to some level of pre harvest condition, to restore natural hydrology to the area, and to enhance and rehabilitate riparian habitat. Specific actions undertaken may be road deactivation, gully and landslide rehabilitation and sediment source detection.

Project Status: Active Start Date: 01-APR-96

Lead Proponent: Tolko Industries Limited

Activity: Restoration - Detailed Assessments and Prescriptions

Description: This report outlines the integrated watershed restoration plan for the King Edward Creek Watershed. The purpose of this report is to integrate the results of the sediment source survey, access management strategy, fish habitat assessment procedure, channel assessment procedure and interior watershed assessment procedure completed in the watersheds. King Edward Creek (known locally as Deer Creek) originates on the Thompson Okanagan Plateau in the southern interior approximately 15 km southeast of the community of Vernon, and is a tributary of Coldstream Creek. The two creeks meet about 5 km upstream of the outlet to Kalamalka Lake.

Comment: Report Title: King Edward Watershed Integrated Watershed Restoration Plan. Percentage works completed is: Uncertain

Activity Term: Start date: 01-MAR-98 End date:

Habitat(s): Upslope

Location(s): Watershed; King Edward Lake, tributary to the Coldstream Creek. Located just South of Vernon.

Project Name: Coldstream Creek Watershed Restoration

Description: Part of Forest Renewal British Columbia's Watershed Restoration Program, Coldstream Creek flows south from Silver Star Provincial Park onto a broad valley floor near Lavington, before discharging into Kalamalka Lake. The Coldstream Creek community watershed comprises that portion of the drainage area upstream of the Municipality of Coldstream water intake and treatment plant, and has a drainage area 6,643 ha.

Objective: The objectives of this project are to rehabilitate and restore the watershed from past disturbances such as logging, mining and road construction.

Project Status: Active Start Date: 01-APR-96

Lead Proponent: BC Ministry of Forests

Activity: Restoration - Overview Assessment

Description: The objectives of this activity were to: 1) define the potential negative cumulative or site-specific effects of past forest practices, and other land uses, on the watershed's hydrology, slope and channel geomorphology, and water quality and; 2) provide guidance on continued forest operations.

Comment: Report Title: Coldstream Creek: Watershed Assessment. Percentage works completed is: N/A

Activity Term: Start date: 01-DEC-98 End date:

Habitat(s): Riparian, Stream, Upslope

Location(s): Watershed; Coldstream Creek, tributary to the Vernon Creek. Located just South of Vernon.

Project Name: Okanagan Timber Supply Area (TSA) Small Lakes Inventory

Description: 1:20K reconnaissance lake inventory

Project Status: Active Start Date: 01-APR-98

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Inventory - 1:20000 Reconnaissance

Description: 1:20K Lake Reconnaissance Fish and Fish Habitat Inventory

Activity Term: Start date: 01-APR-98 End date:

Habitat(s): Lake

Location(s): Lake; Damer Lake, tributary to un-named creek, tributary to North Oyama/Oyama/Vernon Creeks/Okanagan/Columbia Rivers, near Vernon.

Project Name: Wood Lake Angler Survey / Creel Census Description: Estimation of angler pressure/effort on the lake, estimation of number of kokanee and other species harvested, education of anglers towards kokanee conservation. Project Status: Active Start Date: 11-MAR-00 End Date: 01-JUN-00 Lead Proponent: Oceola Fish and Game Club Activity: Assessment - Stock Assessment **Description:** Estimation of number of kokanee and other species harvested, estimation of angler pressure/effort on fish stocks. Activity Term: Start date: 11-MAR-00 End date: 01-JUN-00 Target Species: Kokanee Habitat(s): Lake Location(s): Lake; Wood Lake, tributary to Vernon Creek, Okanagan Lake, Okanagan/Columbia Rivers, north of Kelowna. Activity: Other - General Description: Education: interviews were conducted with 90 percent of the anglers on the lake. Anglers learned of the purpose of the project and its rewards. Activity Term: Start date: 11-MAR-00 End date: 01-JUN-00 Target Species: Kokanee

Habitat(s): Lake

Location(s): Lake; Wood Lake, tributary to Vernon Creek, Okanagan Lake, Okanagan/Columbia Rivers, north of Kelowna.

Project Name: Kelowna/McDougall/Vernon Creeks Urban Referral Compliance Evaluation **Description:** Review of Water Act compliance and applications for 4 urban creeks. **Objective:** Ensure that streams and riparian corridors in urban areas function properly and provide habitat for wild fish species. Project Status: Active Start Date: 01-FEB-00 End Date: 31-MAR-00 Lead Proponent: Penticton Indian Band/Columbia Environmental Consulting Activity: Inventory - Urban **Description:** 4 urban creeks reviewed for the level of compliance to the Water Act for all approved and non approved works in and about the streams. Activity Term: Start date: 01-FEB-99 End date: 31-MAR-00 Habitat(s): Riparian, Stream Location(s): Main Stem of Stream; Vernon Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, near Vernon. Activity: Inventory - Urban Description: 4 urban creeks reviewed for the level of compliance to the Water Act for all approved and non approved works in and about the streams. Activity Term: Start date: 01-FEB-99 End date: 31-MAR-00 Habitat(s): Riparian, Stream Location(s): Main Stem of Stream; Vernon Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, near Vernon.

Project Name: Echo Lake Dam Restoration (86)

Description: Reconstruction of an earth-fill dam with an outlet flow control device and an overflow spillway to increase storage capability and increase the quality and quantity of rainbow trout production.

Objective: Increase the quality and quantity of rainbow trout production as part of the Habitat Conservation Trust Fund's (HCTF) overall objective to appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Active Start Date: 01-APR-86

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Enhancement - Water Quality

Description: Reconstruction of an earth-fill dam with an outlet flow control device and an overflow spillway.

Activity Term: Start date: 01-APR-86 End date:

Target Species: Rainbow Trout

Habitat(s): Lake

Location(s): Lake; Echo Lake, tributary to Echo Creek, Swalwell Lake, Vernon Creek, Okanagan Lake, and Okanagan/Columbia Rivers, NE of Winfield.

Project Name: Vernon Creek Improvement Inventory

Description: A stream inventory conducted. Identification of the methods (e.g. channelization, culvert reconstruction, rip-rap and gravel placement), locations, timing and costs for stream improvements which would benefit kokanee.

Objective: To appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Active Start Date: 01-APR-86

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Inventory - Other

Description: A stream inventory was conducted to identify the methods (e.g. channelization, culvert reconstruction, rip-rap and gravel placement), locations, timing and costs for stream improvements that would benefit kokanee.

Activity Term: Start date: 01-APR-86 End date:

Target Species: Kokanee

Habitat(s): Stream

Location(s): Main Stem of Stream; Vernon Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, near Vernon.

Project Name: Echo Lake Dam Restoration (87)

Description: Reconstruction of an earth-fill dam with an overflow spillway at the outlet to improve the quality and quantity of Rainbow trout production.

Objective: To appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Active Start Date: 01-APR-87

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Enhancement - Water Quality

Description: Reconstruction of an earth-fill dam with an overflow spillway at the outlet.

Activity Term: Start date: 01-APR-87 End date:

Target Species: Rainbow Trout

Habitat(s): Lake

Location(s): Lake; Echo Lake, tributary to Echo Creek, Swalwell Lake, Vernon Creek, Okanagan Lake, Okanagan/Columbia Rivers, NE of Winfield.

Project Name: Vernon Creek Passage Improvement

Description: Improvement of passage for kokanee through construction of baffles within a culvert and weir, removing a concrete weir, and placing another weir to decrease water velocity. Volunteers coordinated to remove man-made debris.

Objective: To appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Active Start Date: 01-APR-87

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Restoration - Restore Fish Passage

Description: Construction of baffles within a culvert and weir, removal of a concrete weir, placement of another weir to decrease water velocity, and removal of man-made debris.

Activity Term: Start date: 01-APR-87 End date:

Target Species: Kokanee

Habitat(s): Stream

Location(s): Main Stem of Stream; Vernon Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, near Vernon.

Project Name: Vernon Creek Habitat Improvement (88)

Description: Various stream enhancement activities for kokanee performed: boulder weirs placed, gravel spawning platforms constructed, stream clearance conducted, and 100 m of streambank excavated and stabilized.

Objective: To appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Active Start Date: 01-APR-88

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Enhancement - Habitat Enhancement

Description: Boulder weirs placed, gravel spawning platforms constructed, stream clearance conducted, and 100 m of streambank excavated and stabilized.

Activity Term: Start date: 01-APR-88 End date:

Target Species: Kokanee

Habitat(s): Stream

Location(s): Main Stem of Stream; Vernon Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, runs through Vernon.

Project Name: Okanagan Drainage Warmwater Fish Enhancement (88)

Description: Enhancement of a Smallmouth bass fishery by controlling weeds, establishing riparian vegetation, transplanting bass, constructing refuge holes, and placing brush piles in lakes for rearing habitats.

Objective: To appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Active Start Date: 01-APR-88

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Enhancement - Habitat Enhancement

Description: Enhancement of a Smallmouth bass fishery by controlling weeds, establishing riparian vegetation, constructing refuge holes, and placing brush piles in lakes for rearing habitats.

Activity Term: Start date: 01-APR-88 End date:

Target Species: Bass / Sunfish (General)

Habitat(s): Lake

Location(s): Point; 4 small lakes in the Okanagan region.

Activity: Enhancement - Fish Culture Activities

Description: Smallmouth bass transplanted into the lakes.

Activity Term: Start date: 01-APR-88 End date:

Target Species: Bass / Sunfish (General)

Habitat(s): Lake

Location(s): Point; 4 small lakes in the Okanagan region.

Project Name: Vernon Creek Habitat Improvement (89)

Description: Various stream enhancement activities preformed to enhance kokanee spawning habitat: stream clearance, gravel placement, and installation of a fish barrier at the creek junction.

Objective: To appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Active Start Date: 01-APR-89

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Enhancement - Habitat Enhancement

Description: Stream clearance, gravel placement, and installation of a fish barrier at the creek junction.

Activity Term: Start date: 01-APR-89 End date:

Target Species: Kokanee

Habitat(s): Stream

Location(s): Main Stem of Stream; Vernon Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, near Vernon.

Project Name: Vernon Creek Habitat Improvement (90)

Description: Various stream enhancement activities performed to enhance kokanee spawning habitat: stream clearance, and gravel placement.

Objective: To appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Active Start Date: 01-APR-90

Lead Proponent: BC Ministry of Environment Lands and Parks

Activity: Enhancement - Habitat Enhancement

Description: Stream clearance and gravel placement.

Activity Term: Start date: 01-APR-90 End date:

Target Species: Kokanee

Habitat(s): Stream

Location(s): Main Stem of Stream; Vernon Creek, tributary to Okanagan Lake, Okanagan/Columbia Rivers, near Vernon.

Project Name: Winfield Creek Enhancement

Description: Improve kokanee spawning habitat by excavating and replacing spawning substrate, excavating settling ponds to control silt and sand deposition, and re-aligning the stream course. **Objective:** To appropriately conserve and, where necessary, enhance wild fish populations and their habitats.

Project Status: Completed Start Date: 01-APR-89

Lead Proponent: Oceola Fish and Game Club

Activity: Enhancement - Habitat Enhancement

Description: Improve Kokanee spawning habitat by excavating and replacing spawning substrate, excavating settling ponds to control silt and sand deposition, and realigning the stream course.

Activity Term: Start date: 01-APR-89 End date:

Target Species: Kokanee

Location(s): Main Stem + Tributaries; Winfield Creek tributary to Wood Lake, tributary to Vernon Creek, tributary to Okanagan Lake, tributary to Okanagan/Columbia Rivers.

Project Name: Coldstream Creek Renewal Project

Description: Land use mapping, hydrology assessment, design of water quality and streambed mapping, and research into previous work on Coldstream Creek Project Status: Active Start Date: 07-FEB-99 End Date: 31-MAR-00 Lead Proponent: North Okanagan Naturalist Club **Activity:** Inventory - Mapping **Description:** Land use mapping within the watershed Activity Term: Start date: 07-FEB-99 End date: 31-MAR-00 Habitat(s): Stream Location(s): Main Stem + Tributaries; Coldstream Creek tributary to Kalamalka Lake/Vernon Creek/Okanagan/Columbia River near Winfield. Activity: Assessment - Habitat Assessment **Description:** Water quality and streambed monitoring Activity Term: Start date: 07-FEB-00 End date: 31-MAR-00 Habitat(s): Stream Location(s): Main Stem + Tributaries; Coldstream Creek, tributary to Kalamalka Lake/Vernon Creek/Okanagan Lake/Okanagan/Columbia Rivers.

Watershed Assessment

To ensure that streams and riparian corridors within urbanized areas are functioning properly in order to provide habitat for wild fish species, a review of Water Act Compliance (B.C. provincial govt., 2000) can be conducted. The Urban Referral Compliance Evaluation is a Fisheries Renewal BC initiative. Fisheries Renewal BC is a provincial Crown corporation created to revitalize the province's fish resource and the communities that depend on it. The proponents will record the level of compliance for approved and non-approved works in and about urban streams. This evaluation will enable resource users to determine the need for further compliance evaluations and help develop restoration objectives within the urban environment. Several tributaries to the Okanagan basin located within urban areas have undergone such a review; these include Kelowna (Mill), McDougall, and Vernon creeks.

Reconnaissance Fish and Fish Habitat Inventories, at the 1:20,000 scale, have been conducted for the Naramata, Trepanier, Chute, Trout, and Shingle watersheds. These inventories are intended to determine fish presence or absence, species type, potential barriers to fish, and the overall state of the watershed. Participants in this type of inventory range from forestry companies to First Nations groups to government agencies. These studies have been mainly conducted through the provincial "Forest Renewal BC Program", and are predominantly for subwatersheds that are slated for forest harvest activities.

Several watershed assessments and sediment source surveys have been conducted in the Okanagan Watershed, and to a lesser extent in the Similkameen watershed. These studies have been mainly conducted through the provincial "Watershed Restoration Program", and are predominantly for subwatersheds that have previously experienced forest harvest activities. Several significant tributaries to the Okanagan Basin have been assessed. In the Similkameen Basin, there have been some watershed assessments done, some road condition assessments conducted, and similarly some sediment source and habitat assessments performed; however, it has generally been cursory in nature and only a few of the subwatersheds have been assessed. For example, the Ashnola River subwatershed has had a sediment source and channel assessment conducted. Several subwatersheds downstream of Princeton have had work done, while upstream of Princeton little has been done in the way of watershed assessments.

In addition, fish population estimates can be estimated using a creel census. The Oceola Fish and Game Club conducted such a census on Wood Lake, with the purpose of estimating the angler pressure and effort on the lake and to educate anglers regarding kokanee conservation strategies and benefits.

Limiting Factors

Kokanee is a key management focus within the Okanagan Basin. Currently the number of kokanee present in Okanagan Lake represents 10 percent of historical numbers supported by this system. As noted earlier, the decline in kokanee stocks culminated in the 1995 closure of the kokanee sport fishery. This decline also led to the formation of the Okanagan Lake Action Plan, the focus of which was to define limiting factors to kokanee production, and to identify and implement remedial measures.

An Adaptive Environmental Assessment was conducted on Okanagan Lake to determine factors affecting kokanee production. The most obvious problems limiting

production included the deterioration of spawning and rearing habitat for stream spawning kokanee in tributaries to the Okanagan system. Human impacts such as flood control measures and demands for water for irrigation have resulted in channelization of some tributaries while others are completely devoid of water during the spawning season. Another key finding was that both shore and stream spawning kokanee populations had declined due to reductions in lake nutrients and due to competition from the introduced mysis shrimp for food. Loss of both stream and shore spawning habitat accounts for 90 percent of the reduction in kokanee stocks, while a low in-lake survival rate due to an offset nitrogen to phosphorous ratio and the presence of mysis shrimp is accountable for the other 10 percent. In other words, Okanagan Lake no longer has the carrying capacity to support historical levels of kokanee.

Artificial Production

Extensive fish stocking has occurred throughout both the Okanagan and Similkameen watersheds for several years. The species of fish stocked in these areas include rainbow trout, kokanee, and brook trout from a variety of stocks and at different life cycle stages. Fish stocking has occurred not only in the Okanagan and Similkameen mainstems, but in other major tributaries to these rivers including Kelowna (Mill), Mission, Peachland, Penticton, Trepanier, and Vernon creeks. Records do not indicate any stocking activities in Powers Creek. Other major tributaries in these watersheds have also been stocked.

Artificial production facilities within the Okanagan Watershed that have stocked these tributaries in the past include Skaha and Summerland hatcheries. Fraser Valley Hatchery (in the Vancouver lower mainland region) has stocked rainbow trout in the Similkameen Watershed.

Existing and Past Efforts

Summary of Past Efforts

Several provincial and federal programs are in place which are starting to rectify disturbances within the Okanagan Watershed, and which are aimed at accelerating natural recovery of disturbed watersheds. These include programs such as "Forest Renewal BC" and "Fisheries Renewal BC". However, these programs are currently unable to address all of the past, present, and anticipated pressures on fish, wildlife, and habitat that exist within the Okanagan Watershed.

Sediment Source Surveys

Identification of the source of sedimentation is the first step to eradicating the problem. As noted above, some sediment source surveys have been conducted under the Watershed Restoration Program. Unfortunately, many subwatersheds have not yet undergone such surveys. Moreover, it appears that remedial prescriptions exist for only a few watersheds.

Sedimentation of spawning habitat results in eggs not getting enough oxygen and suffocating. The end result is reduced production. Erosion control (rectifying the problem at the source) can be effective using a variety of techniques. In Peachland Creek the Ministry of Environment, Lands, and Parks (MELP) constructed a series of check dams to minimize siltation in the creek and to stabilize the entire gully which is used by kokanee. The University of British Columbia tested and evaluated gravel cleaning equipment which remove

the fine sediments from spawning substrates through hydraulic agitation and suction discharge. The equipment could potentially be used to clean spawning habitat and make it suitable for productive kokanee spawning.

Watershed Restoration

Watershed restoration encompasses a variety of activities with a common goal to rehabilitate a watershed to pre-impact conditions. The Forest Practices Code delineates guidelines for conducting watershed assessments in order to determine the extent of the damage and to identify potential priority sites for remediation. Several watershed restoration programs have been conducted throughout the Okanagan and Similkameen basins by a variety of proponents, including forestry companies, government agencies, and First Nations groups. Kelowna (Mill) Creek, Mission Creek, Peachland Creek, Trepanier Creek, and Vernon Creek have all been included in a watershed restoration program. In the Similkameen Basin, Ashnola River, Hedley Creek, McNulty Creek, Cahill Creek, Winters Creek, Willis Creek, Tulameen River, Old Arrastra Creek, and Oyama Creek are among the tributaries to have had watershed restoration evaluations conducted.

Stream Restoration

A watershed restoration project on Kelowna (Mill) Creek conducted by the city of Kelowna resulted in streambank stabilization for 450 meters and 1,400 meters of riparian planting. Instream efforts included 450 meters of instream complexing. The project also included open houses and published articles that increased public awareness for the importance and benefits of stream restoration projects.

Following a flood control project, the Ministry of Environment, Lands, and Parks set out to plan and identify potential spawning habitat enhancement projects with input from the public.

Tolko Industries Limited undertook a watershed restoration project on the Tulameen River in order to protect, restore, and rehabilitate fisheries and aquatic and forest resources that had been adversely impacted by past disturbances such as logging, mining, and construction within the watershed. The Tulameen River drains to the Similkameen River just north of Coalmont. The watershed is 1,780 square kilometers in size.

The First Nations of Okanagan-Similkameen Environmental Protection Society conducted a watershed restoration project in the Arrastra Creek Watershed. The area involved encompasses an area of 150 square kilometers, all of which eventually drains to the Similkameen River via the Tulameen River. The watershed has been modified through timber harvesting and livestock free ranging activities as well as recreation. The objectives of the project included protection, restoration, and rehabilitation of the natural resources that have been adversely impacted in the watershed.

Ardew Wood Products Ltd. conducted a restoration program in the Granite Creek Watershed which drains to the Tulameen River.

Habitat Restoration

Habitat degradation due to human influences such as agriculture, urban development, and forestry have negatively impacted the Okanagan and Similkameen watersheds. The streams

and lakes within these basins no longer have the carrying capacity to support the historical numbers of species once found in these waters. Efforts are being made to restore habitat to suitable spawning grounds in order to increase this carrying capacity and thus increase populations.

The Mission Creek spawning channel is a prime example of efforts put forth to increase suitable habitat, particularly for stream-spawning kokanee. Several groups have been and continue to be involved with Mission Creek in order to increase kokanee productivity in the Okanagan basin. Of the 66 kilometers of suitable spawning habitat available and accessible to kokanee in this watershed, 19 kilometers are found in Mission Creek. Major improvements were made to the spawning channel in 1988 namely improvements and realignments to the intake structures of the 1,000-meter long channel, gravel placement below high-water mark for spawning purposes, and regrading of the channel. In the early 1990s, evaluations of the spawning channel were conducted by MELP for a variety of purposes namely estimates of kokanee egg-to-fry survival rates and enumerate fry and adult kokanee use of the spawning channel. In conjunction with the Habitat Conservation Trust Fund, MELP undertook moving beach gravel to below the high water mark to create additional kokanee spawning habitat. In 2000, the Okanogan University College completed a plan for water management and fish enhancement goals for the lower 8 kilometers of Mission Creek to increase spawning habitat capacity.

Efforts on the Okanagan River to increase kokanee spawning habitat include replacement of gravel on 400 meters of the river.

Spawning enhancement activities on Peachland Creek include the construction of 300 square meters of gravel platforms upstream from previous enhancement activities and the monitoring of these gravel platforms over the years to assess effectiveness. MELP's plans include siltation control measures, rock weir construction and repair, and incubation boxes to improving kokanee production in Peachland Creek.

The Penticton Flyfishers group made improvements to an existing fish ladder on Penticton Creek in 2000. The objective was to allow fish access to an additional 600 meters of stream that encompassed potential spawning habitat in an effort to increase kokanee production in Penticton Creek and the Okanagan Basin.

Powers Creek experiences low flows which can strand kokanee eggs. MELP collected information and developed a plan for sharing water storage in Tadpole Lake with Westbank Irrigation District in order to secure minimum flows for Powers Creek.

Various stream enhancement activities to improve kokanee production in Vernon Creek have been conducted by MELP. Boulder weirs have been placed in the creek to provide cover for fish, gravel spawning platforms have been constructed, and 100 meters of streambank were stabilized to reduce sedimentation. Maintenance of spawning platforms such as gravel placement has increased spawning habitat for kokanee in Vernon Creek.

Perhaps the most progressive method for mitigating the declining kokanee stocks due to the introduction of the mysis shrimp to Okanagan Lake is the Mysis Beam Trawl Harvesting Feasibility Study. In-lake population estimates for mysis shrimp were conducted in order to develop an efficient harvesting technique. Marketing studies were also performed to determine harvest product acceptability within the marketplace, and a harvest technique costs and benefits analysis was done to ensure financial feasibility. Several methods were

Okanogan/Similkameen Subbasin Summary 347

brought to the Okanagan Lake Action Plan committee members and a variety of harvest techniques were attempted based on the biology and ecology of the mysis shrimp. An estimate suggests that a 10 percent capture would have an effect on the overall population of mysis shrimp. The market research and the cost and benefit analysis both resulted in favorable responses and the technique is now being considered for use in other lakes where the mysis shrimp was introduced.

Barrier Identification and/or Removal

Barrier identification and removal could potentially allow fish access into suitable spawning habitat within a watershed. An inventory was conducted in the Okanagan region to identify non-natural potential barriers to fish passage. The Okanagan Region Wildlife Heritage Fund Society conducted the inventory from 1999 to 2000 and identified 186 potential fish passage obstructions.

Work was conducted on Powers Creek to allow fish access to spawning habitat upstream of barriers. In 1986, a fishway was built to assist kokanee in bypassing a rock obstruction. The proponent of the project was the MELP and was part of the Habitat Conservation Trust Fund's (HCTF) overall objective to conserve and enhance wild fish populations and their habitats. Also on Powers Creek, an identified hazard to migrating rainbow trout fry was rectified. The existing unscreened diversion from the creek was replaced with a screened diversion to prevent rainbow trout from becoming trapped in the irrigation canal. This project was also conducted by MELP and HCTF in an effort to fulfill their respective mandates.

A preliminary evaluation of a proposed spawning channel was conducted by the Trepanier Creek Linear Park Society in 1999. The development of the spawning channel was developed to address fish habitat issues in the creek, namely low flows, sedimentation from the Macdonald Creek landslide, and existing municipal issues. The evaluation led to stewardship and community involvement by promoting fish spawning habitat enhancement.

Construction of an earth-filled dam with an overflow spillway was undertaken by MELP in 1989. The objective of the project was to increase rainbow trout production and to provide access for adult trout into Rampart Lake as part of the Ministry's mandate.

Education/Public Awareness

Public awareness and involvement in all aspects of restoration and rehabilitation programs is key to the initiation and continued success of these projects. Several attempts have been made within the Okanagan and Similkameen watersheds to inform the public of upcoming and ongoing projects to enhance these areas. Typically in the form of open houses and public forums, other effective methods for passing information to the public include interpretive signage, the Okanagan storm drain marking program, education programs for local schools, volunteer and interest groups, and guided tours of successful enhancement projects.

Interpretive signage has been installed on Kelowna (Mill) and Penticton creeks, for example. These signs convey information about Okanagan Lake kokanee and habitat issues within this watershed. A Mission Creek awareness program assembled by MELP included a 12-panel information kiosk and an accompanying brochure to promote fisheries awareness. Another effort to increase public awareness of the importance of Okanagan Lake fisheries was produced by the Habitat Conservation Trust Fund in the form of a video, information pamphlet, and slide show presentation.

Coordination of school classroom incubation and bank stabilization programs as well as interpretive field trips to the Mission Creek spawning channel educate students on the importance of environmental stewardship and rehabilitation.

Guided educational tours of Peachland Creek explained kokanee spawning ecology to school groups and the general public.

Present Subbasin Management

Existing Management

Federal and provincial agencies, local municipalities, tribal groups, and public interest groups all manage, regulate, or otherwise are involved in land and water usage within their respective jurisdictions. For the most part, these governing bodies and stakeholders have policies and guidelines to control the demands placed upon the watershed and their mandates include the management of natural resources for society while maintaining a level of protection of water, land, fish, and wildlife resources. Several of these organizations and their mandates are described below.

BC Ministry of Fisheries (MoFs)

BC Fisheries is a provincial government agency that is responsible for the management of freshwater recreational fisheries, aquaculture activities, and marine plant harvesting, and regulating the sale, inspection, and processing of fish. The province also exercises delegated authority under the federal Fisheries Act for the management of the non-salmon freshwater fisheries and wild oyster harvest.

BC Hydro

BC Hydro is the main hydropower generator in BC, and is a crown corporation (owned by government, but operated as a semi-autonomous corporation. BC Hydro's stated goal is "to provide energy solutions to our customers in an environmentally and socially responsible way".

BC Ministry of the Environment, Lands and Parks (MELP)

BC MELP is a provincial government agency whose stated mandate is to protect and conserve natural resources, maintain and restore the quality of land, water, and air, and manage water resources for the optimum health of humans and all living things, now and for future generations. The ministry supports human social, recreation, and settlement needs, environmentally sensitive economic development, and the sustainable use of resources, and seeks to ensure the government receives a fair return for the use of public resources.

BC Ministry of Forests (MoF)

BC MoF is a provincial government agency that strives to encourage maximum timber resource productivity. Its mandate is to manage timber resources responsibly to achieve the

greatest short- and long-term social benefits; practice integrated resource management; encourage a globally competitive forest industry; and assert the financial interests of the Crown.

Canada – BC Agreement on the Management of Pacific Salmon Fishery Issues The Pacific Fisheries Resource Council advises the Council of Fisheries Ministers regarding matters of conservation and long term sustainable use of salmon resources and habitat. Both governments agreed to establish a joint Fisheries Renewal Advisory Board, including stakeholder and community representation, to coordinate each government's respective development and delivery of programs in the areas of habitat restoration and salmonid enhancement. The Board has a mandate to directly involve stakeholders and communities in setting priorities for restoration and enhancement and in program delivery.

Coho Recovery Plan

Protecting and rebuilding coho stocks is the key focus of this plan. The major components of the plan are habitat protection and restoration, strategic stock enhancement, stock assessment, enforcement and catch monitoring, and public education. It is unclear whether coho may potentially reach the Canadian portion of the Okanagan Watershed, and thus it is unclear if this recovery plan may potentially apply to the Okanagan Watershed.

Columbia Basin Trust

The Columbia Basin Trust manages assets, including money allocated by the Province for power projects and other investments, for the ongoing economic, environmental, and social benefit of the region, without relieving governments of their obligations. This money comes from a transfer of funds that are provided to the provincial government as part of the "downstream benefits" aspect of the Canada-U.S. Columbia Basin agreement. By investing money in local businesses (including hydroelectric operations) and occasionally in other cultural, educational, or ecological activities, the Trust promotes development of power projects while maintaining environmental integrity.

Columbia Basin Fish and Wildlife Compensation Program (Canada) This program is jointly managed by BC Hydro and BC Ministry of Environment, Lands, and Park. Its purpose is to conserve and enhance fish and wildlife populations affected by BC Hydro dams in the Columbia Basin. The program's primary mandate is to protect and rehabilitate fish, wildlife and their habitats. The program conducts project and funds many other projects by other organizations (which they refer to as "partners"). First Nations groups are one of their target partners. This program does not include the Okanagan Basin, but may have some technical expertise of benefit to the current Okanagan Watershed program objectives.

Environment Canada

Environment Canada is a federal agency whose mandate is to preserve and enhance the quality of the natural environment, including water, air, and soil quality. In addition, this agency strives to conserve Canada's renewable resources, including migratory birds and other non-domestic flora and fauna, and to protect Canada's water resources. Environment Canada

Okanogan/Similkameen Subbasin Summary 350

enforces the rules made by the Canada–United States International Joint Commission relating to boundary waters, and coordinates environmental policies and programs for the federal government. Environment Canada holds authority under the federal Fisheries Act for the management of deleterious substances in aquatic systems.

Fisheries and Oceans Canada (FOC)

Fisheries and Oceans Canada is responsible for policies and programs in support of Canada's economic, ecological, and scientific interests in oceans and inland waters. Its mandate includes the conservation and sustainable utilization of Canada's fisheries resources in marine and inland waters; leading and facilitating federal policies and program on oceans; and safe, effective, and environmentally sound marine services responsive to the needs of Canadians in a global economy. FOC is the main agency holding authority under the federal Fisheries Act for the management of fish and fish habitat.

Fisheries Renewal BC

Fisheries Renewal BC is responsible for a wide range of initiatives including promoting the protection, conservation, and enhancement of fish stocks and habitat. This program was also designed to create jobs in the fisheries sector and to facilitate planning and fisheries-related investments in partnerships with different sectors of BC fisheries and with BC communities. Developing local infrastructure that will encourage fisheries-related employment and investment in communities and building a multi-skilled workforce in fishing communities is another of this agency's mandates. These goals are achieved by supporting employment, training, and technological development and by providing assistance and advice to government on how best to coordinate and deliver fisheries-related programs. Top priorities will be programs for fisheries restoration and enhancement, commercial and recreational fisheries diversification and development, skills training for fisheries workers, community-based fisheries job creation strategies, and development of long-term provincial fisheries renewal strategy.

Forest Renewal BC

Forest Renewal BC develops and implements plans including investments to renew the forest economy of British Columbia by enhancing the productive capacity and environmental values of forest lands, and by creating jobs, providing training for forest workers, and strengthening local communities that depend on the forest industry. This agency conducts operational inventories (including fish and fish habitat assessments), watershed restoration program (WRP) (including identification of impacts and opportunities for improvement), as well as actual restoration projects.

Habitat Conservation Trust Fund

The Habitat Conservation Trust Fund was set up to pursue habitat preservation, restoration, and enhancement, species conservation, land stewardship, environmental education, and land acquisition. The fund has an approximate budget of \$5 million Canadian per year that is generated from hunting and fishes license surcharges.

Habitat Restoration and Salmon Enhancement Fund (HRSEP) The purpose of this fund is to pursue habitat restoration, salmon stock rebuilding, and resource and watershed stewardship.

Kokanee Salmon Heritage Project (Okanagan)

The Kokanee Salmon Heritage Project was developed as a result of the myriad of questions about kokanee which arose during school and public interpretative talks at the Mission Creek Spawning Channel in Kelowna, BC. The scientific authority for the project is Dr. Peter Dill, a researcher on trout and salmon in Canada for some 30 years and on okanee in the Okanagan for the past ten years. Dr. Dill is a biology professor at Okanagan University College.

Okanagan Basin Technical Working Group

This group is a cooperative endeavor between Okanagon Nations Alliance (ONA), FOC, and MoFs/MELP to identify and design mitigation measures for impacted sites within the Okanagan Basin. Current activities include restoration works in the Skaha Lake system that is funded by the Douglas County Public Utilities District.

Okanagan Nations Alliance (ONA)

The Okanagan Nations Alliance has an inherent right and responsibility to enjoy, manage and protect its peoples, lands, resources and forms of government as stated in the *Okanogan Nation Declaration* of August 22, 1987. Their mandate is to strive for the advancement, assertion, support, and preservation of the Aboriginal Rights of the Okanogan Nation. The ONA promotes protection, enhancement, and preservation of the peoples, lands and resources, including fish and wildlife, of the member bands.

Provincial Okanagan Lake Action Plan

The Okanagan Lake Action Plan took shape in 1996 after the closure of the kokanee sport fishery the previous year. The goal of the plan is to identify biological relationships within Okanagan Lake to determine limiting factors to kokanee production. In addition, the plan will determine remedial measures that will result in the recovery of the lake's kokanee population.

Provincial Water Use Planning (WUP)

All water management groups (including BC Hydro) are assessing how to better balance the social, economic, environmental, and recreational and power generation uses of water. WUP will define the operating parameters to be applied in the day-to-day operations of the facilities in order to meet these goals.

Restructuring Canada's Pacific Fishery

This program is a predominantly federal initiative to protect and restore Pacific fisheries. It includes fisheries and license restructuring, community economic development in an attempt to rebuild the fishery resource within the province.

Rebuilding the Resource

This program is a predominantly federal initiative to assist in the protection and restoration of Pacific fisheries. It includes HRSEP and community stewardship groups to develop strategic enhancement of specific stocks of concern.

Salmonid Enhancement Program

This program is a predominantly federal initiative to protect and restore salmonid populations and habitat. The Salmonid Enhancement Program is mainly involved in incubation and rearing programs (including the operation of fish hatcheries). Some habitat improvement activities are conducted by the group as well.

South Okanagan Similkameen Conservation Program (SOSCP)

Run by the Federal Ministry of the Environment, the South Okanagan-Similkameen Conservation Program consists of a large fund that is mainly used for the purchase of land.

Transborder Pacific Salmon Southern Boundary Restoration and Enhancement Endowment Fund

The fund was established under the "Pacific Salmon Agreement" between Canada and the U.S. to sponsor habitat rehabilitation and fishery enhancement projects in both countries. The fund will also fund studies to improve the scientific understanding of factors affecting salmon production in freshwater and marine environments.

Wild Salmon Policy

This program is a predominantly federal initiative to assist in the protection and restoration of Pacific fisheries. The goal of the Wild Salmon Policy is to conserve the long-term viability of Pacific salmon populations and their natural habitats by focusing on the genetic diversity of populations and habitats.

Okanogan Subbasin Recommendations

Projects and Budgets

The following subbasin proposals were reviewed by the Columbia Cascade Province team and Province Budget Work Group and are recommended for Bonneville Power Administration (BPA) project funding for the next three years.

It is important to note that historically, the Okanogan Subbasin and the Columbia Cascade Province as a whole, have received relatively low BPA mitigation and restoration funding through the auspices of the Northwest Power Planning Council's (Council) Fish and Wildlife Program. The Columbia Cascade Province team and Province Budget Work Group are recommending a suite of projects, the funding of which will require long-overdue increases in the base level of funding for the Province as a whole and for the Okanogan Subbasin in particular.

The Okanogan Subbasin comprises one of six subbasins in the Columbia Cascade province. This region hosts two of the three Endangered listings for anadromous fish and one Threatened resident fish species. Extirpated and critically depressed species of both fish and wildlife are also found throughout the Okanogan subbasin. The recommendations contained herein reflect a regionally coordinated and ecosystem-based approach to addressing all species and their habitats consistent with the state, regional and tribal recovery plans, ESA, the 2000 CRFPS BiOp and the NPPC Fish and Wildlife Program

Finally, the Okanogan subbasin is a trans-border watershed. As such, continued coordination and cooperation with Canadian interests must be part of a comprehensive and successful effort. This fact is reflected in the following recommendations.

Table 1 provides a summary of how each project relates to resource needs, management goals, objectives, and strategies, and other activities in the subbasin.

Continuation of Ongoing Projects

Project: 199604200 Restore and Enhance Anadromous Fish Populations and Habitat in Salmon Creek

Sponsor: Colville Confederated Tribes

Short Description:

Restore and Enhance Anadromous Fish Populations and Habitat in Salmon Creek. Salmon Creek is a tributary to the Okanogan River and has been identified as having the best potential for restoration of anadromous fish populations in the entire Okanogan Basin.

Abbreviated Abstract

The overall program to restore and enhance ESA-listed summer steelhead and spring Chinook populations and habitat in Salmon Creek, a tributary to the Okanogan River, has many subelements that address two limiting factors for anadromous fish: lack of instream flow and channel conditions that inhibit fish passage. We propose to undertake projects in these two categories. In addition, we propose to conduct regulatory compliance activities tied to these projects, specifically NEPA and SEPA, in order to prepare an EIS. Further, we propose to develop a Stream Management and Recovery Plan in order to adaptively manage the projects we propose to undertake as well as to monitor and evaluate measurable improvements to habitat productivity and populations in Salmon Creek.

Relationship to Other Projects		
Project #	Title/description	Nature of relationship
200001300	Evaluate reintroduction of Sockeye	Context of restoration of anadromous
	Salmon into Skaha Lake	fish populations in Okanogan
		Watershed/sub-basin
200000100	Improve anandromous fish habitat and	Context of restoration of anadromous
	passage in Omak Creek	fish populations in Okanogan
		Watershed/sub-basin
NRCS	PL-566 Omak Creek Watershed	Context of restoration of anadromous
	Plan/Environmental Assessment	fish populations in Okanogan
	Project (NRCS)	Watershed/sub-basin
NFWF	Omak Creek Restoration sponsored by	Context of restoration of anadromous
	CCT, funded by NF&WF	fish populations in Okanogan
		Watershed/sub-basin
SRFB	Omak Creek Watershed Restoration	Context of restoration of anadromous
	funded by Wash state SRFB	fish populations in Okanogan
		Watershed/sub-basin
ССТ	An assessment of anadromous	Context of restoration of anadromous
	salmonid spawning habitat in the	fish populations in Okanogan
	Upper Columbia River from Chief	Watershed/sub-basin
	Joseph dam to Grand Coulee Dam by	
	CCT/Battelle	
199604200	Restoration and Enhancement of	Past and ongoing effort
	Anadromous Fish Populations &	
	Habitat in Salmon Creek	

Relationship to Existing Goals, Objectives and Strategies NMFS FCRPS Biological Opinion Objectives for Habitat (December 21, 2000):

The objectives of the Salmon Creek Restoration Program are congruent with the following action items under NMFS' objectives for Habitat, specifically, these action items:

- ♦ 149 Increase Instream Flows
- ♦ 150 Protect existing spawning and overwintering habitat
- ◆ 151 BPA water brokerage
- 153 BPA incentives for long-term protection of riparian buffers through CREP
- ♦ 154 Sub-basin assessments

Okanogan Similkameen Sub-basin Summary, Sept. 2001

The objectives of the Salmon Creek Restoration Program are congruent with the objectives in the sub-basin summary:

- Improve passage at irrigation diversions
- Screen irrigation diversions
- Increase instream flows in tributary streams
- Improve riparian buffers through passive or active restoration.

Review Comments

An EIS is currently being developed that will guide the eventual design of this project. The current proposal addresses all possible alternatives. It is anticipated that through the 3-step process, the focus and scope of the project will be defined. Funding should be provided for ongoing activities until the EIS is completed. NMFS has identified this project as a BiOp project.

Budget		
FY2003	FY2004	FY2005
\$1,300,000	\$ 1,300.00	\$ 2,109,375
Category: High Priority	Category: High Priority	Category: High Priority

Project: 196609400 Increase Sharp Tail Grouse and Mule Deer Populations and Enhance Shrub Steppe/Riparian Habitats on the Scotch Creek Wildlife Area

Sponsor: Washington Department of Fish and Wildlife

Short Description:

Protect, increase, and maintain a viable sharp-tailed grouse population, increase mule deer use of the project site, and enhance shrub-steppe habitat for shrub-steppe obligate species.

Abbreviated Abstract

The 6,477 hectare (15,997-acre) Scotch Creek Wildlife Area (SCWA) was purchased in 1991 by the Washington Department of Fish and Wildlife (WDFW) to support sharp-tailed grouse recovery within WDFW's Sharp-tailed Grouse Management Zone Three and to protect and enhance shrubsteppe habitats for mule deer and numerous shrub-steppe obligate species. WDFW's primary biological goal is to establish and maintain viable sharp-tailed grouse meta populations on the Scotch Creek Wildlife Area as well as on surrounding landscapes.

F	Relationship to Other Projects	
Project #	Title/description	Nature of relationship
199106100	Swanson Lakes Wildlife Area	Supports this project and WDFW goals and objectives
1994044	Sagebrush Flat Wildlife Area	Supports this project and WDFW goals and objectives
21034	Colville Tribes restore habitat for sharp- tailed grouse	Supports Tribal (CCT) and WDFW goals and objectives
199204800	Hells Gate big game winter range wildlife mitigation project	Supports Tribal (CCT) and WDFW goals and objectives

This project is part of WDFW's statewide effort to establish and maintain viable populations of sharp-tailed grouse. The SCWA project compliments and supports sharp-tailed grouse and shrub-steppe recovery efforts at the Sagebrush Flat Wildlife Area, (1994044), Swanson Lakes Wildlife Area (199106100) and on the Colville Confederated Tribes (CCT) (199204800, 21034) Reservation.

WDFW in conjunction with the CCT is developing strategies to establish and maintain meta populations within the Okanogan (Columbia Cascade Province), Crab Creek (Columbia Plateau Province), and Lake Roosevelt (Mountain Columbia Province) subbasins i.e., viable populations at the Scotch Creek Wildlife, Sagebrush Flats (West Foster Creek Unit), and Swanson Lakes Wildlife Areas and CCT and Spokane Tribe of Indians (STOI) Reservations (Figure 3). Sharp-tailed grouse are currently present on all areas except the STOI Reservation. The overall vision for this cooperative effort is to share information, conduct joint habitat evaluations and research on sharp-tailed grouse, translocate grouse between isolated populations to increase genetic variability, and to establish new populations to link existing disjunct populations.

WDFW and the CCT have cooperated on sharp-tailed grouse radio telemetry studies both on and off reservation lands (McDonald 1998). Furthermore, sharp-tailed grouse captured on the CCT reservation have been used to supplement remnant grouse populations at the Scotch Creek Wildlife Area.

The FCRPS Biological Opinion identifies the importance of functioning aquatic habitat as in RPA 150. Similar actions should be taken when possible regarding terrestrial habitat.

Relationship to Existing Goals, Objectives and Strategies

The SCWA mitigation project is part of a statewide effort to increase and maintain viable sharp-tailed grouse populations (at least 2,000 grouse) in four management zones within Washington State (WDFW 1995), (Figure 1). Today, sharp-tailed grouse are found in eight relatively small, isolated, subpopulations, which are separated from adjacent subpopulations by at least 20 km (12.5 mi). Sharp-tailed grouse are continuing to decline in Washington due to long-term effects of habitat conversion, degradation, fragmentation, and population isolation (Hays et al. 1998, Schroeder et al. 2000).

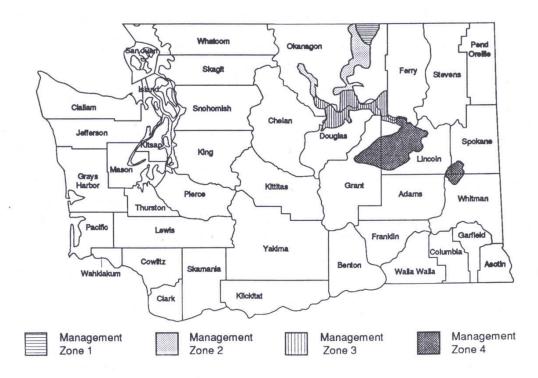


Figure 1. Sharp-tailed Grouse Management Zones located in Washington State.

The goals and objectives described in the Scotch Creek Wildlife Area mitigation project management plan support both WDFW and Okanogan Sub-basin goals and objectives. WDFW, Okanogan Sub-basin, and SCWA sharp-tailed grouse goals and objectives are described in the following table (from proposal).

Table (from proposal). Okanogan Subbasin and SCWA sharp-tailed grouse goals and objectives.

State Goal(s)	Okanogan Sub basin Goal(s)	SCWA Project Goal(s)
Increase the population size and distribution of sharp- tailed grouse and protect, enhance, and increase shrub/meadow steppe.	Recover populations of sharp-tailed grouse in the Okanogan Sub basin to the level where populations are viable.	Establish and maintain a viable sharp-tailed grouse population at the Scotch Creek Wildlife Area.
		Protect, enhance, and maintain 15,000+ acres of shrub-steppe habitat for sharp-tailed grouse and other shrub-steppe obligate species.
Increase the breeding population of sharp-tails from	Use translocations of sharp- tailed grouse into Washington from populations in other	Increase the number of sharp- tailed grouse at the SCWA from approximately 40 to ≥300 by

State Goal(s)	Okanogan Sub basin Goal(s)	SCWA Project Goal(s)
380 to more than 2,000 distributed throughout four management zones.	states.	2010.
Increase the breeding population of sharp-tails in WDFW's Sharp-tailed Grouse Management Zone 3 to >400.	Conduct research on sharp- tailed grouse through 2005 to monitor population size, determine population viability, and evaluate population responses to habitat alteration	Monitor wildlife and habitat response to protection, maintenance, and enhancement measures annually.
Protect at least 10,000 acres of high quality, relatively contiguous (<3 mile gaps) habitat that is currently occupied in Zone 1 and 25,000 acres in Zone 2.	Improve quantity, quality, and configuration of the shrub steppe habitat necessary to support a viable population of sharp-tailed grouse by 2010.	Implement habitat management activities and schedules described in the SCWA Enhancement Plan.

Operations and maintenance and enhancement activities at the SCWA are currently funded by BPA, as specified in the Washington Agreement (MOA), to partially mitigate for losses resulting from construction of Grand Coulee and Chief Joseph Dams. Sharp-tailed grouse and mule deer are listed in the loss assessments for both dams (Howerton 1986, Berger, M., and D. Kuehn 1992) and were used as habitat indicator species during the Habitat Evaluation Procedure (HEP) analysis (Berger, Cope 1992). In addition, white-tailed deer, yellow warbler, downy woodpecker, mink, and Lewis' woodpecker habitat suitability index (HSI) models were used to obtain baseline habitat unit (HU) data on cover types other than shrubsteppe (Ashley, Berger 1997).

As an existing mitigation project, the SCWA project is consistent with the Northwest Power Planning Council's 2000 Program including, but not limited to the following sections: Overall Vision (Section III A-1) "Wherever feasible, this program will be accomplished by protecting and restoring the natural ecological functions, habitats, and biological diversity of the Columbia River ecosystem....", Planning Assumptions (Section III, A-2) "This is a habitat based program, rebuilding healthy, natural producing fish and wildlife populations by protecting, mitigating, and restoring habitats and the biological systems within them...", Scientific Principles (Section III, B-2) i.e., Principles one through eight, Biological Objectives (Section III, C-1) "Recovery of fish and wildlife affected by the development and operation of the hydro system that are listed under the Endangered Species Act," (Section III, C-2a.4) "Develop and implement habitat acquisition and enhancement projects to fully mitigate for identified losses; Coordinate fish and wildlife activities throughout the basin...; maintain existing and created habitat values; and monitor and evaluate habitat and species responses to mitigation actions," and <u>Wildlife</u> (Section III, D-7) "Complete the current mitigation program for construction and inundation losses and include wildlife mitigation for all operational losses as an integrated part of habitat protection and restoration".

Review Comments

This project protects and enhances critical sharp-tailed grouse/shrub steppe habitat and is a significant component of statewide sharp-tailed grouse recovery strategy. The project sponsor has removed \$53,000 from the Construction and Implementation phase of the project for 2003 and 2004 by delaying equipment purchases until 2005. The budget has been modified to reflect those changes.

Budget		
FY2003	FY2004	FY2005
\$408,401	\$352,420	\$405,420
Category: High Priority	Category: High Priority	Category: High Priority

Project: 200000100 Improvement of Anadromous Fish Habitat and Passage in Omak Creek

Sponsor: Colville Confederated Tribes

Short Description:

This project is the implementation of a plan to restore 40-mile of historical anadromous fish habitat (summer steelhead) by improving land management practices and conducting restoration activities that accelerate recovery of the Omak Creek watershed.

Abbreviated Abstract

This project is part of a 10-year project which originated from the Omak Creek Watershed Plan/Environmental Assessment (NRCS 1995). The implementation of this project is costshared between the Colville Confederated Tribes and the Natural Resource Conservation Service. Several resource problems were identified in the watershed analysis. These problems included poor water quality conditions (high water temperatures, low levels of dissolved oxygen, high fecal coliform levles), lack of riparian vegetation, accelerated sediment yield from uplands and streambanks and innaccessible stream reaches for anadromous fish, particularly summer steelhead (federally listed "endangered", NMFS 1996). Previously, efforts to restore anadromous fish in Omak Creek included removing two man-made barriers during 1999. The first man-made barrier was a 1,600 foot section of culvert. This reach is now re-located and consists of approximately 3,100 feet of open channel with the exception of 215 feet that flows through a bottomless-arch culvert. The second barrier was created during the early 1920's when rubble was deposited in the bottom of a canyon when a railroad grade was constructed along this narrow gorge. During the fall of 1999, approximately 28,000 cubic yards of material was removed from this reach allowing access to over 26 miles of Omak Creek and tributaries. Passage through this reach will be evaluated during the spring of 2001 and 2002

Relationship to Other Projects		
Project #	Title/description	Nature of relationship
199604200	Restoration and Enhancement of	Further the restoration of tributaries and

Project #	Title/description	Nature of relationship
	Anadromous Fish Populations & Habitat	anadromous fish populations in the
	in Salmon Creek	Okanogan River.
200001300	Evaluation of an experimental re-	Maintain or improve survival of migrating
	introduction of sockeye salmon into	sockeye salmon in the Okanogan River by
	Skaha Lake	providing coldwater refugia.

The Colville Confederated Tribes Fish and Wildlife Department has focused recovery efforts of anadromous salmonids in the Okanogan River Basin. To effectively recover summer steelhead and spring Chinook salmon in the Okanogan River Basin restoration efforts have been directed toward tributaries. In addition to this project, the CCT Fish and Wildlife are also sponsors of restoring anadromous salmonids in Salmon Creek (Restore and enhance anadromous fish populations and habitat in Salmon Creek, BPA project number 199604200). Salmon Creek is a unique tributary of the Okanogan River. Salmon Creek watershed is approximately 167 square miles in size, provides cool water (northeast aspect) in a basin that contains predominately warm water temperatures, and has historically contained renowned runs of anadromous fish (Mullan et al. 1992). In 1916, a diversion dam was constructed for irrigation. The dam is located approximately 4.3 river miles upstream of the confluence. This lower reach is typically de-watered except during average and above average spring run-off. Consequently, anadromous fish have not inhabited Salmon Creek since the early 1900's.

The CCT has assisted the Washington Department of Fish and Wildlife (WDFW) in restoration and conservation measures along Aeneas Creek. Aeneas Creek is a tributary to the Okanogan River and the confluence is south of Tonasket, Washington. Aeneas Creek contains cool water temperatures (max. 67°F during 1998, CCT, Fish and Wildlife, unpublished data). Conservation measures to protect this unique resource have included organizing a stream survey team made up of local landowners and constructing livestock exclusionary fences.

Cold water is an uncommon physical condition in the Okanogan River Basin. During 1998 water temperatures exceeded 80°F in the mainstem of the Okanogan River (CCT, Fish and Wildlife Dept., unpublished data). The current water temperature regime in the mainstem of the Okanogan River is not conducive to support salmonids which require 1+ years in freshwater. To successfully re-establish native salmonids in the Okanogan River, the few cool water sources that exist must be protected and others restored. Therefore the restoration or conservation efforts directed toward the aforementioned tributaries will begin reducing water temperatures and improve habitat conditions for the recovery of anadromous tributary spawners in the Okanogan River.

Restoration efforts may also be beneficial to anadromous salmonids which use the Okanogan River as a migration corridor. Sockeye (*Oncorhyncus nerka*), which migrate up the Okanogan River, are often delayed by high water temperatures (> 21.5°F). When water temperatures dip sockeye swim the Okanogan River from the confluence to the north end of Lake Osoyoos (approx. 80 miles). By re-establishing flows in Salmon Creek, improving riparian habitat and increasing canopy closure along Omak Creek and conserving the water quality in Aeneas Creek, plumes of cold water would be delivered to Okanogan River and provide thermal refuges for migrating sockeye. These cool water refuges may improve the survival of adults to current spawning areas and historical areas such as Skaha Lake which is currently being evaluated for the feasibility of re-introduction (Evaluate an experimental re-introduction for sockeye salmon into Skaha Lake, BPA #200001300).

Relationship to Existing Goals, Objectives and Strategies

RPA: Action 150 Action 153

This project is directed towards reducing impacts created by land activities. By reducing road density and stabilizing stream banks the amount of fine sediment delivered to the stream channel will be reduced. Furthermore by excluding livestock, riparian vegetation will become reestablished improving water temperatures. Finally, by removing passage barriers within the Mission Falls reach of Omak Creek, approximately 26 miles of habitat would become accessible by summer steelhead. Therefore this project, BPA #200000100, addresses the 2000 FCRPS Biological Opinion 9.6.2.1 Actions Related to Tributary Habitat, particularly water quality as it relates to spawning and rearing areas, passage improvements and watershed health.

This project addresses the following NPPC program measure numbers: 4.1A, 4.1B, 7.6a, 7.6B.1, 7.6B.3, 7.6B.4, 7.6B.5, 7.6c and 7.6D.

Furthermore, this project addresses the following action items found in the Okanogan Watershed Limiting Factors Analysis: Omak Creek Action Items

- Explore land use ordinances to improve water temperatures in lower reach (RM 0-5.1). Implement fencing, planting, and livestock management programs.
- Reduce road densities and decommission roads in the upper basin. Relocate roads away from the creek where possible.
- Implement fencing, riparian planting and livestock management programs.

Review Comments

NMFS has identified this project as a BiOp project.

Budget		
FY2003	FY2004	FY2005
\$122,717	\$120,000	\$120,000
Category: High Priority	Category: High Priority	Category: High Priority

Sponsor: Colville Confederated Tribes

Short description

Evaluation of an experimental re-introduction of sockeye salmon into Skaha Lake in the Okanogan River Basin. Assess risks benefits, formulate hypotheses, develop an experimental design and analytical tools.

Abbreviated abstract

Historical records indicate that sockeye salmon were once found in most of the lakes in the Okanogan Basin. Currently, the only sockeye population within the Okanogan Basin is found in Osoyoss Lake. Abundance of this stock has declined significantly in the last fifty years. Tribes and First Nations in the U.S. and Canada have proposed re-introducing the species into Okanogan Lake, which has a large rearing capacity. However, assessing the potential benefits and risks associated with a re-introduction of sockeye salmon into Okanogan Lake is difficult because of uncertainties about factors that determine production of Okanogan sockeye and potential interactions with the present fish community of Okanogan Lake.

A recent workshop to discuss these issues recommended that sockeye be re-introduced to Skaha Lake as an experimental management strategy to resolve some of these uncertainties. The prupose of this proposal is to continue to assess the risks, specifically the disease agent Myxobolus cerebralis and benefits of an experimental re-introduction of sockeye salmon into Skaha Lake. The assessment will be accomplished through comprehensive assessments of disease and other potential risks, development of quantitative modeling tools, and an evaluation of the potential learning benefits of this action. These elements will be integrated into an overall experimental management plan through a cooperative multi-agency process that involves U.S. and Canadian Agencies. The information in this plan, as well as the information gathered from the re-introduction itself, will support future decisions on rebuilding strategies for this stock and for other sockeye stocks in the Columbia River Basin.

	Relationship to other projects	
Project #	Title/description	Nature of relationship
199604200	Restoration and Enhancement of	Further the restoration of tributaries and anadromous
	Anadromous Fish Populations & Habitat in	fish populations in the Okanogan River. Provide cold-
	Salmon Creek	water refuge for migrating sockeye salmon.
200000100	Improvement of Anadromous Fish Habitat	Reduce water temperature in Omak Creek an provide a
	and Passage in Omak Creek	cold water refuge for migrating sockeye salmon.

Review Comments

Important on-going project, funding for only one year and small amount should make this a top priority.

Budget		
FY2003	FY2004	FY2005
Rec: \$18,096	Rec: \$	Rec: \$
Category: High Priority	Category:	Category:

New Projects

Project: 29001 Evaluations of 1872 Water Rights to Supplement Flows Between Subbasins

Sponsor: Colville Confederated Tribes

Short Description:

Develop a known data base to prioritize available CCT 1872 water rights which may be transferred, (if abandoned, or purchased if available), and placed into trust to supplement instream flows, both within or transferred between subbasins.

Abbreviated Abstract

The restoration of instream flows and lowering of temperatures to tributaries of the Okanogan River system play a pivotal role in the Columbia River Basin Fish and Wildlife Program. The CCT is proposing an innovative approach to assist with the supplement of stream flows as identified in RPA action 151 as providing "innovative ways to increase tributary flows by, for example, establishing a water brokerage." This tribal proposal provides a cost effective and manageable approach, to identifying short term availability of allocated water rights, and returning them to a beneficial use to support stream flows, and reducing stream temperatures. This proposed project will assist the CCT with development of an allocated water rights database, evaluation of documented water to determine if suspension, and/or existing rights may be placed in a water trust. Allocated water transferred into this trust will then be evaluated to determine most beneficial use. This evaluation will include determining if water should be left in place to assist with recovery of stream flows, and/or be transferred to adjacent basins to supplement flows in streams in which salmon recovery efforts are ongoing, or proposed.

	Relationship to Other Projects	
Project #	Title/description	Nature of relationship
29032	Develop a water strategy for Okanogan Basin	The evaluation of available water rights to be placed in a trust account for potential transfer to instream flows is part of an innovative approach to an overall water strategy in the Okanogan Basin.
	Assessment of tributary habitat for steelhead and spring chinook production	Transfer of water to instream flows in tributaries will assist in the evaluation of potential steelhead and spring chinook production.
	Prioritize and implement tributary action items from LFA	Low flows and high temperatures are identified as limiting factors. Transfer of water within or to adjacent basins will assist in over coming limiting factors.
29022	Omak Creek Temperature model	Transfer of groundwater from suspended water rights can be transferred to assist in achieving lower temperatures in Omak Creek to support steelhead and summer chinook habitat.

Relationship to Existing Goals, Objectives and Strategies

Transfer of available CCT 1872 water rights into a trust account to supplement instream flows is an innovative approach to supplementing stream flows and decreasing temperatures in tributaries (RPA 151). This study will allow for a quicker response to identify available water to assist the CCT in salmon recovery efforts. The study will also assist the CCT and the proposed Okanogan Basin water strategy committee (see OK-2 proposed project description) and assist with other potential restoration efforts if known supplemental water is identified and available. Subsequent proposed salmon hatchery projects may also use the identified water resources in assisting with potentially available water at or near proposed rearing locations.

The proposed "Evaluation of CCT 1872 Water Rights to Supplement Flows within and/or between Basins" project is consistent with the overall Vision of the 2000 Fish and Wildlife Program in that it will:

- 1) It is an innovative approach to identify potential immediate available allocated water to restore flows to tributaries (RPA 151);
- 2) Promotes biological diversity;
- 3) Enhance rearing and refugia habitat for steelhead and spring Chinook;
- 4) Assist in the recovery of one of the three Columbia Basin ESU's listed as Endangered under ESA;
- 5) Upon restoration of natural flow conditions will ultimately lead to both tribal and nontribal harvest opportunities; and
- 6) Is the most cost effective short term alternative to identifying available allocated waters to be placed in a trust account to enhance instream flows, reduce temperatures of Okanogan River tributaries, and improve rearing and refugia habitat.

All of which are important components of the NWPPC 2000 Fish and Wildlife Program.

In addition, the proposed project further:

- Has an objective of restoring natural habitat to promote natural recovery of fish populations;
- Develops a proposed plan to allocate and protect water for salmon recovery;
- Has a monitoring and evaluation component that will address if the most feasible and beneficial use of the trust water is currently being utilized;
- Will coordinate with other salmon recovery projects within the Okanogan Basin;
- Will provide an early potential source of water for restoring flows to tributaries; and
- Will assist the CCT in developing a more manageable program to document, allocate, and distribute appropriate water, with protection of fish habitat as a high priority.

The proposed project work is consistent with the Goals, Objectives, and Strategies of the Okanogan/Similkameen Subbasin Summary that seeks applicable scientific projects and projects that will assist in the recovery of salmon habitat throughout the subbasin.

Review Comments

This is an assessment project to determine possible water reallocation to instream flows that would reduce illegal taking of water rights. Stream flow data is being collected at several sites within the basin already questions the need for additional data. The project sponsor reduced the budget by \$38,000 by transferring the water rights without using a subcontractor. The budget has been reduced to reflect this. This project has been identified as a potential BiOp project by NMFS.

Budget		
FY2003	FY2004	FY2005
\$39,000	\$51,000	\$57,000
Category: High Priority	Category: High Priority	Category: High Priority

Project: 29003 Acquire Property for Partial Wildlife mitigation

Sponsor: Colville Confederated Tribes

Short Description:

Acquire, protect, enhance and evaluate wildlife habitat and species for partial mitigation for losses to wildlife resulting from Grand Coulee and Chief Joseph Dams. Mule deer, elk, northern goshawk, golden eagle, ferruginous hawk, peregrine falcon, sharp-tailed grouse, sage grouse, sage thrasher, sage sparrow, sandhill crane, mourning dove, willow flycatcher, white-breasted nuthatch, sagebrush lizard, and western toad.

Abbreviated Abstract

This is a continuing segment of the Colville Tribes overall goal of mitigating for as much of the wildlife losses suffered from Grand Coulee and Chief Joseph Dam Projects as is possible. This project will add additional land to the existing mitigation base by acquiring management rights to adjacent or similar lands within the project area. Approximately 2,000 to 4,000 acres will be acquired per year depending on the cost of agreements.

These lands will enhance and buffer current efforts. They will be managed to protect, enhance and partially mitigate for habitat losses due to hydropower developments as provided under the Northwest Power Act of 1980 and the 1994 FWP. Primary emphasis is on deer and elk winter range, sharp-tailed grouse habitat, and protection of ESA raptor habitat. However, a large number of species will receive benefit due to habitat protection and enhancements, which will lead to overall, increased bio-diversity.

Relationship to Other Projects

This project is closely related to other projects within this and adjacent provinces. Considerable emphasis is placed on mule deer, elk, sharp-tailed grouse, sage grouse and raptor habitat protection and enhancement. We are working closely with the Washington Department of Fish and Wildlife and the Spokane Tribe to maintain and expand existing sharp-tailed grouse populations. We hope to collectively, through our mitigation projects and others, restore enough habitat that we can re-establish sharp-tailed grouse populations in areas where they formerly existed. By establishing healthy populations around the basin we hope to remove the threat to their existence.

Regional concerns about mule deer habitat and populations are also being collectively addressed. Big game winter range is a priority and considerable critical deer winter range occurs on current project lands and is a key criterion for acquiring additional lands. A cooperative study involving WDFW, CCT, Chelan County PUD, and others is currently underway to assess mule deer needs in our Province. The contribution that project lands are making to wintering mule deer in the area will be determined to some extent by this study.

Overall this project is very similar to a lot of other wildlife mitigation projects throughout the Columbia Basin. We are mitigating in place and in kind habitat that was lost due to hydropower development.

Relationship to Existing Goals, Objectives and Strategies

Grand Coulee and Chief Joseph hydroelectric projects destroyed, essentially forever in excess of 88,000 acres of critical low elevation wildlife habitat. This was largely composed of riverine, island, riparian, shrub-steppe, mixed, and conifer habitats. This was habitat, rich in bio-diversity, which supported a large number and abundance of wildlife species. Existing conditions throughout the region very likely preclude management entities from ever being able to fully mitigate these losses; however, this project and other similar ones around the basin provide partial mitigation leading towards fulfillment of the fish and wildlife program goal of full mitigation for losses due to hydropower. In addition, the regions primary limiting factors for wildlife are habitat loss, fragmentation and isolation from past and current land use practices. This project will protect and maintain some of the few remaining portions of shrubsteppe, mixed range, and riparian and wildlife habitat that are still in fair to good condition in the region. Large areas of land are needed to protect larger species with greater habitat requirements and the need for relatively undisturbed habitat. It is important that these areas be integrated into the mitigation program to suit the current and future needs of different species and communities while protecting them against the different kinds of environmental threats that exist today. See additional relationship to goals, strategist and objectives in summary section of this document.

Review Comments

CBFWAs ranking of this project focuses on the Tumwater Basin parcels that the CCT is currently pursuing. The project sponsor has reduced the budget by \$500,000 in 2003.

Budget		
FY2003	FY2004	FY2005
\$1,000,000	\$1,500,000	\$1,500,000
Category: High Priority	Category: High Priority	Category: High Priority

Colville Confederated Tribes Sponsor:

Short Description:

Integrated program to control invasive noxious weeds for the benefit of wildlife and their associated ecosystems through the use of biologic insect agents, education, outreach, and habitat management. Mule deer, elk, bighorn sheep, sharp-tailed grouse, sage sparrow; all wildlife species will benefit from this project.

Abbreviated Abstract

The Control Okanogan Weeds- Invasive Species Project (COWISP) is proposed to build a comprehensive, integrated program for addressing new invasive species of weeds in the targeted region of the Okanogan subbasin portion of the Colville reservation. The rangeland of this area, provides valuable wildlife habitat, and watersheds for the entire subbasin. The area is being over-run by new and established invasive species that are threatening wildlife abundance and biodiversity, vegetative community diversity, negatively impacting subsistence, cultural, and spiritual resources, and causing a growing financial cost to local, state and federal agencies. Uncontrolled invasive weeds can lead to close to a drastic reduction in livestock carrying capacity along with a similar severe effect on ecosystem health and function.

This project will expand educational outreach resulting in greater prevention activities and earlier invader detection; increase coordination of rapid cross county weed control action; build curriculum and launch the Master Weed Advisor Volunteer Program for spreading knowledge; conduct a greatly expanded and measurable bioagent insect release effort in cooperation with USDA-APHIS; and carry out monitoring and research to build a greater knowledge base for more accurate "prescription" of bioagent site releases across the area. The outcomes from this project will be of great benefit to wildlife, land managers, tribal members, and grazers as well as the general public of the region and, indeed, the Western United States, by creating greater action in addressing invasive weeds and creating a "template for action" in addressing invasive species of plants.

Project #	Relationship to Other Projects Title/description	Nature of relationship
21034	Colville Tribes Restore Shart- tailed Grouse	Project restores critical shrub-steppe and riparian habitat by using weed control as a management tool.
199506700	Colville Tribes Performance Contract for Continuing Acquisition	Acquire, protect & enhance fish/wildlife habitat utilizing weed control as management tool
199204800	Hellsgate Big Game Winter Range O&M Project	Protect, enhance and manage wildlife habitat implementing major weed control efforts

The ongoing BPA funded wildlife mitigation projects on the reservation will be complimented and enhanced greatly by the implementation of this project. The Sharp-tailed Grouse Habitat Restoration Project, Hellsgate Big Game Winter Range, and Performance Contract for Continuing Acquisition for wildlife mitigation all focus heavily on noxious weed control and experience invasive species as one of the most significant limiting factors to wildlife and habitat restoration. The extent of the problem has grown to such a magnitude that habitat restoration demands that noxious weed impact be assessed and addressed. This project will enhance habitat not only of its own accord, but on other BPA funded project lands, and throughout the entire tribal and non-tribal region of the Okanogan subbasin as well. This project will bring together Tribal departments and resource managers, Extension staff and on-campus faculty to address a growing problem. This project will integrate research in invasive species with on-the-ground needs for guidance in use of bioagents and will provide much needed resources for building the capacity of the extension outreach education programming to meet the tremendous need that has developed across the region and meet the outcry for assistance by landowners and managers. If COWISP works as planned and hoped, it will slow and turn the tide of invasive species encroaching upon rangelands in this intermountain area. Progress of control efforts by cooperators and by targeted audiences will be monitored and reported.

The increased capacity of extension outreach will allow utilization of the body of knowledge in existence on invasive weeds in helping people in the COWISP region. Greater numbers of people and agencies will recognize, develop strategies, and take action to prevent and control or suppress the spread of noxious invasive weeds as partners in the fight to save and restore our native ecosystems. The insect bioagent monitoring and research portion of this project will add to this body of fundamental knowledge and fill voids in vital areas of knowledge in the effective and efficient use of insect bioagents to get the "biggest bang for the buck" in the investment we have made as a nation in finding and screening these agents.

Relationship to Existing Goals, Objectives and Strategies

Literature reviews and professional observation of weed specialists working in the field show a lack of complete data on factors affecting success or failure of establishment of the bioagents that offer some hope of restoring biodiversity for the thousands of acres this project area has in large infestations of knapweeds. The research proposed in this project would help meet that desperate need.

This project will foster and develop a closer working relationship between Colville Tribe resource managers, research and extension activities at Washington State University (WSU), tribal membership, and the general public in meeting the needs of wildlife species and land managers.

See additional information regarding relationship to strategies, goals and objectives in the summary section of this document.

Review Comments

None provided by workgroup.

Budget		
FY2003	FY2004	FY2005
\$299,933 Category: Recommended Action	\$296,023 Category: Recommended Action	\$296,023 Category: Recommended Action

Project: 29005 Validate Occurrence and Assess Abundance of Wildlife Species

Sponsor: Colville Confederated Tribes

Short Description:

Verify, monitor, and inventory wildlife species presence and abundance in this project area as indicated by the species list cited in "Wildlife-Habitat Relationships in WA/OR" (Johnson, D and Thomas A. O'Neil, 2000).

Abbreviated Abstract

The completion of Grand Coulee and Chief Joseph hydropower facilities brought cheap electricity and started the flow of irrigation water to a large portion of the Pacific Relationship to Other Projects Northwest. It brought an end to a way of life and a culture that had existed continuously in the area for thousands of years. It stopped the movement of salmon, the primary food Relationship to Existing Goals, Objectives and Strategies source of the indigenous peoples, to the Upper Columbia and destroyed critical habitat of deer and other species highly important for subsistence and spiritual purposes. In 1980, Review Comments forty years later, the Northwest Power Planning Act made it possible to at least begin to address the losses to wildlife caused by the construction and operation of Grand Coulee Budget and Chief Joseph Dams. Over 24,000 acres of critical, low elevation habitat were lost on the Colville Reservation. In addition, the subbasin summaries for the Columbia Cascade Province, and the Okanogan Subbasin Summary in particular, identify loss of habitat, especially riparian, fragmentation, and land development and livestock grazing pressure as the predominant limiting factors for wildlife.

Vast amount of wildlife habitat has been and continues to be lost due to hydropower development. Riparian obligate species obviously suffered losses with the construction of the dams, but the construction of those dams brought also an influx of people into a formerly balance but fragile arid ecological region. Suddenly shrub-steppe was turned to agriculture and irrigation and grazing began. With more people, timber harvests rose as did wildlife harvest for non-tribal member subsistence. As native peoples formerly reliant on salmon had to turn elsewhere for meat, the toll on wildlife continued. The impact to the Okanogan watershed was great; the extent of that impact has never been fully measured nor has it been mitigated for. A comprehensive survey of wildlife species residing in or seasonally utilizing the land, waters, and flyways of the Colville Indian Reservation has never been done, neither before, during, or after the construction of either the Grand Coulee or Chief Joseph Dam. The lack of a comprehensive and validated species list is a severe detriment to successful management and to adequate mitigation for losses to wildlife resulting from those dams and the subsequent impact to the entire region.

The lack of measures of population abundance for individual species prevents the identification of species most at risk. Dam construction and subsequent land use practices significantly altered the abundance, diversity, and range of wildlife species and habitats historically present at that time. Both historical and modern records that do exist are incomplete and developed primarily from literature. As indicated in the Okanogan Subbasin Summary, inadequate to nonexistent information is available on the wildlife known to be present currently and historically. The information void is even greater for those species not yet surveyed or documented. This project address the problem by using the work of Johnson and O'Neil (2000), and the book *Wildlife-Habitat Relationships in Oregon and Washington*,

which generated a species list for this region, as well as all other subbasins within the Columbia River Basin. This project proposes to scientifically ground-truth that list, and assesses abundance, which will result in a validated and amended baseline inventory.

Relationship to Other Projects

This project is strongly related to the completed project that resulted in a book and CD-ROM entitled Wildlife-Habitat Relationships in Oregon and Washington. This project involved over 600 individuals and represented many agencies, some of whom are key players such as Northwest Habitat Institute, WDFW, and the US Forest Service. This project and subsequent data set will form the foundation of a species list, which will be validated, verified, and amended by this proposed project.

The CTCR Wildlife Department has flown aerial big game surveys annually for most of the past 20 years. Surveys focus on whitetail deer, mule deer, and elk, but also record cougar, moose, bighorn sheep, and eagles as well. The department has also performs annual bald eagle nest production surveys, waterfowl pair and brood counts, upland bird brood counts, mourning dove call counts, ruffed grouse drumming counts, sharp-tailed grouse dancing counts, and loon production counts. The department is engaged in a cooperative mule deer study with WDFW and others, and has worked in the past with Forest service to track forest carnivores. Department personnel also maintain wildlife observation records and solicit such documentation from other natural resource employees as well. Although the effort has continuously been made to create and maintain a record of occurrence and abundance of some, highly visible and/or abundant species, for such a list to be validated and a legitimate accounting of abundance to be made for the entire project area, it must be the main objective of a separate project.

This project will address the Okanogan Subbasin portion of the reservation as part of an ongoing study to survey all CTCR land. Modern protocol and methods of wildlife investigation and survey will be used. This focus will be on determining presence detected of individual animal species, known also as diversity or richness, referred to here also as an inventory, as well as assessment of species abundance and range. Current methods that will be used are broadly categorized as observational techniques, capture techniques, and techniques based on animal signs and are familiar to field biologists. Some of the methods and equipment to be utilized include trapping, snaring, netting, mist netting, drives, transects, call playbacks, night surveys, sample counts, visually detecting sign (structures, tracks, stored food/remains, scats) olfactory sign, audible sign, and remote-tripped camera photography (Wilson et al. 1996). Work produced by Johnson and O'Neil (2000) provides managers a good starting point with lists of amphibians, reptiles, birds and mammals highly likely to be found in each of the 62 subbasins of the Ecological Provinces. The next step is to verify and map actual detection and abundance of animals in the project area.

Rationale and significance to Regional Programs

The objective of this project is to document what species are still or are now occurring in this area, to assess after the study period concludes for this area, which species are no longer detected, which are least abundant and thus, potentially at risk, and to manage and partially mitigate with that information. The Chief Joseph and Grand Coulee Dam hydroelectric projects forced the Colville Confederated Tribes to rely solely on resident fish and wildlife resources. The ensuing decline in wildlife resources and native salmonid fish stocks

significantly and negatively impacted the traditional subsistence lifestyle of Colville Tribal members. The extent of that impact to historical and current native wildlife species must be measured for fair partial mitigation and adequate management of the remaining resource for subsistence, cultural, and ceremonial use. The Bonneville Power Administration has committed to protecting native fish and wildlife habitat on the Colville Indian Reservation as a mean of partially mitigating the impacts of the Columbia River Hydroelectric System. Section 11.1 of the Columbia River Basin Fish and Wildlife Program states that the goal of the program's wildlife strategy is to achieve and sustain levels of habitat and species productivity as a means of fully mitigating wildlife losses caused by the construction and operation of the federal and non-federal hydroelectric system. The "Validate Occurrence and Assess Abundance of Wildlife Species" project will provide the baseline information and parameters of what to mitigate for and where. Much has been and is being done in this region to partially mitigate for impacts to fish species, while comparatively little has been done for wildlife losses. This information will be made available in written format and via GIS mapping to all tribal natural resource divisions for use in making sound management decisions. This information will also be cooperatively shared with other outside agencies as wildlife cross freely across most political boundaries into other agency management units.

Grand Coulee and Chief Joseph hydroelectric projects destroyed, essentially forever, in excess of 88,000 acres of critical low elevation wildlife habitat. This was largely comprised of riverine, island, riparian, shrub-steppe, mixed and coniferous habitats. This habitat, rich in biodiversity, supported a large number and abundance of wildlife species. Existing conditions throughout the region very likely preclude management entities from ever being able to fully mitigate these losses; however, many projects throughout the region and on this reservation provide some partial mitigation leading toward the fulfillment of full mitigation for losses due to the dams and the subsequent and continuing habitat loss. The Colville Tribes are concerned about loss of biodiversity in wildlife species and habitats due on the reservation due to those past and current impacts. Some partial mitigation has been done to address wildlife losses, however, that has been based on an assessment of target species, done only for select management species, and performed only on targeted mitigation lands. All other prior extant and currently occurring wildlife species within this region have not been addressed. The list verified by this project will provide a tool to guide management decisions for conservation and mitigation as well as serve as a reference point to gauge the long-term success of those decisions. The need for such verification exists throughout the entire reservation and other traditional lands

Relationship to Existing Goals, Objectives and Strategies

See summary section for additional detail on strategies, objectives and goals.

Review Comments None provided by work group.

Budget		
FY2003	FY2004	FY2005
\$194,136 Category: Recommended Action	\$172,636 Category: Recommended Action	\$168,136 Category: Recommended Action

Project: 29007 Okanogan Kelt Reconditioning

Sponsor: Colville Confederated Tribes

Short Description:

Recondition steelhead kelts in the Okanogan River system to allow repeat spawning in the wild and promote rebuilding of this Endangered ESU.

Abbreviated Abstract

Upper Columbia River steelhead are currently listed as Endangered under ESA. Steelhead in the Okanogan River have a high kelt rate but repeat spawning rates are negligible due to downstream passage mortality through nine hydroelectric projects. Holding, feeding, and reconditioning of steelhead kelts has been successfully completed by the CRITFC and the YN in the Yakima River system and will be similarly conducted by the CCT in the Okanogan River system. Pre-spawn steelhead will be trapped in Omak and Salmon creeks for local broodstock collection, transferred to a holding facility located at the Cassimer Bar Hatchery site, live spawned, fed, held until the late winter and released back into the Okanogan River system to spawn a second time in the wild. Monitoring and evaluation to assess homing fidelity and spawning success will be via mark/recapture of PIT tags and through spawning surveys. The use of radio tags in conjunction with current Mid-Columbia PUD radio telemetry research will also be explored to further assess homing fidelity. A portion of the reconditioned kelts will be held at the Cassimer facility to assess fecundity and egg viability.

F	Relationship to Other Projects		
Project #	Title/description	Nature of relationship	
200001700	Recondition Wild Steelhead Kelts	The proposed work will compliment and expand upon the kelt reconditioning work currently undertaken by the CRITFC/YN. Data sharing and cross-training of staff will occur.	
200000100	Improvement of Anadromous Fish Habitat and Passage in Omak Creek.	The proposed work will compliment the ongoing habitat restoration efforts in Omak Creek by increasing the number of adult steelhead available to utilize existing and restored habitat.	
199604200	Restore & Enhance Anadromous Fish Populations & Habitat in Salmon Creek.	The proposed work will compliment the ongoing habitat restoration efforts in Salmon Creek by increasing the number of adult steelhead available to utilize existing and restored habitat.	

Relationship to Existing Goals, Objectives and Strategies

This project is consistent with the FCRPS BiOp, the 2000 Fish and Wildlife Program, the Okanogan Subbasin Summary, and the Implementation Plan. In addition, it promotes natural production of ESA Endangered Steelhead, is based upon the best available science and sound scientific principles, is connected to and expands upon other ongoing BPA funded work, has clear quantifiable objectives, is cost-efficient, allows for adaptive management, and ultimately will contribute to increased tribal and non-tribal harvest opportunities through the recovery of an endangered species.

Protective measures such as collection and transportation of steelhead kelts at mainstem hydroelectric projects have been considered in the past to minimize mortality of these adult downstream migrants. Currently, studies such as kelt transportation and kelt reconditioning are listed in the Draft Implementation Plan for the Operation of The Federal Columbia River Power System (BPA, et al. 2001) as protective measures. Capturing and holding steelhead kelts in the Okanogan River system as detailed in this proposal, will eliminate mortality related to hydroelectric dam passage of captured kelts by removing these fish from exposure to the hydrosystem.

Protection of existing spawning and rearing habitat along with alleviation of survival problems in summer rearing/overwintering in the lower tributaries are critical objectives of the strategy. Specific recommendations of habitat protection activities are being developed and pursued through the Mid-Columbia Habitat Conservation Plan currently under development.

In addition, the CCT and the NRCS have ongoing efforts to restore instream and riparian habitat in Omak Creek. Restoration efforts include:

- Point bar and log weir construction on the mainstem Omak Creek to divert flow from exposed banks.
- Riparian planting on Omak Creek and tributaries.
- Removal of two passage barriers in 1998.
- Redesign of the stream channel in lower Omak Creek to address severe erosion and lateral migration of the channel.

In 2001, two more miles of the creek will be inventoried in order to develop further restoration plans.

Omak Creek projects are funded by the National Fish and Wildlife Federation, the Salmon Recovery Funding Board (Project #00-1683-D), and BPA (Project #200000100).

NMFS considers all Columbia River steelhead returning to spawning areas upstream of the Yakima river confluence as belonging to the same ESU (NWPPC 2001). This ESU is currently listed as "endangered," and includes the Wenatchee, Entiat, Methow, and Okanogan watersheds. The Wells Hatchery steelhead stock is also included in this ESU because it is considered essential for the recovery of the natural population (NWPPC 2001). Preservation of the genetic integrity of Evolutionarily Significant Units is the underlying goal in all ESA recovery efforts. Although Upper Columbia River steelhead originate from several tributaries, they are currently considered to be genetically homogeneous and grouped under the same ESU. The proposed work will utilize local native stock from two Okanogan tributaries with the intent of promoting repeat spawning within the same natal streams and habitat to which these fish are adapted. The proposed kelt reconditioning project will therefore serve to preserve the genetic integrity of Upper Columbia River steelhead. Steelhead which have originated from the Wells Hatchery Program may be present in Omak and Salmon Creeks but, as indicated above, are considered to be part of the Upper Columbia River ESU and will therefore be used in the Reconditioning Program.

Critical assumptions pertaining to reconditioned kelt homing fidelity, fecundity, and egg viability exist. Radio telemetry studies of reconditioned kelts from the Yakima River Program to assess homing fidelity are ongoing. More work is needed to further assess homing fidelity of reconditioned kelts. The proposed work will compliment that of the CRITFC/YN effort by further assessing homing fidelity of reconditioned kelts to individual natal streams within the Okanogan River system. In addition, assessment of fecundity and egg viability of reconditioned kelts is needed but has not been conducted in the Columbia Basin and is included in the proposed Okanogan Kelt Reconditioning Project.

Rationale and significance to Regional Programs

NWPPC 2000 Fish and Wildlife Program.

The Vision Statement for the 2000 Fish and Wildlife Program states: "*The vision for this program is a Columbia River ecosystem that sustains an abundant, productive, and diverse community of fish and wildlife, mitigating across the basin for the adverse effects to fish and wildlife caused by the development and operation of the hydrosystem and providing the benefits from fish and wildlife valued by the people of the region. This ecosystem provides abundant opportunities for tribal trust and treaty right harvest and for non- tribal harvest and the conditions that allow for the recovery of the fish and wildlife affected by the operation of the hydrosystem and listed under the Endangered Species Act."*

We believe that the lack of repeat spawning steelhead in the Okanogan River is directly related to the nine hydroelectric projects which kelts must pass both downstream and upstream to spawn a second time. Therefore, there is clearly a hydropower impact which requires mitigation. In addition, Upper Columbia River steelhead are an important component in tribal culture and upon recovery of this Endangered ESU will provide opportunities for both tribal and non-tribal harvest.

The Vision Statement further indicates:

"Wherever feasible, this program will be accomplished by protecting and restoring the natural ecological functions, habitats, and biological diversity of the Columbia River Basin. In those places where this is not feasible, other methods that are compatible with naturally reproducing fish and wildlife populations will be used. Where impacts have irrevocably changed the ecosystem, the program will protect and enhance the habitat and species assemblages compatible with the altered ecosystem. Actions taken under this program must be cost-effective and consistent with an adequate, efficient, economical and reliable electrical power supply."

We further believe that the proposed project promotes biological diversity through the re-use of genetically adapted local stock and specifically uses naturally reproducing fish to enhance reproductive success in the wild. In addition, given the other options to effect repeat spawning of steelhead in the Okanogan River such as kelt transportation or providing safe passage through nine hydroelectric projects, we strongly believe that the reconditioning program detailed in this proposal is by far the most cost effective alternative.

Therefore, the proposed kelt reconditioning project is consistent with the overall Vision of the 2000 Fish and Wildlife Program in that it will:

- 1) Mitigate for hydropower affects
- 2) Promote biological diversity
- 3) Enhance wild production
- 4) Assist in the recovery of one of the three Columbia Basin ESU's listed as Endangered under ESA.
- 5) Upon recovery, ultimately lead to both tribal and non-tribal harvest opportunities, and
- 6) Is the most cost-effective alternative to allow repeat spawning?

The "Scientific Foundation and Principles" section of the 2000 Fish and Wildlife Program further states:

"In developing a program to fulfill the vision statement above, the Council is relying on the best available scientific knowledge."

Kelt reconditioning is a relatively new concept for application in the Columbia Basin. Research is currently underway. The proposed project will expand upon and coordinate with current research and will therefore rely upon and add to the best available science.

Furthermore, the 2000 Fish and Wildlife Program is a habitat-based program. Some suitable habitat for steelhead spawning currently exists in the Okanogan River System and habitat restoration projects are currently underway to increase the amount of usable habitat. The tributaries that we have selected from which to trap kelts (Omak and Salmon Creeks) represent the best available steelhead habitat in the Okanogan system and have verified steelhead use. However, mortality associated with downstream, and possibly upstream, migration past mainstem Columbia River hydroelectric projects has reduced the number of fish available to use Okanogan River habitat. The proposed project is consistent with the 2000 Fish and Wildlife Program's habitat based ecosystem approach to salmon and steelhead recovery in that it will promote increased natural production in currently under-seeded habitat or habitat currently under rehabilitation.

In addition, the Objectives for Biological Performance outlined in the 2000 Program include:

- "Halt declining trends in salmon and steelhead populations above Bonneville Dam by2005. Obtain the information necessary to begin restoring the characteristics of healthy lamprey populations.
- Restore the widest possible set of healthy naturally reproducing populations of salmon and steelhead in each relevant province by 2012. Healthy populations are defined as having an 80 percent probability of maintaining themselves for 200 years at a level that can support harvest rates of at least 30 percent.
- Increase total adult salmon and steelhead runs above Bonneville Dam by 2025 to an average of 5 million annually in a manner that supports tribal and non-tribal harvest.
- Within 100 years achieve population characteristics that, while fluctuating due to natural variability, represent on average full mitigation for losses of anadromous fish. "

The increase in natural production as expected through the implementation of the proposed project will assist in halting declining trends in steelhead populations above Bonneville Dam

through the restoration of naturally reproducing steelhead populations in the Okanogan River system. These actions ultimately will contribute to an increase in adult steelhead runs over Bonneville Dam and eventually to increased tribal and non-tribal harvest opportunities.

The "Strategies" section of the 2000 Program indicates: "*Restorable habitat:* Where the habitat for a target population is absent or severely diminished, but can be restored through conventional techniques and approaches, then the biological objective for that habitat will be to restore the habitat with the degree of restoration depending on the biological potential of the target population. Where the target population has high biological potential, the objective will be to restore the habitat to intact condition, and restore the population up to the sustainable capacity of the habitat. In this situation, if the target population had been severely reduced or eliminated as a result of the habitat deterioration, the use of artificial production in an interim way is a possible policy choice to hasten rebuilding of naturally spawning populations after restoration of the habitat.

Where the target population has low biological potential -- for example, when downstream rearing conditions severely limit the survival of juveniles from a given spawning area the objective will be to restore the habitat to intact condition and consider sustained but limited supplementation as a possible policy choice." Salmon and Omak Creeks currently support steelhead production although much of the habitat has been compromised. Habitat restoration efforts are currently underway in these two tributaries and elsewhere in the Okanogan River system. The proposed work is consistent with the recovery strategy indicated in the 2000 Fish and Wildlife Program in that it will increase the biological potential of the target steelhead population by removing post-spawn fish from exposure to the hydrosystem and resulting passage mortality. Restoration of this population up to the sustainable capacity of the habitat in Salmon and Omak Creeks may then be achieved.

The proposed project further:

- Uses native species in native habitats.
- Addresses transboundary species (most of the Okanogan Subbasin lies in Canada, and Okanogan steelhead do range into Canada).
- Is largely based upon current kelt reconditioning studies, which represent the best available scientific knowledge.
- > Includes adaptive management in the experimental design.
- Have clearly measurable biological objectives and methods to collect data to measure these objectives.
- Has a monitoring and evaluation component that will address key uncertainties in kelt reconditioning and will apply the results directly back to the proposed program and other programs elsewhere in the Columbia Basin.
- Will be coordinated with other kelt reconditioning work elsewhere in the basin and therefore will result in information sharing and making the information readily available.
- ▶ Is identified as a Fish and Wildlife Need in the Okanogan Subbasin Summary.

All of which are important components of the NWPPC 2000 Fish and Wildlife Program.

Okanogan Subbasin Summary

The proposed work is consistent with the Goals, Objectives, and Strategies of the Okanogan Subbasin Summary as indicated on Page 236:

"*Goal*: Establish production-related strategies for salmon recovery and maximize reproductive potential of salmonids.

Objective 1: Maximize reproductive potential of steelhead in the Okanogan Subbasin.

Okanogan/Similkameen Subbasin Summary 377

Strategy 1. Explore feasibility of steelhead kelts reconditioning to allow repeat spawning."

This work is additionally identified in the Statement of Fish and Wildlife Needs section of the Subbasin Summary: "*Enhance survival of post-spawn (kelt) steelhead to maximize reproductive success.*" Page 237.

National Marine Fisheries Service Biological Opinion for Operation of the Federal Columbia River Power System.

Action 109 of the NMFS Biological Opinion for Operation of the Federal Columbia River Power System specifically directs the Corps of Engineers to conduct kelt reconditioning studies (NMFS 2000).

RPA Action 109 - "The Corps shall initiate an adult steelhead downstream migrant (kelt) assessment program... Theoretically, reconditioning and/or kelt downstream transportation could significantly increase the likelihood of a second spawning opportunity for many of these fish.... Evaluations should be conducted to review available literature and develop pilot testing regarding reconditioning of kelts."

Although the BIOP directs the COE to conduct kelt studies, Page 256 of the Hydro Appendix to the Draft Implementation Plan indicates that BPA may share responsibility in response to this RPA Action (BPA 2001). BPA currently funds the CRITFC sister study "Recondition Wild Steelhead Kelts" (BPA Project # 200001700).

Review Comments

This project should be well coordinated with the kelt reconditioning projects currently ongoing by CRITFC. NMFS has identified this as a BiOp project.

Budget		
FY2003	FY2004	FY2005
\$151,387	\$127,819	\$127,819
Category: High Priority	Category: High Priority	Category: High Priority

Project: 29008 Adult Passage Counting and Trapping at Zosel Dam

Sponsor: Colville Confederated Tribes

Short Description:

Conduct feasibility assessment of adult fish counting at Zosel Dam on the Okanogan River and evaluate preferred option. Design, install and evaluate adult trapping facilities at Zosel Dam.

Abbreviated Abstract

Adult passage counting and trapping capabilities are basic tools used to estimate escapement and run timing, determine run composition, conduct biological sampling for management and research, collect broodstock, and other purposes. No such facilities exist in the Okanogan Subbasin. The Okanogan is inhabited by sockeye, summer and fall chinook, and steelhead (ESA Endangered). Upper Columbia River Spring Chinook are listed as Endangered under ESA and considered extirpated from the Okanogan River. Spring chinook reintroduction efforts are currently underway in Okanogan. All species indicated above historically ranged into Canada. Zosel Dam (RM 78) is located at the outlet of Osoyoos Lake just down stream from the U.S./Canada border. Substantial unexplained losses of adult sockeye have been documented between Wells Dam on the Columbia River and spawning grounds in Canada upstream from Zosel Dam. Mortality resulting from elevated water temperatures is one proposed explanation.

Relationship to Other Projects		
Project #	Title/description	Nature of relationship
20001300	Evaluation of experimental re-introduction of Sockeye Salmon into Skaha Lake	Needed for data
29016	Return of Okanogan Sockeye to their historic ranges	Needed for data
29017	Prepare a Master Plan for Protecting and Restoring Salmon Habitat	Mgmt.
29040	Develop and Propagate Local Okanogan River Summer/Fall Chinook	Pop. data
29045	Protect and Restore Salmon and Steelhead Habitat at the Similkameen/Okangoan Confluence	Timing and Dist. data

BPA Project # 20001300. Evaluation of experimental re-introduction of Sockeye Salmon into Skaha Lake. An experimental re-introduction of sockeye salmon in Skaha Lake has been proposed. The goal is to stabilize and rebuild the Okanogan River sockeye population. This study would assess the potential risks and benefits of reintroducing sockeye salmon. Potential risks include disease transfer, exotic species introduction, and competition. Potential benefits include increased commercial, sport and tribal fisheries. The results of the study would be the basis for developing a strategy for reintroduction sockeye into Okanogan Lake, the farthest upriver lake. Okanogan Lake is considerably larger than Lake Osoyoos and Lake Wenatchee, and has the potential for a substantial increase in rearing capacity.

The proposed work will ultimately lead to providing basic adult sockeye passage information for the Okanogan River system and could be integrated into the Skaha Lake Evaluation and future management of these fish.

BPA Proposal - Develop and Propagate Local Okanogan River Summer/Fall Chinook Broodstock . The proposed BPA project referenced above will acclimate existing summer chinook production near historic habitat, increase production for the Okanogan and upper middle Columbia rivers, initiate production of late-arriving fall chinook, and initiate a local chinook brood stock.

The Adult Passage Counting and Trapping at Zosel Dam project will support the above proposed work by providing basic adult passage information for summer/fall chinook at Zosel Dam and allowing capture of these fish for basic biological sampling and broodstock collection. Removal of hatchery fish from the spawning population upstream from Zosel Dam may also be accomplished.

BPA Proposal - Phase I Okanogan River Spring Chinook Production. This proposed BPA project will reintroduce spring chinook into the Okanogan subbasin to provide for tribal

ceremonial and subsistence and recreational fisheries. Phase I of this program is being proposed as an isolated harvest program with all returning adult fish destined for harvest and/or brood stock collection. The program will also be used to collect information on the feasibility of reintroducing ESA-listed chinook in Phase II.

The Adult Passage Counting and Trapping at Zosel Dam project will support the above proposed work by allowing capture of these fish for harvest or for broodstock collection at Zosel Dam.

Relationship to Existing Goals, Objectives and Strategies

NWPPC 2000 Fish and Wildlife Program.

The 2000 Fish and Wildlife Program states:

"The 2000 program, organized with the framework concept, is intended to bring together, as closely as possible, Endangered Species Act requirements, the broader requirements of the Northwest Power Act and the policies of the states and Indian tribes of the Columbia River Basin into a comprehensive program that has a solid scientific foundation... Thus, the program guides decision-making and provides a reference point for evaluating success."

The Vision Statement for the 2000 Fish and Wildlife Program states:

"The vision for this program is a Columbia River ecosystem that sustains an abundant, productive, and diverse community of fish and wildlife, mitigating across the basin for the adverse effects to fish and wildlife caused by the development and operation of the hydrosystem and providing the benefits from fish and wildlife valued by the people of the region. This ecosystem provides abundant opportunities for tribal trust and treaty right harvest and for non- tribal harvest and the conditions that allow for the recovery of the fish and wildlife affected by the operation of the hydrosystem and listed under the Endangered Species Act."

The "Overarching Objectives" section of the Program goes on to state:

"The Northwest Power Act directs the Council to develop a program to "protect, mitigate, and enhance" fish and wildlife of the Columbia River and its tributaries, included related spawning grounds and habitat, affected by the development and operation of the federal hydrosystem. In the vision, the Council has stated four overarching biological objectives for this program. They are:

- A Columbia River ecosystem that sustains an abundant, productive, and diverse community of fish and wildlife.
- *Mitigation across the basin for the adverse effects to fish and wildlife caused by the development and operation of the hydrosystem.*
- Sufficient populations of fish and wildlife for abundant opportunities for tribal trust and treaty right harvest and for non-tribal harvest.
- *Recovery of the fish and wildlife affected by the development and operation of the hydrosystem that are listed under the Endangered Species Act "*

The proposed work is consistent with the overall 2000 Program Framework, Vision, and Overarching Objectives statements in that it will provide the basis for data collection necessary for recovery planning, reintroduction efforts, and management of anadromous fish which pass Zosel Dam on the Okanogan River. These fish include sockeye, summer/fall chinook, steelhead (Endangered), and spring chinook (Endangered/Extirpated). These multiple fish species all contribute to the diverse community of fish and wildlife in the Okanogan subbasin ecosystem and the species listed above have all been adversely impacted by passage through 9 mainstem Columbia River hydroelectric projects. The ability to properly quantify adult migration, as well as trap and collect biological data from adult migrants, are basic tools needed to build a scientific foundation to support the development, monitoring, and evaluation of the habitat based ecosystem approach to anadromous fish recovery called for in the 2000 Fish and Wildlife Program. Ultimately these efforts will lead to abundant opportunities for both tribal and non-tribal harvest.

The "Strategies" section of the Program states:

"Address transboundary species: Because about 15 percent of the Columbia River Basin is in British Columbia, including the headwaters of the Columbia and several of its key tributaries, ecosystem restoration efforts should address transboundary stocks of fish and wildlife and transboundary habitats." (Habitat Strategies).

Adult passage: The U.S. Army Corps of Engineers should improve the overall effectiveness of the adult fish passage program. This includes expediting schedules to design and install improvements to fish passage facilities... More emphasis should be placed on monitoring and evaluation, increased accuracy of fish counts, installation of PIT-tag detectors, evaluation of escapement numbers to spawning grounds and hatcheries, research into water temperature effects on fish passage..." (Hydrosystem Strategies)

The proposed work is consistent with the intent of these strategies in that it will:

- address transboundary stocks
- > improve fish passage facilities to allow monitoring and evaluation
- increase accuracy of fish counts
- improve evaluation of escapement numbers to spawning grounds
- allow research into water temperature effects on fish passage in the Okanogan River system.

Okanogan Subbasin Summary

The proposed work is consistent with the Goals, Objectives, and Strategies of the Okanogan Subbasin Summary as indicated on Page 236:

"Goal: Establish production-related strategies for salmon recovery and maximize reproductive potential of salmonids.

- **Objective 2.** Supplement Okanogan Basin spring chinook and steelhead populations as necessary to affect recovery while conserving genetic integrity.
 - Strategy 1: Explore all possible actions to reintroduce and recover spring chinook in the Okanogan Subbasin.

- Strategy 2: Explore all possible actions to recover sockeye salmon in the Okanogan Subbasin.
- Strategy 3: Collect local wild brood stock and develop acclimation sites.
- *Objective 3:* Identify opportunities and actions to affect transborder cooperation between the U.S. and Canada. "

The proposed Zosel Dam video counting/trapping project will provide basic adult passage/ escapement information at Zosel Dam. This data is an essential component for the development of production-related strategies and recovery strategies for anadromous fish in the Okanogan subbasin. Transboundary management will be enhanced through the sharing of this information with Canadian management entities. This is especially true with sockeye salmon, the majority of which pass through the U.S. portion of the Okanogan River and spawn in Canada. In addition, the trapping portion of this project will be provide the opportunity to conduct biological sampling to fulfill the needs of a variety of other programs such as local broodstock projects, chinook and steelhead monitoring and evaluation, selective harvest, and others.

In addition, the "Statement of Fish and Wildlife Needs" section of the Okanogan Subbasin Summary states as a need: "Obtain baseline information on status of native fish communities." (Page 237).

The proposed work will provide basic passage information necessary to help fulfill this need. In addition, page 239 of the Okanogan Subbasin Summary further states as a need:

"Evaluate the performance of net traps, fish wheels, and other gear for selective, tribal ceremonial and subsistence harvest, and collection of spring Chinook, summer/fall Chinook, steelhead, and sockeye for brood stock collection, scientific research, and trap and haul over Chief Joseph Dam....

...Determine the suitability and acceptability of trap nets, fish wheels, and seines (Zosel Dam) for additional tribal harvest."

The trapping portion of the proposed project addresses in part this need by providing the opportunity to conduct selective harvest for tribal ceremonial and subsistence purposes specifically at Zosel Dam, as well as brood stock collection and sampling for scientific research.

The Okanogan Subbasin Summary also identifies the need to: "Determine the potential for releasing waters from the depths of Lake Osoyoos to cool the Okanogan River to aid the migration of spring Chinook and sockeye." (Page 240)

Passage information such as will be collected at Zosel Dam through the implementation of this project will be necessary to evaluate the effect of water releases mentioned above.

Page 240 also states: "Initiate the planning and construction of facilities necessary to collect and spawn summer/fall Chinook to develop a unique population within the ESU." The trapping portion of the proposed project will also address this need.

National Marine Fisheries Service Biological Opinion for Operation of the Federal Columbia River Power System.

"Action 107 - The Action Agencies shall conduct a comprehensive evaluation to assess survival of adult salmonids migrating upstream and factors contributing to unaccounted losses." The proposed project will directly support assessment of survival of upstream migrating salmonids, primarily Okanogan sockeye, by providing adult passage data within the Okanogan River system. This data can be used to help determine factors, such as elevated water temperatures, which may contribute to unaccounted losses.

"Action 118 - The Corps shall develop and implement a program to better assess and enumerate indirect prespawning mortality of adult upstream-migrating fish. Such mortality may be due to, or exacerbated by, passage through the FCRPS hydro projects. If measures are identified which will reduce the unaccountable adult loss rate and/or the prespawning mortality rate, the Corps shall implement these measures as warranted. The program should also enhance efforts to enumerate unaccountable losses associated with tributary turnoff, harvest, or other factors in FCRPS mainstem reservoirs and upstream of FCRPS projects." The proposed project will support a program to better assess and enumerate indirect spawning mortality or otherwise unaccounted for losses of Okanogan River sockeye which may occur between Wells Dam and Zosel Dam, upstream of FCRPS projects.

"Action 193 - The Action Agencies shall investigate state-of-the-art, novel fish detection and tagging techniques for use, if warranted, in long-term research, monitoring, and evaluation efforts." The proposed project will assess the feasibility of using modern state-of-the art fish detection technology to conduct fish counting at Zosel Dam.

The Upper Columbia Salmon Recovery Board

Policy coordination is facilitated by the Upper Columbia Salmon Recovery Board (UCSRB), a partnership among Chelan, Douglas, and Okanogan counties, the Yakama Nation, and the Colville Confederated Tribes in cooperation with local, state, and federal partners. Additionally, technical coordination is occurring with the Upper Columbia Regional Technical Team and the Regional Assessment Advisory Committee and well as individual members of BPA, the NWPPC and the CBFWA.

The proposed project is will provide the basic tools to enumerate salmonid passage and conduct biological sampling at Zosel Dam on the Okanogan river which are necessary components needed to support scientific research and management of anadromous fish within this subbasin. The proposed project is therefore consistent with the overall mission of the UCSRB.

Review Comments

This project would address a major data gap in adult counting. The ladder counts at Wells Dam as compared with the spawning survey counts vary by 100%. This project would fill a gap between those two locations. The first year of the study is a feasibity study to determine all possible options.

Budget		
FY2003	FY2004	FY2005
\$108,474	\$440,000	\$75,000
Category: High Priority	Category: High Priority	Category: High Priority

Project: 29013 Acquire Land Adjacent to Chiliwist Creek and Develop Summer Chinook and Summer Steelhead Acclimation Pond

Sponsor: Washington Department of Fish and Wildlife

Short Description:

Acquire 89 acres of apple orchard adjacent to Chiliwist Creek and develop an acclimation pond to imprint summer chinook and summer steelhead in order to improve return spawn distribution in the Okanogan Subbasin.

Abbreviated Abstract

WDFW proposes to acquire an 89-acre parcel of land adjacent to Chiliwist Creek, a major tributary to the Okanogan River, with an attached adjudicated water right for .75 cfs. WDFW will construct a 10,000 cubic foot acclimation pond on the site for summer chinook (and for staged acclimation of summer steelhead). The 89 acres is located south of Chiliwist Creek and runs parallel to the Okanogan River. The property is bounded on the east by Douglas County PUD land fronting the Okanogan River and to the west by Malott Road. The development of an acclimation pond on this site will provide a valuable lower river acclimation and release site for summer chinook and summer steelhead. This site will offer synergistic benefits to the overall summer chinook and steelhead restoration programs taking place within this subbasin by increasing acclimation capacity and improving the distribution of adult summer chinook and steelhead on the spawn return. This land acquisition and associated water right will also benefit overall aquatic and terrestrial habitat conditions in the subbasin by protecting a limited water resource from consumptive uses, and by protecting the land from further degradation of habitat through development or related activities.

F	Relationship to Other Projects		
Project #	Title/description	Nature of relationship	
199604200	Restoration and Enhancement of Anadromous	Restoration of Upper Columbia	
	Fish Populations & Habitat in Salmon Creek	River summer steelhead	
200001300	Evaluation of an experimental re-introduction	Restoration of Upper Columbia	
	of Sockeye Salmon into Skaha Lake	anadromous fish populations	
200000100	Improvement of Anadromous Fish Habitat	Restoration of Upper Columbia	
	and Passage in Omak Creek	anadromous fish populations	

This project is related to a number of projects designed to restore and enhance anadromous salmonid populations in the upper Columbia River Basin. In addition, this project will benefit efforts to extend restoration activities across the border to Canada, thus supporting the assertion that ecosystems know no borders. Some projects with direct and indirect relationships to this one include:

- Restoration and Enhancement of Anadromous Fish Populations & Habitat in Salmon Creek (BPA project 199604200)
- Evaluation of an experimental re-introduction of Sockeye Salmon into Skaha Lake (BPA project 200001300)
- Improvement of Anadromous Fish Habitat and Passage in Omak Creek (BPA project 200000100)
- Omak Creek Watershed Plan/Environmental Assessment Project (Natural Resources Conservation Service)
- Omak Creek Restoration (Sponsored by CCT, Funded by the National Fish and Wildlife Foundation)
- Omak Creek Watershed Restoration (Salmon Recovery Funding Board project number IAC #00-1683D)
- An Assessment of Anadromous Salmonid Spawning Habitat in the Upper Columbia River: Chief Joseph Dam to Grand Coulee Dam. (Sponsored by CCT, Funded by CCT, Conducted by Battelle Inc.)
- Upper Columbia Steelhead Management Conservation Plan is a first step in delisting of hatchery steelhead. This plan also addresses various fish management actions for the use of hatchery fish in recovery of the Upper Columbia River Basin ESU (WDFW)

Relationship to Existing Goals, Objectives and Strategies

Acquisition of the Chiliwist Creek property aligns with the vision, goals, objectives and strategies outlined in the major salmon recovery documents that currently guide restoration efforts within the Columbia River Basin. The acquisition and subsequent enhancement (construction of an acclimation pond, and beneficial change of a water diversion) of this property specifically addresses survival of ESA listed fish and wildlife by contributing to the productive potential of those species within the Okanogan subbasin. Acquisition of the Chiliwist property also supports local and regional salmon recovery priorities as well as related subbasin goals, objectives and needs as identified in the Okanogan Subbasin Summary.

Northwest Power Planning Council 2000 Fish and Wildlife Program

The proposed Chiliwist property acquisition and subsequent acclimation pond development, is consistent with the underlying vision guiding the Fish and Wildlife Program of a "Columbia River ecosystem that sustains an abundant, productive, and diverse community of fish and wildlife, mitigating across the basin for the adverse effects to fish and wildlife caused by the development and operation of the hydrosystem and providing the benefits from fish and wildlife valued by the people of the region."

The Chiliwist acquisition and acclimation pond development supports a primary assumption underlying the Council's Fish and Wildlife Program. Namely that the 2000 Fish and Wildlife Program is, "a habitat-based program, rebuilding healthy, naturally producing fish and wildlife populations by protecting, mitigating, and restoring habitats and the biological systems within them, including anadromous fish migration corridors."

The proposal also is consistent with the NPPC's emphasis on promoting management actions that are adaptive and experimental; and that acknowledge that ecosystems are inherently variable and highly complex.

National Marine Fisheries Service 2000 Biological Opinion

The Chiliwist acquisition is also consistent with the following identified in the BiOp. The acclimation pond may also indirectly support specific directives identified in HGMP's which are directly linked to Actions 169 and 172

• Action 150 – "In subbasins with listed salmon and steelhead, BPA shall fund protection of currently productive non-Federal habitat, especially if at risk of being degraded, in accordance with criteria and priorities BPA and NMFS will develop by June 1, 2001."

All-H Paper

This proposal supports important components of a prime objective listed in the mainstem habitat section of the All-H paper, "between 2001 and 2012, restore habitat, acquire riparian corridors, modify flow regimes, reduce non-point pollution, develop improvement plans for all reaches." The Chiliwist acquisition and enhancement also meets key criteria put forth in the document, namely that, "Projects should emphasize linkage between habitat areas that provide a variety of functions for species at various points of their life cycle," and that projects should seek to achieve synergy with existing projects, spatially and biologically.

Okanogan Subbasin Summary

Finally, the Chiliwist land acquisition is well aligned with multiple goals, objectives and needs identified in the Okanogan Subbasin Summary. Some of those specific objectives include:

- Expand the spawning distribution and abundance of summer Chinook in the Okanogan River through new acclimation facilities located near historic spawning habitats.
- Develop an acclimation facility near Riverside to accept some of the existing PUD smolt production from the mid-Columbia River to increase spawning in historic habitats.
- Reform the Okanogan summer/fall Chinook program by propagating late arriving Chinook and acclimating for release in the mid and lower Okanogan River
- Initiate the collection and spawning of steelhead returning to the Okanogan subbasin to develop a unique population within the Upper Columbia River Steelhead ESU.
- Initiate the planning and construction of facilities necessary to collect and spawn summer/fall Chinook to develop a unique population within the ESU.

Review Comments

This project should be phased to purchase land in FY 03, perform planning, design and permitting in FY 04 and in FY 05 begin construction of the ponds and funding operation. The budget has been adjusted to represent this recommendation. Confirmation of the budget is needed from the project sponsor. Land has not been appraised so land costs are likely higher than fair market value.

Budget		
FY2003	FY2004	FY2005
\$447,470	\$65,000	\$376,482
Category: High Priority	Category: High Priority	Category: High Priority

Project: 29015 Thermal Imaging and Total Maximum Daily Load (TMDL) Development on the Okanogan Subbasin.

Sponsor: Colville Confederated Tribe

Short Description:

Expedite the development of a water cleanup plan (TMDL) for the Okanogan to identify sources of pollution related to temperature, DO and pH; allocate maximum allowable pollution from various sources; and develop strategies to improve salmonids habitat.

Abbreviated Abstract

The Okanogan subbasin currently support ESA listed populations of steelhead (Endangered), and bull trout (threatened) as well as summer/fall chinook, and sockeye. Upper Columbia River Spring Chinook are listed as Endangered, considered extirpated from the Okanogan, but are being reintroduced. These waters are currently included in the 303(d) list of water quality impaired streams due to temperature exceedences, which limit salmonid production. This project will use Forward Looking Infra-Red thermal imaging technology to survey approximately 175 miles of the Okanogan river systems to identify thermal input sources, validation through an extensive network of on the ground water quality monitoring, production of technical analyses, QUAL2K modeling, and GIS coverage, and development of a water cleanup plan, also called Total Maximum Daily Loads (TMDLs), outlining strategies to achieve water quality standards for temperature.

The overall success of this project is critical to the enhancement of fish populations in the Okanogan subbasin. By identifying the sources of heat, assessing thermal input sources and potential corrective measures, and recommending strategies to lower the summer temperatures to tolerable ranges, this project integrates the work of numerous other fish restoration projects in this subbasin. It will directly complement the success of such other projects as water right and land acquisitions, riparian habitat improvements, fish traps, ladders, and screens.

F	Relationship to Other Projects	
Project #	Title/description	Nature of relationship
200000100	Improvement of Anadromous	Provide basic water temperature data and
	Fish Habitat and Passage in	modeling capability to support habitat
	Omak Creek.	restoration efforts in Omak Creek
199604200	Restore & Enhance	Provide basic water temperature data and
	Anadromous Fish Populations	modeling capability to support habitat
	& Habitat in Salmon Creek.	restoration efforts in Salmon Creek
29037	Ecosystems Diagnosis and	The FLIR data will be a vital component of
	Treatment (EDT) in the	the EDT model assessment proposed for the

	Columbia Cascade Province.	Okanogan Subbasin.
29021	Develop a Physical Processes Method (PPM) to Supplement Habitat Conditions Analysis and Subbasin Planning.	PPM links EDT to a method identifying causal mechanisms for environmental degradation and corrective actions. The FLIR data for the Okanogan Subbasin will provide
	und Subbushi i fulling.	information used by both EDT and PPM.
29022	Omak Creek Water Temperature Model.	FLIR data collected as part of this project will include Omak Creek and can therefore be used to augment the Omak Creek Water Temperature modeling work also proposed. Data sharing between the two programs will
		occur.

USFS, USFWS, Pacific Watershed Institute, Chewuch Basin Council Joint Thermal Imaging Project.

This collaborative project involved collection of FLIR data from the approximately 300 miles of the Methow, Upper Wenatchee, Upper Yakima, and Entiat River systems. The proposed project will expand upon this work collecting additional FLIR data from approximately 175 miles of the Okanogan River.

BPA Project # 200000100. Improvement of Anadromous Fish Habitat and Passage in Omak Creek.

This BPA funded project seeks to restore anadromous fish habitat in Omak Creek in the Okanogan Subbasin. Omak Creek will be covered in the FLIR survey and the temperature data and modeling derived from the proposed FLIR project can be used to identify areas of thermal input and refugia to support this ongoing habitat restoration effort.

BPA Project # 199604200. Restore & Enhance Anadromous Fish Populations & Habitat in Salmon Creek.

This BPA funded project seeks to restore anadromous fish habitat in Salmon Creek in the Okanogan Subbasin. Salmon Creek will be covered in the FLIR survey and the temperature data and modeling derived from the proposed FLIR project can be used to identify areas of thermal input and refugia to support this ongoing habitat restoration effort.

Omak Creek Habitat Restoration Projects funded by the National Fish and Wildlife Federation, the Salmon Recovery Funding Board (Project #00-1683-D).

Similar to that indicated above for BPA Project # 200000100, Omak Creek will be covered in the FLIR survey and the temperature data and modeling derived from the proposed FLIR project can be used to identify areas of thermal input and refugia to support this ongoing habitat restoration effort.

Salmon Creek Habitat Restoration Efforts. The CCT, OID, and NRCS are involved in an effort to restore instream and riparian habitat in lower Salmon Creek. Similar to that indicated above for BPA Project # 199604200, Salmon Creek will be covered in the FLIR survey and the temperature data and modeling derived from the proposed FLIR project can

be used to identify areas of thermal input and refugia to support this ongoing habitat restoration effort.

BPA Proposal # 29037 - Ecosystems Diagnosis and Treatment (EDT) in the Columbia Cascade Province. Under the current solicitation for the Columbia Cascade Province a proposal has been submitted to conduct Ecosystems Diagnosis and Treatment (EDT) in the Wenatchee, Entiat, Okanogan, and Methow subbasins. The FLIR data will be a vital component of the EDT model assessment proposed for the Okanogan Subbasin.

BPA Proposal # 29021 - Develop a Physical Processes Method (PPM) to Supplement Habitat Conditions Analysis and Subbasin Planning. Also under the current solicitation for the Columbia Cascade Province a proposal has been submitted to conduct Physical Processes Method (PPM) analysis in conjunction with Ecosystems Diagnosis and Treatment. PPM links EDT to a method identifying causal mechanisms for environmental degradation and corrective actions. The FLIR data for the Okanogan Subbasin will provide information used by both EDT and PPM.

BPA Proposal #29022 - Omak Creek Water Temperature Model. FLIR data collected as part of this project will include Omak Creek and can therefore be used to augment the Omak Creek Water Temperature modeling work also proposed. In addition, Omak Creek lies within the Colville Reservation and therefore inclusion of Omak Creek in the FLIR survey area will support temperature TMDL development on tribal lands outside of Department of Ecology jurisdiction.

Okanogan County Conservation District Water Quality Monitoring Program. The Okanogan County Conservation District began a water quality monitoring program in May 2000. Sites are tested for pH, DO, temperature, pesticides and other components. In addition the Departments of Ecology and Natural Resources cooperatively established water quality monitoring sites on the Loomis State Forest. The data collected will be used for the TMDLs.

Relationship to Existing Goals, Objectives and Strategies

The TMDL will address water quality and aquatic habitat factors relating to temperature, dissolved oxygen, and PH. The analysis and resulting TMDL will eventually guide corrective actions and priorities in the subbasin. By implementing best management practices residents and property owners in the affected areas can begin to reverse the current trend and progress toward removal of streams from the 303(d) list, as well as protect the salmon streams that currently meet state water quality standards from future listings.

Ecology is requesting BPA support to expedite the development of TMDLs for temperature by providing resources needed in FY 2003 and 2004. The information and strategies developed in the TMDLs are essential to the development and implementation of the Okanogan subbasin plan scheduled for FY 2005.

Ecology is currently in the technical assessment phase of developing complex TMDL for PCB and DDT in the Okanogan subbasin. This is a preliminary data-gathering step to assess the extent of contamination. The poor condition of the salmon and bull trout supports the need for immediate and urgent work to accurately assess the sources of water quality

problems and develop effective comprehensive strategies to address those sources within the next two years.

NWPPC 2000 Fish and Wildlife Program.

The proposed work will collect and model water temperature data for 175 miles of the Okanogan subbasins. This is basic habitat information which:

- ➤ Is collected through the use of sound scientific techniques and principles
- Is a component of EDT and the Subbasin Assessment and will therefore contribute to the decision making process
- Will address factors limiting production of both ESA listed and non-listed salmonids thereby contributing directly to efforts to protect, mitigate, enhance, and recover these fish and their habitats
- Will contribute to overall recovery and eventual increases in both tribal and non-tribal harvest opportunities
- Supports research into water temperature effects on fish passage
- > Is habitat based and supports ecosystem management
- Addresses transboundary stocks

All of which are important components of the 2000 Fish and Wildlife Program.

Okanogan Subbasin Summary

As stated in the Okanogan Subbasin Summary, elevated water temperatures are recognized as a primary factor limiting salmonid production in the Okanogan Subbasin.

"Limiting Factors

Barriers to fish migration, elevated temperatures, and sedimentation are some of the primary limiting factor to anadromous fish reproductive success in the Okanogan Basin. The Okanogan River and most of the tributaries have human made barriers, including dams, culverts, and dewatered stream channels. High water temperatures in the mainstem Okanogan River limit fish reproduction and migration." Page 77

The Okanogan River is listed as a 303(d) stream due to temperature exceedences as indicated below. "Ecology's 1997 Section 303(d) list (Impaired and Threatened Waterbodies Requiring Additional Pollution Controls) includes the Okanogan River for "failure to meet water quality standards for temperature, dissolved oxygen, pH, and fecal coliform" (NWPPC, Okanogan Subbasin Summary, 2001). There is a "consistent late summer water temperature criteria violation (annual violations from 1983-1993) Fish within the watershed are subject to poor water quality and low flow conditions, as well as critically high water temperatures during summer months" (NWPPC, Okanogan Subbasin Summary, 2001). Temperature and flow listings pose the most significant problems to salmon recovery in the Okanogan watershed." (NWPPC, Okanogan Subbasin Summary, 2001)

The proposed work is consistent with the Goals, Objectives, and Strategies of the Okanogan Subbasin Summary as indicated on pages 235-236:

Colville Confederated Tribes:

"*Goal* Maintain and protect instream and riparian habitat and support ecological function in these habitats.

Objective 3: Reduce summer water temperatures in the Okanogan Watershed to meet the needs of salmonids in all life stages.

Strategy 1: Identify priority areas for riparian protection and restoration.
Strategy 2: Restore existing riparian habitat to buffer stream temperatures.
Strategy 3: Explore water conservation strategies to increase water use efficiency."
The proposed work will provide data and modeling capability to conduct sensitivity analysis of factors influencing water temperatures in the reaches surveyed.

The proposed work will also address Okanogan Subbasin Summary Objectives of the UCSRB and the WDFW.

Upper Columbia Salmon Recovery Board:

"Objective 1: Allow unrestricted stream channel migration, complexity and floodplain function."

Department of Fish and Wildlife:

"Objective: Address elevated water temperatures in the Okanogan. Address elevated sediment delivery in Similkameen River and Bonaparte Creek. Address DDT and PCB presence in the subbasin."

The Okanogan Subbasin Summary goes on to state as an objective:

"Objective 3: Identify opportunities and actions to affect transborder cooperation between the U.S. and Canada. "

The proposed work will be consistent with this objective because a portion of the watershed to be surveyed lies within Canada and will require cooperation from Canadian entities. U.S./Canada data sharing will also result from this project.

In addition, the "Statement of Fish and Wildlife Needs" section of the Okanogan Subbasin Summary states as an instream restoration need:

"Address elevated water temperatures in Okanogan River." Page 237. The proposed work will is specifically to address this need.

National Marine Fisheries Service Biological Opinion for Operation of the Federal Columbia River Power System.

"Action 150 In subbasins with listed salmon and steelhead, BPA shall fund protection of currently productive non-Federal habitat, especially if at risk of being degraded, in accordance with criteria and priorities BPA and NMFS will develop by June 1, 2001."

The proposed project will provide data to support this RPA Action by providing a mechanism to determine locations of thermal input and refugia within the 175 miles to be surveyed in the Okanogan subbasin. This subbasin contains listed anadromous species. Such information can be used to assess the relative productivity of non-Federal habitat lying within the survey area to allow effective habitat protection decision making.

" *Action 152* The Action Agencies shall coordinate their efforts and support offsite habitat enhancement measures undertaken by other Federal agencies, states, Tribes, and local governments by the following:

- Supporting development of state or Tribal 303(d) lists and TMDLs by sharing water quality and biological monitoring information, project reports and data from existing programs, and subbasin or watershed assessment products.
- Using or building on existing data management structures, so all agencies will share water quality and habitat, data, databases, data management, and quality assurance.
- <u>Leveraging funding resources through cooperative projects, agreements and policy</u> <u>development (e.g., cooperation on a whole-river temperature or water quality</u> <u>monitoring or modeling project)."</u>

The proposed project will support RPA Action 152 through collection of water temperature information and integration of this information along with other environmental attributes into a temperature model which will be used to develop habitat enhancement measures for the Okanogan (offsite mitigation) river system. The work will directly support state and Tribal TMDLs for the Okanogan Subbasin.

The project supports NMFS' Draft Columbia River Biological Opinion (NMFS, 2000), specifically objectives of the RPA identified under Water Quality Strategy (9.6.1.7.1), which emphasize the importance of clean, cool water for fish. The proposal also supports the water quality objective outlined in section 9.6.2.1 Actions Related to Tributary Habitat objective: "water quality comply with water quality standards, first in spawning and rearing areas, then in migratory corridors."

The proposed project is an expansion of the temperature modeling work begun by the Pacific Watershed Institute, U.S. Forest Service, U.S. Fish and Wildlife Service, and the Chewuch Basin Council to provide comprehensive water temperature information for tributaries to the Upper Columbia currently used by ESA listed and non-listed anadromous fish.

All - H Paper

Finally, Section 3.1 of the July 27, 2000 Draft Final "All-H" Paper speaks to the importance of protecting and restoring water quality. "Riparian conditions that determine water temperature..." is identified as one of four habitat factors which will influence performance measures throughout the basin.

The Upper Columbia Salmon Recovery Board

Policy coordination is facilitated by the Upper Columbia Salmon Recovery Board (UCSRB), a partnership among Chelan, Douglas, and Okanogan counties, the Yakama Nation, and the Colville Confederated Tribes in cooperation with local, state, and federal partners. Additionally, technical coordination is occurring with the Upper Columbia Regional Technical Team and the Regional Assessment Advisory Committee and well as individual members of BPA, the NWPPC and the CBFWA.

To better meet its mission, the UCSRB wishes to ensure that actions taken to protect and restore salmonid habitat in the region are based on sound scientific principles.

The proposed project is will assist in recovery of both listed and non-listed salmonids in the Okanogan river system, is based upon sound scientific principles, will provide information necessary to protect and restore salmonid habitat and is therefore consistent with the overall mission of the UCSRB.

Review Comments

The WA SRFB funded \$84,750 for 2003 for this project. The budget has been adjusted to reflect this. Should be EPA funded or at least cost shared, the project could utilize temperature data collected by OCD and CCT. Cold water inputs will be more difficult to detect in the summer than warm water inputs in the winter. Experimental design is questionable for providing usable information. Flight time cost could be reduced with better design. NMFS has identified this project as a BiOp project.

Budget		
FY2003	FY2004	FY2005
\$111,904	\$65,000	\$
Category: High Priority	Category: High Priority	Category:

Project: 29016 Return of Okanogan Sockeye Salmon to their historic range.

Sponsor: Colville Confederated Tribes and Okanogan Nation Fisheries Commission

Short Description:

Plan, engineer and construct fish passage past dams. Screen the irrigation intake associated with the first dam. Monitor increase in fish production

Abbreviated Abstract

Significant numbers of sockeye currently spawn in the Canadian portion of Okanogan River (35,000 – 45,000 in 2000 and 2001). After successfully migrating over 9 mainstem Columbia River Dams sockeye migration is terminated at McIntyre Dam, which is approximately 3 meters high and 25 meters across. This dam could easily be bypassed or laddered. Removal may also be possible but substantially more difficult. Any one of these options would allow sockeye to access an additional 11 kilometers of their historical range.

BPA project 200001300, *The Evaluation of an Experimental Re-introduction of Sockeye Salmon into Skaha Lake*, is presently evaluating the risks associated with extending the run further into its historical range. At the completion of the risk assessment phase in early 2003, Canadian Fisheries Authorities will decide whether to provide sockeye passage into Skaha Lake. Regardless of that decision, Fisheries Authorities have verbally indicated that sockeye passage past McIntyre Dam will be acceptable.

The present project will design and construct the necessary fish passage facilities at McIntyre Dam and screening of the South Okanogan Land Irrigation District (SOLID) Irrigation Intake (Figure 1 in proposal). This will entail laddering, bypassing, or removal of the dam. The project will also require the construction of a fish screen at the SOLID irrigation intake immediately above McIntyre Dam. The screens will prevent losses of sockeye smolts migrating downstream from the newly accessible spawning grounds. The Irrigator, the Town of Oliver, has agreed to partner in the project by maintaining and operating the screens post-construction.

	Relationship to Other Projects	
Project #	Title/description	Nature of relationship
200001300	Evaluation of an experimental re-introduction of sockeye salmon into Skaha Lake.	Canadian Fisheries Authorities have not authorized fish passage into Skaha Lake. Their decision (expected in late 2002) will depend upon results of project 200001300.

This project is directed towards restoring Okanogan River sockeye salmon to their historical range and ensuring the existence of this unique population. By removing passage barriers in the upper reaches of Okanogan River, approximately 11 kilometers of habitat would be accessible by sockeye salmon. Therefore this project addresses the 2000 FCRPS Biological Opinion 9.6.2.1 Actions Related to Tributary Habitat, particularly by providing passage and allowing this population access to spawning and rearing areas which are currently at critically low levels.

Relationship to Existing Goals, Objectives and Strategies

BPA project 200001300 *The Evaluation of an Experimental Re-introduction of Sockeye Salmon into Skaha Lake* provides the risk analysis that will be used by Canadian Fisheries Authorities to determine whether sockeye should be re-introduced to Skaha Lake. The first years evaluation revealed little risks to the movement of either exotic species or disease into Skaha Lake. This decision scheduled for early 2003 will determine whether the existing fishway at Skaha Lake Dam should be refurbished an operational.

In 2000 a multi-agency "Proof of Concept" workshop was conducted and a risk assessment program was designed. The risk assessment work began in 2001. This included:

- Fish inventory above and below the dam to determine the risk of exotic species entering Skaha Lake. Based on results from the first year of the study, there are few risks associated with any upstream migration and colonization by exotic species into Skaha or South Okanogan Lake.
- Testing of fish from above and below the McIntyre and Skaha Lake dams to determine the risk of introducing new diseases. Both the limnological data for Skaha and Okanogan lakes and analysis of fish diseases reveal no extraordinary risk of introducing new diseases from the Columbia River.
- Modeling of life histories to predict sockeye / kokanee interactions
- Mapping and measuring of spawning and rearing habitats above the dam to determine the potential increase in sockeye production.

Risk Assessment work will continue in 2002 and upon its completion Fisheries Authorities will decide whether to allow fish passage.

Annual sockeye escapements below McIntyre Dam are available for the last 65 years (Bull, 1999). In 2000 and 2001 escapements were approximately 35,000 and 45,000 sockeye respectively (ONFC, Unpublished).

Providing passage at McIntyre and Skaha Dams (Figures 1 and 2) would enable sockeye to access 11 km of potential spawning and rearing habitat in Vaseaux Lake and Okanogan River. Long (2001) estimates that there is 8,374 m² of usable spawning substrate in this area. The main objectives of the project are to provide additional rearing habitat and to

conserve the early component of the run. The area available for rearing habitat above the dam is currently being quantified; however the estimated volumes of Skaha and Vaseaux lakes are 558,000,000m³ and 17,700,000m³ respectively.

There are several options for fish passage at McIntyre Dam. One option is to construct a ladder in the existing dam, which would cost \$500 000. A second option, the most satisfactory and permanent solution from a biological standpoint, would be to remove the dam and restore the stream to a natural condition. Since the dam regulates water levels, protects properties from flooding, and supplies irrigation water, removal will be more involved than ladder installation. Construction costs for this option would total approximately \$1,237,000.

Both options require thorough planning and extensive consultation with Water Management Branch; Ministry of Water Land and Air Protection; Canada Fisheries and Oceans; Town of Oliver; water users and landowners. Consensus and approval of both agencies and stakeholders will be necessary.

Review Comments

The proposed budget for this project covers several alternatives. A less expensive alternative may be chosen through a public process. The project sponsor has indicated that 2004 budget could range from \$400,000 to \$1,274,000 depending on results from 2003. The project sponsor has reduced the request for 2004 by 75%.

Budget		
FY2003	FY2004	FY2005
\$175,000	\$955,500	\$20,000
Category: High Priority:	Category: High Priority	Category: High Priority

Project: 29017 Prepare a Master Plan for Protecting and Restoring Salmon Habitat in Okanogan River

Sponsor: Confederated Colville Tribes and the Okanogan Nation Fisheries Commission

Short Description:

Prepare a Master Plan to guide the protection and restoration of sockeye salmon habitat in the Canadian portion of Okanogan River.

Abbreviated Abstract

Through channelization 50 years ago, the Canadian portion of the Okanogan River has been reduced by 24km (50%) and has lost 88% of its riparian area (Bull, Gaboury and Newbury, 2000). Protection of the limited remaining salmon habitat is critical, and restoration of some of the channelized sections of river has been recommended.

A Master Plan is the logical first step for protecting and restoring salmon habitat. Existing documents will be reviewed and advice will be sought from authorities (such as fisheries managers, water managers, local governments, and First Nations) as well as major stakeholders. The review and consultation process will identify protection and restoration methods and locations. From this review a comprehensive plan will be prepared which must meet with approval in principle from the agencies and major stakeholders. The plan will outline benefits, costs, risks and the steps required for implementation.

Okanogan/Similkameen Subbasin Summary 395

Project # Title/description	Nature of relationship
200001300 Evaluation of an experimenta introduction of sockeye salmo into Skaha Lake	l re- on The present proposal would provide a conceptual framework and master plan, which would consider all fisheries initiatives for this waterway.

This Master Plan would provide an overall vision for Okanogan River and would interconnect various fisheries initiatives. For instance, habitat protection and restoration work would be linked with restoration of a natural hydrograph, fish passage at McIntyre Dam and other projects. This would create a cohesive package and a critical path for implementation. The combination of habitat protection, restoration and a more natural hydrograph will increase spawning area, rearing area and will increase survival for sockeye and other native species. The Okanogan Sockeye stock has been declining over the past two decades and escapement for 2002 is predicted to be less than 5000 sockeye (Dr. Kim Hyatt, Stock Assessment Biologist, Fisheries and Oceans Canada, personal communication). The ISRP recommends that all projects in the Columbia Basin have a conceptual foundation within which work can be carried out in a logical manner (Williams et.al. in Fisheries – American Fisheries Society, V 24, #3, March, 1999).

A number of fisheries initiatives have been undertaken or planned on the Okanogan River. For instance, the Okanogan Basin Technical Working Group and Douglas County Public Utility District are planning a project that attempts to restore a more 'fish friendly' hydrograph that will increase production of Okanogan sockeye. As another example, BPA project 200001300, *The Evaluation of an Experimental Re-introduction of Sockeye Salmon into Skaha Lake*, is presently evaluating the risks associated with extending the run further into its historical range and Canadian agencies are giving consideration to extending the migratory route of sockeye.

Relationship to Existing Goals, Objectives and Strategies

The project addresses the following NPPC program measures:

- 4.1B which states, "Historical records show that Columbia River Basin Indian Tribes relied extensively on salmon and steelhead. Because most of the tribes are located in the upper portion of the basin, the decline in numbers of fish, combined with the shift of fish production from the upper to lower basin, had an incalculable impact on tribal economies, cultures and religion."
- This project also mirrors the NPPC program measure of 7.6C.5 which states, "… manage riparian and flood plain areas to promote the protection and re-establishment of natural ecological function and thereby protect and improve salmon and steelhead habitat."

By determining the most essential or productive stream reaches in which to restore natural ecological function this project is directed at the 2000 SCRPS Biological Opinion 9.6.2.1 actions related to tributary habitat, particularly "watershed health, manage both riparian and upland habitat, consistent with the needs of the species."

This proposal is directed toward restoring habitat conditions as identified in the Okanogan/Similkameen Subbasin Summary, "habitat degradation due to human influences such as agriculture, urban development, and forestry have negatively impacted the Okanogan and Similkameen watershed. The streams and lakes within these basins no longer have the

carrying capacity to support the historical numbers of species once found in these waters.". Thus, this project is directed towards restoring the carrying capacity of the most productive reaches of the Okanogan River and consequently strengthening the anadromous salmonid stocks in the Upper Columbia River Basin.

The Independent Scientific Review Panel (ISRP) of Northwest Power Planning Council recommends shifting emphasis from enhancement projects to protection and restoration of natural habitat (such as is proposed here). They say:

"A major conclusion...is the need to restore a greater degree of naturalness to the river than exists today...Habitat restoration...must receive high priority and be directed at providing habitat opportunities that historically supported salmonids in their natural state...The diverse habitats found in the floodplains and gravel-cobble segments are especially important." (Williams et.al. in Fisheries – American Fisheries Society, V 24, #3, March, 1999).

Canadian fisheries authorities agree. A long-term, self-sustaining, ecosystem based approach that emphasizes natural methods and benefits all species is preferred (personal communication - E. Fast, Chair, Okanogan Basin Technical Working Group). The Okanogan Basin Technical Working Group (OBTWG) is comprised of management and technical staff from the Okanogan Nation Fisheries Commission, Fisheries and Oceans Canada, and the Ministry of Water, Land and Air Protection. These agencies work within a tri-lateral forum to initiate and coordinate programs designed to conserve and restore Okanogan fisheries resources within an ecosystem based management framework.

Review Comments

None provided by workgroup.

Budget		
FY2003	FY2004	FY2005
\$59,000 Category: Recommended Action	\$ Category:	\$ Category:

Project: 29019 Characterize and Assess Wildlife-Habitat Types and Structural Conditions for Okanogan subbasin

Sponsor: Northwest Habitat Institute and the Colville Confederated Tribes

Short Description:

Fine-scale wildlife habitat assessment for the Okanogan subbasin will produce critical baseline data for planning and monitoring efforts that is consistent within the NWPPC Framework wildlife-habitat relationships process.

Abbreviated Abstract

As ecological assessments of the Columbia River Basin step down in geographic scale to the subbasin level, the need for fine-scale wildlife habitat depiction and assessment rises

markedly. The Northwest Habitat Institute, working with the Northwest Power Planning Council's Framework Process, developed 32 wildlife-habitat types and an associated wildlife habitat relationships data set to depict the current conditions of the Columbia River Basin. We are proposing that the same mapping methodology and wildlife-habitat types be reviewed and mapped at a finer level of resolution (4 ha minimum mapping unit, (mmu) (10 acres)) for the Okanogan subbasin. Current Landsat Thematic Mapper imagery will form the basis for map analysis and interpretation.

Our proposal plans to:

- - --

- (1) map wildlife-habitat types at a refined resolution (4 ha mmu);
- (2) map wildlife habitat structural conditions (4 ha mmu);
- (3) validating the mapping effort by field visits; and

(4) evaluate the current conditions for wildlife using the wildlife-habitat relationships data set in conjunction with the wildlife-habitat types and structural conditions mapping information

F	Relationship to Other Projects	
Project #	Title/description	Nature of relationship
2000742	Establishing Baseline Key	A refined map would depict with greater accuracy
		those areas where ecological functions are thought to
	Wildlife for Subbasin Planning	have increased or decreased. Maintaining ecological
		functions is identified as a wildlife goal #1 for the
		Spokane River Subbasin Summary.

Supporting this finer level of mapping will help resource managers, scientists, and policy makers make better decisions, predictions, plans, and models for the Okanogan subbasin because these new wildlife-habitat maps will depict not only the composition of the habitat, but also the current structural condition(s) of the habitat (this should directly support Goal #1 (p.19); Statement of Fish and Wildlife Needs – Wildlife Needs #1, #2, and #3 in the Spokane River Subbasin Summary in Appendix 1). For example, most all subbasin plans call for assessing or identifying wildlife-habitat(s) for conservation purposes, like protection or enhancement (e.g. San Poil Subbasin Summary. Statement of Fish and Wildlife Needs, Point # 11 in Appendix 1). To be successful with conservation actions, strategies, habitat restoration and mitigation projects having the ability to predict species associations, map wildlife-habitat types and structural conditions and putting that information into context with existing landscapes, will allow for a more comprehensive assessment of individual subbasins and successful design.

Relationship to Existing Goals, Objectives and Strategies

Since subbasin planning requires a finer resolution of mapping than what currently exists, we are proposing to map the wildlife-habitats types that have been identified in the Northwest Power Planning Council's Framework Process and as defined in the book, *Wildlife-Habitat Relationships in Oregon and Washington*, at a fine resolution. To do so, will allow fish and wildlife planners the ability to evaluate proposed actions in relationship with spatial patterns within a landscape context at an appropriate scale. We would use LANDSAT Thematic Mapper (TM) imagery to map wildlife-habitats types at a resolution of about 4 ha (10 acres) as a minimum mapping unit (mmu). Additionally, once the LANDSAT map is created it will allow for monitoring future land changes, develop and evaluate conservation and land-use plans, and to predict the effects of different management scenarios on wildlife species and habitats.

The data created from this project will be utilized by multiple programs within the Colville Confederated Tribes Natural Resource Department.

Review Comments

In-house data base refinement at very reasonable costs.

Budget		
FY2003	FY2004	FY2005
\$27,907	\$	\$
Category: High Priority	Category:	Category:

Project: 29021 Develop a Physical Processes Method (PPM) to Supplement Habitat Conditions Analysis and Subbasin Planning

Sponsor: KWA Ecological Sciences, Inc. and Golder Associates Inc.

Short Description:

Develop a Physical Process method to augment ecosystem assessments and aid subbasin planning.

Abbreviated Abstract

Understanding the physical processes that control the environment is key to successfully distinguishing and implementing curative actions for degraded fish and wildlife habitat. Matching actions with analysis (and ultimately with planning, implementation and M&E needs) is the intent behind the development of the PPM approach and program routines. Currently, there exists no harmonized method or model to integrate the results of sophisticated ecosystem diagnosis and habitat conditions analysis with the causal mechanisms of landscape and/or land-forming processes. This gap in association leaves subbasin planners, biologists and decision-makers with many assumptions about how to effectively and credibly treat habitat symptoms affecting the productivity, diversity and abundance of Pacific salmon. Thus, we will engage the expertise of civil and systems engineers, geomorphologists, hydrogeologists and others familiar with the science of physical processes to conduct an inventory of existing tools and develop a step-by-step procedure that combines physical processes and ecosystem diagnosis into action alternatives and trade-off analysis. Existing physical programs and models will be reviewed and mobilized to associate with ecosystem tools such as the Ecosystem Diagnosis and Treatment model (EDT) and subbasin plan development. The PPM procedure will be iteratively and concurrently translated into an extensible program module or subroutine for use with ecosystem conditions analysis and data. "Model," as we use the term hereinafter, is most accurately defined as the merging of analysis with the subbasin planning process and with programming to produce a set of measured and prioritized actions augmenting current approaches. The Columbia Cascade Province and Chehalis River Basin will provide an opportunity to review, validate and document this method and its supporting programming. Finally, this project is designed to be phased and apply a Proof of the Principle approach, which is oriented towards shorter projects and iterative products.

	Relationship to Other Projects		
Project #	Title/description	Nature of relationship	
29037	Columbia Cascade EDT analysis	Direct and parallel relationship to provide new capability for subbasin planning - project is not intended to extend existing EDT functionality, but provide new overall subbasin analysis and planning capability	
	Salmon and Steelhead Habitat Inventory and Assessment Project (SSHIAP)	Parallel relationship to review capability for dynamic and direct linkages to SSHIAP and/or GIS-based analytical functionality	
	Okanogan and Wenatchee FLIR	Direct input for physical process modeling	
	RAAC Process	EDT Validation and subbasin assessment template	

This project addresses the following RPAs: 35, 85, 133, 142, 143, 148, 158, 162, 30, 152 and 155.

Relationship to Existing Goals, Objectives and Strategies

Link to the Columbia Cascade Province (as a testing ground for application in developing a subbasin plan). Upon review of the NPPC Subbasin Summaries for each the Okanogan, (Wolf, et., al 2001) Methow, Entiat and Wenatchee subbasins, it is apparent that there is a sizable amount of information available concerning human impacts on salmonids and their habitats. However, this information is scattered throughout various published and unpublished documents, databases housed within the many government agencies and undocumented information contained within the experiences of the many stakeholders and professionals living in these watersheds. Within the Columbia Cascade province, there is no holistic context from which to integrate, interpret and understand all this within the context of causative mechanisms and knowledge concerning our salmonid resources. Lacking this capability, the actions planned are much more likely to be tactical and localized as opposed to strategic and regional.

The Okangoan (CCT and CBFWA, 2001), Methow (WDFW and CBFWA, 2001) and Wenatchee subbasin summaries and Limiting Factors Analysis for the Okanogan (CCT, 2001), Methow (WCC, 2000) and Wenatchee (WCC, 2001 in press) identify habitat conditions analysis as a priority for identification of restoration and protection needs. Data gaps in the LFAs and Subbasin summaries are congruent with the Level 2 attributes of the EDT method.

Subbasin plans are a focal point for Columbia Basin planning. Failure to complete the plans will make it difficult to achieve the goals of the Fish and Wildlife Program ("Program") and may hinder implementation of the FCRPS RPA. The Program relies on a collaborative subbasin planning process to develop, evaluate, and recommend management strategies consistent with a basin wide vision for fish and wildlife restoration. These strategies will subsequently play a pivotal role in shaping implementation plans that identify specific projects for potential funding by the BPA. Subbasin plans are also an integral component of the 2000 FCRPS Biological Opinion.

"BPA shall work with the NWPPC to ensure development and updating of subbasin assessments and plans; match state and local funding for coordinated development of watershed assessments and plans; and help fund technical support for subbasin and

Okanogan/Similkameen Subbasin Summary 400

watershed plan implementation from 2001 to 2006. Planning for priority subbasins should be completed by the 2003 check-in. The action agencies will work with other Federal agencies to ensure that subbasin and watershed assessments and plans are coordinated across non-Federal and Federal land ownerships and programs."²

Completing scientifically defensible, practical subbasin plans on schedule will require that planning groups are provided a foundation of analytical tools and technical expertise. This foundation should be consistent with the Scientific Principles identified in the Program, and withstand the scrutiny of the Independent Scientific Advisory Board and other peer reviewers. The "Technical Guide for Subbasin Planners" (NWPPC 2001) identifies one approach to subbasin planning that builds upon the coarse scale EDT analysis conducted by the NWPPC to develop working hypotheses on the condition and processes affecting a subbasin ecosystem, and to evaluate alternative management strategies.

The success of the Council's habitat program as well as those of the NMFS, USFWS, and state and tribal fisheries agencies are all built upon the hypothesis that habitat can be improved to a level that will recover listed fish stocks throughout the Columbia River Basin. Data to support this hypothesis is currently lacking and therefore there is a high risk that the habitat based approach outlined in the Council's program and NMFS recent BiOp may fail. The purpose of the proposed work is to develop the methods that would incorporate data in a comprehensive landscape analysis that would assess current watershed and river health, identify problem areas and the environmental attributes that are potentially limiting populations of fish and wildlife species, identify the habitat treatments to cure these problems, conduct a prioritization and benefit: cost analysis, and monitor treatment effectiveness over time.

A genuine evaluation of actions and strategies can only occur once the cycle between habitat conditions analysis and an identification of appropriate treatment actions is completed and infused into the subbasin planning and evaluation processes. Treatment actions must be predicated upon an understanding of the physical (causal) habitat mechanisms, and coupled with an ability to review the effects of habitat actions (simulation). Finally, only when these capabilities are merged can a true benefit:cost analysis be conducted. The result of this template will provide the most accurate and cost effective set of actions for restoring and/or preserving fish and wildlife habitats available to date.

Columbia Cascade EDT Proposal

This project is specifically designed to directly associate with several related analytical processes such as the EDT validation project development and incorporation of a physical processes (engineered treatment) model, and ongoing GIS-based data collection projects. The timeline for initiation of this project is concomitant with the products of these efforts and will provide the opportunity to incorporate major findings and enhancements to the overall analysis. Thus, we anticipate a projected completion date coinciding with the initiation of the next round of provincial reviews (currently scheduled for March 2005) that will represent the most contemporary and sophisticated analytical structure possible.

² Action 154 FCRPS 2000

"WDFW, the Yakama Nation, and the Colville Confederated Tribes believe that a consistent, integrated approach for subbasin plan development in the Columbia Cascade Province will minimize both the confusion, funding, and time required for plan completion."

SSHIAP

Work under this proposal includes a GIS component. The focus of this work reflects the integrating and delivery of spatial data relevant to EDT and assisting the PPM model to incorporate GIS capability. More specifically, the GIS effort will utilize the 1:24,000 hydro layer (derived from the WDFWs Salmon and Steelhead Habitat Inventory and Assessment – SSHIAP) as the backdrop for stream reaches, habitat data, and as a platform for delivering summary data and products from EDT analyses. This GIS work will be closely coordinated with the SSHIAP and EDT effort, but will not be overlapping with it. The SSHIAP work to be conducted in the Columbia Cascade Province is being submitted under a separate funding proposal from WDFW.

We further recognize the opportunity to incorporate findings and improvements to the analytical process that will become available in 2002 and prior to the initiation of this project (NPPC [RAAC] EDT validation project). Finally, this project will provide the most expansive and contemporary example of how a PPM/EDT model can best be applied to other Province and subbasin planning efforts throughout the Basin.

The Upper Columbia Salmon Recovery Board

Our proposal to cooperatively provide the analytic foundation complements the high level of policy and technical coordination already occurring. Policy coordination is facilitated by the Upper Columbia Salmon Recovery Board (UCSRB), a partnership among Chelan, Douglas, and Okanogan counties, the Yakama Nation, and the Colville Confederated Tribes in cooperation with local, state, and federal partners.

One clear objective is to provide an all-inclusive analytic foundation for the aquatic component of subbasin plans on a timely basis, consistent with the NPPC guide, to maximize the likelihood that defensible subbasin plans are completed on schedule.

Additionally, technical coordination is occurring with the Upper Columbia Regional Technical Team and the Regional Assessment Advisory Committee and well as individual members of BPA, the NWPPC and the CBFWA.

Transborder Cooperation

Finally, a US/Canada transborder group has recently emerged in the Okanogan focusing on the combined and shared resources of this large and diverse watershed. Members of the Policy and Technical Working Group include:

- The Colville Confederated Tribes
- The Okanogan Nations Fisheries Commission
- The Department of Fisheries and Ocean
- The Washington State WDFW and DOE
- The former Ministry of Environment, Lands and Parks
- Associated Technical Representatives and others.

This group recently held a planning conference and symposium in January and June of 2001, respectively where over 120 participants and 40 papers were presented. The focus was on watershed planning and analytical approaches to ecosystem issues. Linkages between need,

actions, implementation and monitoring were identified as the critical features on ongoing and near-term work for this transborder watershed. Subsequent to this meeting the Northwest Pacific International Chapter of the American Fisheries society hosted several transborder discussions at their annual meeting in Victoria, B.C. and the theme of the upcoming (April 2001 in Spokane) Western Division of the American Fisheries Society annual meeting, will focus on similar topics.

The 2002 Annual Meeting of the Western Division of AFS (WDAFS) was held April 27 to May 1, 2002 in Spokane, Washington. The conference entitled "Toward Ecosystem-Based Management: Breaking Down the Barriers in the Columbia River Basin and Beyond," provided a major international forum for exchanging information and engaging in technical debates on a variety of issues related to the management of fisheries, aquatic, and riparian resources in the Columbia River Basin and elsewhere in western North America. The agenda for this five-day conference included nearly 100 plenary, technical and work group sessions. The PPM proposal was presented at this conference and received numerous supporting declarations (need and value) from peer audiences.

Review Comments

_ .

Although some development of the methodology is necessary, this project should not be funded until EDT activities are underway.

Budget		
FY2003	FY2004	FY2005
\$295,229 Category: Recommended Action	\$368,064 Category: Recommended Action	\$473,659 Category: Recommended Action

Project: 29022 Omak Creek Water Temperature Model

Sponsor: Colville Confederated Tribes

Short Description:

Characterize water temperature regime in Omak Creek, quantify range of variability, and develop of numerical model to assess the effect of water and land use in the watershed on water temperature and to predict effectiveness of salmon recovery actions.

Abbreviated Abstract

Water temperature is a critical factor in the recovery of spring Chinook and summer steelhead in the Okanogan River Basin. Major tributaries to the mainstem Okanogan provide cool water inflows and thermal refuge during upstream migration of adults. Omak Creek is a major tributary, which provides these benefits to the mainstem. The potential is high for spawning and rearing habitat recovery in Omak Creek; however, existing CCT water temperature monitoring data indicates water temperature as a limiting factor to spawning and rearing in the creek. CCT monitoring during the 2001 drought indicated limited creek capacity to absorb heat and be cooled by groundwater. Potential for peak and mean daily water temperature attenuation is dependent on water and land use effects on runoff, baseflow and shading.

	Relationship to Other Projects		
Project #	Title/description	Nature of relationship	
	Assessment of tributary	Transfer of water to instream flows in tributaries	
	habitat for steelhead and	will assist in the evaluation of potential steelhead	
	spring chinook production	and spring chinook production.	
	Prioritize and implement tributary action items from LFA	Low flows and high temperatures are identified as limiting factors. Transfer of water within or to adjacent basins will assist in over coming limiting factors.	
29032	Develop a water strategy for Okanogan Basin	The evaluation of available water rights to be placed in a trust account for potential transfer to instream flows is part of an innovative approach to an overall water strategy in the Okanogan Basin.	

The subbasin summary report lists instream flows and temperatures as limiting factors in most tributaries in the Okanogan River Basin. Restoring flows to tributaries would directly decrease temperatures in the streams, thus increasing habitat for rearing and refugia of steelhead and summer Chinook. This proposed project would assist in immediately identified water, which can be placed into a trust account to supplement flows within a drainage, or be utilized for transfer between tributary drainages. Currently, the CCT is evaluating the transferring of such water rights within the Omak Creek drainage. This would involve the transfer of known and delineated 1872 water rights from the No Name Creek drainage to the Omak Creek drainage. This transfer of water between basins would allow for increased flows in the lower two miles of Omak Creek and reduce temperatures from the cooler groundwater withdrawn from the No Name Creek drainage basin. This transfer of water would in turn increase potential habitat for steelhead and spring Chinook salmon.

The CCT is also currently conducting water resource planning within the Omak Creek drainage. This study will evaluate the required sustainable flow of Omak Creek to allow for appropriate habitat conditions for steelhead and spring Chinook. This proposed project would assist in identifying available water to supplement these flows. The proposed project study would also evaluate potential water transfers throughout the western portion of the Colville Reservation (see Figure 1) in order to supplement flows in Okanogan tributaries. Transfer of water into these tributaries will also assist in the temperature issues within the mainstem Okanogan River.

The flow and temperature regime corresponding to a natural disturbance pattern in the watershed will be computed to provide a basis for ranking alternatives. Indexes of hydrologic and water temperature alteration for the historical and alternative watershed conditions will be computed to predict the departure from the normative condition and the potential for improving habitat in the creek and Okanogan River. The results of the modeling will be used to evaluate the relationships between indicators of ecological health and hydrologic alteration, to develop an adaptive management program, and to prioritize watershed recovery actions.

Relationship to Existing Goals, Objectives and Strategies

Omak Creek together with several other major tributaries to the Okanogan River downstream of the confluence with the Similkameen River could have a significant cumulative effect on

lower mainstem water temperatures. Historical data show that the water temperature of the two main branches has the greatest influence on water temperatures in free flowing reaches of the lower mainstem. However, the lower reach typically has exceeding high temperatures during August and September, and Omak Creek provides thermal refuge to upstream migrating adult salmon and steelhead. Currently, the other tributaries to the lower mainstem do not provide sustained base flow at their mouths and cannot provide thermal refuge. However, water and land use could be managed in these tributary watersheds to provide cool flow at their mouths when needed for refuge. Additionally, additional cool tributary inflow would have a greater, and possibly significant, influence on lower mainstem temperatures than current conditions. The Omak Creek water temperature model is intended to act as a template for other tributaries to the lower mainstem. The model results will be extrapolated to the other tributaries to assess the potential cumulative effect of watershed management and recovery actions on the lower mainstem. If the cumulative effects assessment shows positive results, then more detailed work plans will be prepared to verify the extrapolations, and expand adaptive management programs to the other tributaries.

CCT is proposing four related projects in the tributaries to the lower Okanogan River. One project was mentioned above in the project abstract. It is a hydrologic modeling study, for which a grant application was submitted during October 2001 to the Salmon Recovery Board for funding. The three other projects are:

- 1. Monitoring and Evaluation of Spring Chinook and Steelhead in Omak and Salmon Creeks
- 2. Assessment of Tributary Habitat for Steelhead and Spring Chinook Production
- 3. Lower Omak Creek Passage—Additional Phases

The Omak Creek Passage Project is important to the water temperature model project because upper creek water temperatures would not be assessed from a habitat perspective if upstream passage were not feasible. Omak water temperature model results and extrapolations to other tributaries would be a major factor in the tributary habitat assessments. The model results could be used to test the strength of relationships between indexes of departure from normative flow and temperature conditions and the occurrence of spring Chinook and steelhead.

Review Comments

NMFS has identified this project as a BiOp project.

Budget		
FY2003	FY2004	FY2005
\$245,000 Category: Recommended Action	\$50,000 Category: Recommended Action	\$50,000 Category: Recommended Action

Sponsor: Colville Confederated Tribes, Fish and Wildlife Department

Short Description:

Enhance natural reproduction, establishment of a sustainable fishery, provide a riparian corridor located between seasonal wildlife to partially mitigate for loss of anadromous fish and wildlife created by the building of Grand Coulee and Chief Joseph. Target species include Lahontan cutthroat trout, elk, big horn sheep, other mammals, Tailed frog and other amphibians, migratory and non-migratory birds, reptiles, and Ute ladies'-tresses plus other plants with cultural significance.

Abbreviated Abstract

Kartar Creek historically was a perennial stream that flowed into the southern end of Omak Lake, however, today due to over utilization of local aquifers the water table has been lowered resulting in a loss of flow in the last 6 miles of the stream during most of the year. Reallocating water and enhancing wetland storage would provide a more consistent water flow in Kartar Creek allowing riparian area restoration and providing spawning habitat for Lahontan cutthroat trout present in Omak Lake. The Lahontan cutthroat trout population in Omak Lake has produced the last two state records and is currently supported by stocking fish from the Colville Tribal Hatchery (#8503800), by providing a spawning location this population a self-sustaining fishery could be created. Lahontan cutthroat trout are the only salmonid species capable of surviving the highly alkaline waters of Omak Lake. The riparian areas along this stream and wetlands that would be created or enhanced would provide an important wildlife corridor for elk, big horn sheep, tailed frogs and other wildlife species.

	Relationship to Other Projects		
Project #	Title/description	Nature of relationship	
8503800	Colville Tribal	Currently stocks fish into Omak Lake; this could be reduced	
	Hatchery	or eliminated depending upon the success of this project.	
9001800	Lake Roosevelt Habitat	The Biologist in charge of this program will assist and	
	Improvement	consult with the project lead on fisheries and ecological	
	_	process issues (In-kind Support)	
9204800	Hellsgate project	Will provide in-kind support for this project by helping with	
		fencing needs and maintenance	

Because Omak Lake and the Kartar Creek watershed are wholly contained within the Colville Reservation and represent a closed basin, it is difficult to relate this project to others within the Columbia River basin. However, other projects currently funded through BPA and administered through the Colville Tribes, Fish and Wildlife Department would benefit or contribute to this project. The Hellsgate project (9204800) would provide help with fencing and fence maintenance and planting riparian vegetation, the Lake Roosevelt Habitat Improvement project (9001800) would provide technical fisheries and intergraded resource management assistance to the lead biologist, This project (850380) and this project would reduce or eliminate the need to continue stocking Omak Lake freeing up space at the hatchery

for raising locally adapted stocks for other reservation waters. The Natural Resource Conservation Service has provided founding and assistance to other Colville Tribes habitat projects for plantings, labor, technical assistance, and remote watering facilities and we will pursue their assistance with this project as well. Any road work needed will be coordinated and cost shared with BIA roads department and Okanogan County roads department.

Relationship to Existing Goals, Objectives and Strategies

The Kartar Creek Restoration project would be a resident fish and wildlife substitution project to mitigate for anadromous fish and wildlife losses above Chief Joseph and Grand Coulee Dams. This project is located in a closed basin within the Okanogan Subbasin (Columbia-Cascade Province). The project is for enhancement of resident fish and wildlife populations as mitigation for anadromous fish (resident fish substitution) and wildlife losses and is considered in-place and out-of-kind mitigation. *See objectives, goals and strategies summary at the end of this document for more detailed relationships.*

The goal for this project is to increase habitat quality and quantity in Kartar Creek in order to achieve a self-sustaining population of Lahontan cutthroat trout for Omak Lake and reestablish a wildlife corridor along this creek. Habitat improvements will follow a 3-teired approach first, by modifying existing water allocations or obtaining water rights and increasing wetland storage the quantity of available in-stream habitat will be increased. Secondly, by modifying land use practices, using stream restoration techniques, and enhancing riparian habitats the quality of the in-stream habitat can be improved. Third, evaluation, monitoring and maintenance of this project will ensure that improvements made achieve the desired goal and that these improvements are maintained to ensure long-term benefits for fish and wildlife are created.

Review Comments

Columbia Cascade Province Budget Work Group supports funding Objective 1 with a phased approach and reduced costs. There are only two resident fish proposals in this province. This would convert a supplementation project funded by BPA into a natural production program. The budget has been adjusted to reflect the recommendation for High Priority. Although all cooperators contribute in-kind service only, CBFWA believes the proposed project would benefit from cost-share arrangements with partners contributing funding or other grant sources to extend the BPA mitigation dollars. In addition, CBFWA believes the project sponsor should include a detailed rationale or flow chart for selecting and prioritizing project actions.

Budget		
FY2003	FY2004	FY2005
\$86,729	\$79,729	\$87,729
Category: High Priority	Category: High Priority	Category: High Priority

Project: 29029 Perform Range Forage Inventory for Large Ungulates

Sponsor: Colville Confederated Tribes

Short Description:

Grazing resource inventory is necessary to enable identification and location of grazing lands, forage availability and quality, for the management of large ungulates including elk, mule and white tail deer, moose and big horn sheep.

Abbreviated Abstract

Forage inventory of the project area is the necessary critical step for the development of a range management plan. A Reservation-wide inventory has not been performed since 1959. Forest and range land use and forage conditions have changed dramatically since that time, especially with current land use practices and recent fires that swept through 65,000+ acres, much of which is critical wildlife habitat, of this proposed project area. Best management use decisions require that this inventory be completed for grazing ungulates of the region, especially relating to critical wildlife summer and winter forage grounds. Sufficient habitat must be maintained such that fluctuations in habitat availability do not cause populations to decline below viable sizes for the target species of mule deer, white tail deer, elk, moose, and big horn sheep, and all other closely associated species including sharp-tailed grouse. This inventory will allow the identification of such habitat and the subsequent development of a modern range plan.

Relationship to Other Projects

This project is closely related to other projects within this and adjacent provinces. Considerable emphasis is placed on mule deer, elk, white tail deer, moose, bighorn sheep and sharp-tailed grouse, habitat protection and enhancement. Omak Game Reserve, located in the project area, is a non-hunting reserve for the protection of bighorn sheep and their habitat, as well as all other wildlife there. The Sharp-tailed Grouse Restoration Project (21034), Acquisition Project (199506700), and Hellsgate Winter Range (199204800) are all related to this project in that the information gained will be beneficial and can be duplicated at a later date for those habitats. Those projects focus on projecting and restoring habitat so that it will provide increased benefit to target and associated species. Each of these projects deals with forage/vegetative availability, diversity and quality. We are working closely with the Washington Department of Fish and Wildlife and the Spokane Tribe to maintain and expand existing sharp-tailed grouse populations. We hope to collectively, through our mitigation projects and others, restore enough habitat that we can re-establish sharp-tailed grouse populations in areas where they formerly existed. By establishing healthy populations around the basin we hope to remove the threat of extinction in this region (extirpation).

Regional concerns about mule deer habitat and populations are also being collectively addressed. Big game winter range is a priority and considerable critical deer winter range occurs on the land to be address in this project. A cooperative study involving WDFW, CCT, Chelan County PUD, and others is currently underway to assess mule deer needs in our Province. This project will significantly benefit and complement these and other projects in the region.

Relationship to Existing Goals, Objectives and Strategies

Many agencies in the Columbia Cascade and Intermountain Provinces are in existence to address or devote extensive effort to address rangeland/forest forage related issues via conducting forage inventories, Range Management Plans, Timber Harvest Management Plans, Land Use and Development Plans, wild ungulate management, habitat protection and restoration and noxious weed control. Some of those key players include Colville Tribes Range Department, Colville Tribes Fish and Wildlife Department, Colville Tribes Forestry Department, NRCS, WDFW, USFS, and WSU Extension. All resource managers, be they fish, wildlife, timber, water, soil or otherwise, must contend with land and vegetation issues including but not limited to: range/forest forage quality, quantity, and diversity and competition for its use; negative impacts to land base (habitat) due to human and animal use; the necessary assessments of the land, vegetation, and water resources; and the ensuing difficulties we as managers face attempting to strike a balance between human needs and wildlife/ecosystem needs.

Review Comments

Historic data is 60 years old and a new inventory is badly needed.

Budget		
FY2003	FY2004	FY2005
\$159,704	\$151,274	\$ 151,274
Category: High Priority	Category: High Priority	Category: High Priority

Project: 29032 Okanogan Basin Water Strategy Development and Pilot Projects

Sponsor: Colville Confederated Tribes and Okanogan County

Short Description:

At the local level, identify, formulate, and implement reasonable and feasible water strategies to increase instream flow within three selected pilot project tributaries of the Okanogan basin

Abbreviated Abstract

Low instream flow and elevated water temperature in tributaries are identified in the Initial Watershed Assessment (Montgomery Water Group et. al 1995), the Draft Okanogan Subbasin Summary (Colville Confederated Tribes 2001), and the draft limiting factors analysis for the Okanogan watershed (Colville Confederated Tribes 2001) as habitat impairments to salmonids in the Okanogan subbasin. This project provides a proactive response to addressing these limiting factors by identifying, formulating and implementing reasonable and feasible strategies at the local level to increase instream flow within selected tributaries of the Okanogan basin. The project addresses Action 151 of the NMFS Biological Opinion to establish innovative water strategies and addresses the 2001 Okanogan Subbasin Summary

and the 2000 Columbia Fish and Wildlife Program identified needs for improved stream flows by:

1) Addressing: where is the water?

Develop a water right and water use database for the Okanogan River tributaries by assimilating data through interviews, water rights and water use audits and Department of Ecology's database;

2) Developing pilot projects

Develop pilot project selection criteria and identify three tributaries for the implementation of water strategies to serve as pilot projects. Tributaries where low instream flows are problematic for salmonids, where water use is significant, and where there are willing stakeholders will be considered.

3) Developing a stakeholder-based proactive response

Form a multi-stakeholder "water forum" for each pilot tributary, similar in purpose and scope to other water forums, such as the Central Puget Sound Water Suppliers' Forum, to provide consensus based strategies for water management for each pilot tributary.

4) Addressing how can we get the water back in the tributaries

Review water strategies for applicability and feasibility in the pilot tributary. Some strategies that will be considered include: water conservation measures (improved irrigation efficiencies, etc); acquisition (purchase and/or lease) and transfer of water rights to instream use, investigation and foundation development of a formal water market, and/or compensatory wetland mitigation bank, and. Develop and implement an action plan for consensus based water strategies for each of the three tributaries.

	Relationship to Other Projects		
Project #	Title/description	Nature of relationship	
29002	CURE: Conjunctive Use and River Enhancement Demonstrate the benefits between and/or impacts from direct augmentation of upper Methow River stream flow using groundwater from the prolific Upper Methow Valley Aquifer.	CURE is one type of water strategy for the Okanogan	
198347700	Enloe Dam passage	provides information on flow and aquatic habitat that could be incorporated into data needs of the Water Strategy	
20000010	Improvement of habitat and fish passage Omak Creek		
29037	EDT Application for the Upper Columbia	Habitat assessed through EDT analysis in the Okanogan basin will complement the informational needs of the water strategy	

The need for the Okanogan Water Strategy is presented in: (1) NMFS Biological Opinion Action 151 directing BPA to "experiment with innovative ways to increase tributary flows, by for example, establishing a water brokerage;" (2) the *Okanogan Subbasin Summary*, which identifies the need to re-establish stream flows to recover and maintain fish populations and habitat; 3) the strategies and objectives of the Colville Confederated Tribes (CTCR) Integrated Resource Management Plan; 4) the goals and objectives of the Upper Columbia Salmon Recovery Funding Board (UCSRB) the DRAFT Biological Strategy to Protect and Restore Salmonid Habitat in the Upper Columbia Region (July 2001); 5) the 2000 Columbia River Fish and Wildlife Program (FWP), and 6) the 2415 Watershed Planning Process.

Okanogan Subbasin Summary. The Subbasin Summary identifies barriers to fish migration (including dewatered stream channels, dams, and culverts), elevated temperatures, and sedimentation as the primary limiting factors to anadromous fish reproductive success in the Okanogan Basin. The Okanogan watershed currently supports anadromous runs of summer Chinook salmon, sockeye salmon, and summer steelhead. There are 6 non-anadromous species in the basin, and 24 species of non-salmonids. (Okanogan Subbasin Summary 2001). This project will serve to meet these strategies and objectives through the development of water strategies and pilot project water strategy implementation for Okanogan tributaries

Re-establishment of flows through the implementation of water strategies will benefit all aquatic species in the Okanogan basin. The proposed project addresses both tributary flow increases and tributary habitat passage improvements through flow increases. It will also address the immediate problem of loss of rearing habitat for juvenile life stages of ESA listed steelhead. The immediate problem of migration impediments due to low flow and loss of spawning habitat for adult life stage of summer Chinook and sockeye will also be addressed for the pilot projects. Increasing flow in the tributaries will function to enhance habitat in the Okanogan mainstem as well. Thermal refuges at the tributary mouth created by increased flow in the tributaries will provide additional habitat near and along the mainstem.

Colville Confederated Tribes (CTCR) Integrated Resource Management Plan. The objectives and strategies of the Colville Confederated Tribes (CTCR) identified in the subbasin summary and detailed in the CTCR Integrated Resource Management Plan include a goal of maintaining and protecting instream and riparian habitat and supporting ecological function in these habitats. This goal

is to be achieved through several objectives. This project is directly related to fulfilling Objectives 2 and 3.

- Objective 2 is to maintain adequate stream flow in the Okanogan Watershed to support salmonids at all life stages by exploring water conservation strategies and developing a water market.
- Objective 3 is to reduce summer temperatures in the watershed to meet the needs of salmonids in all life stages by exploring water conservation strategies to increase water use efficiency.

Upper Columbia Salmon Recovery Board. The general goals and objectives of the Upper Columbia Salmon Recovery Board (UCSRB) as outlined in the DRAFT Biological Strategy to Protect and Restore Salmonid Habitat in the Upper Columbia Region (July 2001)...

- *Strategy 5:* Purchase water shares for instream flow and water quality benefits;
- *Strategy 6:* Provide alternative sources of irrigation and domestic water to mitigate impacts of problematic surface water diversions;

• *Objective 3*: of the UCSRB specific to the Okanogan subbasin is "to establish a normative hydrograph…will also improve the water quality, quantity and would provide for improved upstream migration and over summer rearing conditions. Water rights should be purchased or secured through trust for increasing late-summer instream flows of tributary streams".

This project will serve to meet these strategies and objectives through the development of water strategies and pilot project water strategy implementation for Okanogan tributaries.

2000 Columbia River Basin Fish and Wildlife Program. The 2000 Columbia River Basin Fish and Wildlife Program ("FWP") focuses on protecting and restoring natural ecological functions to watersheds. It also strives to protect and restore salmonid habitat, emphasizes wild salmonid production, and strives to ensure biodiversity. Stream flow restoration will benefit anadromous and resident fish, including restoration of anadromous fish to areas that contain good habitat but are limited by reduced flows from dewatering like Antoine Creek, Bonaparte Creek, and Siwash Creek. As stated above, priority will be placed on restoring stream flows in the tributaries for the benefit of spring chinook, summer chinook, sockeye and summer steelhead.

NMFS Biological Opinion. The Biological Opinion includes actions related to basic habitat needs of listed species. In tributary habitat, two objectives are relevant to this project:

- (1) Water quantity—increase tributary water flow to improve fish spawning, rearing, and migration; and
- (2) Water Quality—comply with water quality standards, first in spawning and rearing areas, then in migratory corridors.

Biological Opinion Section 9.6.2.1. Biological Opinion Action 151 states that "BPA shall, in coordination with NMFS, experiment with innovative ways to increase tributary flows by, for example, establishing a water brokerage."

Funding the Okanogan Water Strategy and Pilot Projects will enable some of the key benefits of this recommended action to be realized immediately, and in a way that can be replicated in other subbasins. The development of the Okanogan Water Strategy and Pilot Projects will also allow for the investigation into feasibility and development of water strategies, that can be used in Eastern Washington. It will develop the infrastructure needed to demonstrate transactional strategies for securing flows and improving water quality both from large irrigation projects and individual landowners. It will immediately increase flows in three pilot tributaries through a locally driven consensus based-approach.

Relationship to Existing Goals, Objectives and Strategies

This proposed project is generally consistent with and/or complements other past, ongoing, or proposed BPA funded fish or wildlife habitat projects in the Okanogan Subbasin. The proposed work is consistent with the ongoing effort to restore anadromous salmonid populations in the Okanogan Subbasin as well as elsewhere in the Upper Columbia River Basin.

This project also complements the work of the Washington Water Trust in the basin. The Washington Water Trust (WWT) is a private nonprofit (501(c)(3)) corporation. It was modeled after successful efforts in other states, including the Oregon Water Trust and The Nature Conservancy. WWT has stepped in to create acquire water rights for instream flow augmentation purposes.

In the Okanogan, Salmon Creek TWR acquired temporary water rights from 42 individual irrigators (a total of 330 acres, about 20 cfs, priority 1926) last year in the Okanogan Irrigation District. The water has been made available for 24 days to restore the 4.2 stream miles that typically dried up many years for most of the summer. The water will allow fish passage and provide over-wintering habitat for spring Chinook. WWT has cooperated with biologists from the Colville Tribes to provide the water at appropriate times, which is possible because of the availability of storage capacity and a spillway on the river. Financing of the acquisition came from BPA.

Review Comments

Project sponsor has indicated that Objective 3c can be reduced by \$25,000 for 2003. NMFS has identified this project as a BiOp project.

Budget		
FY2003	FY2004	FY2005
\$166,920	\$99,420	\$186,420
Category: High Priority	Category: High Priority	Category: High Priority

Project: 29033 Design and Conduct Monitoring and Evaluation Associated With Reestablishment of Okanogan Basin Natural Production

Sponsor: Colville Confederated Tribes

Short Description:

The CCT are currently proposing and implementing a focused array of salmon and steelhead propagation initiatives in an effort to rebuild anadromous, naturally-produced salmon runs and increase harvest opportunities. An M&E program is necessary.

Abbreviated Abstract

The Colville Confederated Tribes are currently proposing and implementing a focused array of salmon and steelhead propagation initiatives in an effort to rebuild anadromous, naturally-produced salmon runs and increase harvest opportunities in the Okanogan basin. The Colville Tribes and fishery co-managers initiated a one-year spring Chinook program in the Okanogan River with the acclimation and release of 300,000 Carson stock Chinook planned for April 2002. The Tribes are currently proposing to continue this program with the annual production of 500,000 Carson stock spring Chinook juveniles at the existing WDFW Beaver Creek Hatchery. New acclimation/release sites on the Okanogan River are also being developed in conjunction with additional production releases below Chief Joseph Dam. Additionally, a natural broodstock program for steelhead will be initiated at the Cassimer Bar hatchery site. The Colville Tribes are proposing to expand and reform the existing summer/fall Chinook

program in the Okanogan and Columbia Rivers to promote use of historic natural habitats and provide more hatchery-origin Chinook for tribal and recreational selective fisheries. Testing and deploying selective fishing gear is also being proposed to restore a minimum level of tribal fishing opportunity and complement planned propagation programs. The Monitoring and Evaluation (M&E) program itself is specifically designed to monitor key components of juvenile fish survival, habitat utilization, production potential, and adult passage, habitat utilization, and spawning success. The program will also contain components to monitor the success of reestablishing extirpated stocks, critical and endangered species and future potential for creating natural broodstock. Finally, an examination of selective fisheries gear types and both tribal and sport fisheries will be initiated.

	Relationship to Other Projects	
Project #	Title/description	Nature of relationship
200020033	Rehabilitate Instream and Riparian Habitat on the Similkameen and Okanogan	Monitoring and Evaluation will provide information on outmigration timing, spawning location and timing, habitat productivity and conditions, river entry, passage and overall distribution
200126033	Okanogan Watershed Land and Water Rights Acquisition	Monitoring and Evaluation will provide information on outmigration timing, spawning location and timing, habitat productivity and conditions, river entry, passage and overall distribution.
200126008	Omak Creek Relocation Implementation	Monitoring and Evaluation will provide information on outmigration timing, spawning location and timing, habitat productivity and conditions, river entry, passage and overall distribution
200000100	Fish Habitat Improvement; Omak Creek	Monitoring and Evaluation will provide information on outmigration timing, spawning location and timing, habitat productivity and conditions, river entry, passage and overall distribution
200020042	Integrating Okanogan and Methow Watershed Data for Salmonid Restoration	Monitoring and Evaluation will provide information on outmigration timing, spawning location and timing, habitat productivity and conditions, river entry, passage and overall distribution
	Thermal Imaging (FLIR)	Monitoring and Evaluation will provide information on outmigration timing, spawning location and timing, habitat productivity and conditions, river entry, passage and overall distribution
	Zosel Dam Fish Passage	Monitoring and Evaluation will provide information on outmigration timing, spawning location and timing, habitat productivity and conditions, river entry, passage and overall distribution
	Physical Processes Method	Monitoring and Evaluation will provide information on outmigration timing, spawning location and timing, habitat productivity and conditions, river entry, passage and overall distribution
	Columbia Cascade EDT	Monitoring and Evaluation will provide information on
	Analysis	outmigration timing, spawning location and timing,

Project #	Title/description	Nature of relationship
		habitat productivity and conditions, river entry, passage and overall distribution
	Okanogan Steelhead Kelt Reconditioning	Monitoring and Evaluation will provide information on outmigration timing, spawning location and timing, habitat productivity and conditions, river entry, passage and overall distribution
20001300	Evaluation Sockeye Re- introduction into Skaha Lake	Monitoring and Evaluation will provide information on outmigration timing, spawning location and timing, habitat productivity and conditions, river entry, passage and overall distribution

The proposed BPA-funded programs to which this effort applies are as follows:

1. Selective Fish Collection and Harvesting Gear

This project will develop, test and deploy several types of selective fishing gear to capture chinook, steelhead, and sockeye for the purposes of tribal harvest, brood stock collection, and research, monitoring, and evaluation.

2. Phase I Okanogan River Spring Chinook Production

This project will reintroduce spring chinook into the Okanogan subbasin to provide for tribal C&S and recreational fisheries. The program will also be used to collect information on the feasibility of reintroducing ESA-listed chinook in Phase II.

3. Develop Local Okanogan River Steelhead Brood Stock

Project will collect steelhead brood stock from local sources and transfer propagation activities from Wells Hatchery to Cassimer Bar Hatchery.

4. Develop and Propagate Local Okanogan River Summer/Fall Chinook

Project will acclimate existing summer chinook production near historic habitat, increase production for the Okanogan and upper middle Columbia rivers, initiate production of late-arriving fall chinook, and initiate a local chinook brood stock.

The project will monitor and evaluate natural spawning, rearing, survival, age and growth characteristics and life histories of juvenile and adult steelhead and spring and summer/fall Chinook salmon and their naturally produced progeny in the Okanogan basin by:

- 1. Coordinating the Monitoring and Evaluation of Okanogan Basin steelhead, Spring and fall/summer chinook production with appropriate tribal, state, and federal management agencies and independent scientists in the Okanogan basin;
- 2. Monitoring spawning activities of supplemented and natural steelhead, spring and fall Chinook in the Okanogan basin;
- 3. Measuring timing and survival of juvenile steelhead, spring and summer chinook salmon smolts migrating to Wells Dam;
- 4. Measuring juvenile salmonid abundance, distribution and rearing densities at index sites and selected reaches in the Okanogan basin;
- 5. Determining age, growth, and life history characteristics of Steelhead and Chinook salmon in the Okanogan basin, and

6. Estimating tribal and non-tribal harvest of adult salmon returning to Okanogan basin. Thus, the Okanogan Basin Monitoring and Evaluation (M&E) Program provides a comprehensive research program that will document will evaluate data on a system-wide basis incorporating production, passage, transport, and survival information. This information will be vital for a assessing both focused and regional production programs and for selective gear performance for use by the co-managers, the Upper Columbia Salmon Recovery Board, the Regional Technical Team, and for the National Marine Fisheries Service (NMFS) as the Technical Recovery Team contemplates production-based recovery scenarios. Finally, this information will provide the basis to all regional entities in developing the subbasin plan under the Council's Fish and Wildlife Program.

NMFS Monitoring and evaluation

A well-designed monitoring and evaluation program is a critical component of any conservation or restoration activity and can play several roles within recovery planning. First, monitoring of specific projects is vital to determine whether those management actions have been effective. Second, large-scale monitoring and evaluation is important to assess the success of integrated actions (or recovery plans) in achieving desired recovery goals. Finally, well-coordinated management actions, when coupled with relevant monitoring and evaluation programs, can reduce uncertainty about the effect of those actions on salmon productivity. Monitoring and evaluation can be divided into four categories which are applicable to West Coast salmon recovery planning: implementation monitoring, project effectiveness monitoring, recovery program evaluation, and environmental monitoring. TRTs will play an important role in monitoring should be considered in Phase I and Phase II. Program evaluation and environmental monitoring and project effectiveness monitoring generally should be incorporated into Phase II. Each of these categories is briefly described below.

Relationship to Existing Goals, Objectives and Strategies

The Colville Confederated Tribes (CCT) are preparing comprehensive plans now to reintroduce spring Chinook into the Okanogan basin and to expand the propagation of summer/fall Chinook in the basin. These programs are being undertaken to achieve CCT goals of restoring naturally spawning populations of Chinook salmon in their historic habitats, providing reliable and predictable runs of hatchery-origin Chinook to support ceremonial and subsistence (selective) fisheries, and local recreational (selective) fisheries.

The Colville Tribes are proposing to expand and reform the existing summer/fall Chinook program in the Okanogan and Columbia Rivers to promote use of historic natural habitats and provide more hatchery-origin Chinook for tribal and recreational selective fisheries. Testing and deploying selective fishing gear is also being proposed to restore a minimum level of tribal fishing opportunity and complement planned propagation programs.

The Colville Tribes and fishery co-managers initiated a one-year spring Chinook program in the Okanogan River with the acclimation and release of 300,000 Carson stock Chinook planned for April 2002. The Tribes are currently proposing to continue this program with the annual production of 500,000 Carson stock spring Chinook juveniles at the existing WDFW Beaver Creek Hatchery. New acclimation/release sites on the Okanogan River are also being developed in conjunction with additional production releases below Chief Joseph Dam.

New, expanded, and reprogrammed hatchery facilities combined with new acclimation facilities will be necessary to support these Chinook programs. The CCT intends to soon complete Hatchery & Genetic Management Plans that will describe and analyze the strategic options and detail a preferred alternative to meet their and co-manager goals (Okanogan Subbasin Summary 2001).

This project is directly related to the spring Chinook production programs described here. It will serve as the monitoring and evaluation portion of those projects to determine effectiveness in reaching the goal of "sustainable, naturally producing populations". As described in the Subbasin Summary, "research monitoring and evaluation should accompany all projects underway".

Implementation of this project would allow movement toward developing the escapement abundance data sets that provide a scientific basis for management, conservation, and allow evaluation of recovery thresholds (NMFS Biological Opinion 2000).

The need for the *Okanogan Basin Monitoring and Evaluation* project is presented in: (1) 2000 FCRPS biological Opinion, Appendix H Research Action 1193 and Actions 174, 179, 180 (2) the *Okanogan Subbasin Summary*, which identifies the need to re-establish stream flows to recover and maintain fish populations and habitat; 3) the strategies and objectives of the Colville Confederated Tribes (CTCR) Integrated Resource Management Plan; 4) the goals and objectives of the Upper Columbia Salmon Recovery Funding Board (UCSRB) as outlined in USCRB (2001); 5) the 2000 Columbia River Fish and Wildlife Program (FWP), and 6) Wy-Kan-Ush-Me-Wa-Kush-Wit (Spirit of the Salmon; CRTIFC 1995).

Okanogan Subbasin Summary.

The anadromous fish species targeted for management in the Okanogan Basin are spring Chinook, summer Chinook, sockeye, and summer steelhead. According to the Okanogan Subbasin Summary (CTC 2001) "the goal is to restore sustainable, naturally producing populations to support tribal and non-tribal harvest and cultural and economic practices while protecting the biological integrity and the genetic diversity of the watershed." The following outcome based objectives have been listed in the Subbasin Summary for achieving this goal:

- 1. improve adult pre-spawning survival
- 2. improve juvenile survival

Additionally, fish and wildlife needs described in the Okanogan Subbasin Summary include: " Obtain baseline information on status of native fish communities."

This project will serve to meet these strategies and objectives through the development of baseline information on the existing adult-pre spawning and juvenile survival.

Colville Tribes Current Activities

Colville Confederated Tribes (CTCR) Integrated Resource

Management Plan. The objectives and strategies of the Confederated Tribes of the Colville Reservation (CTCR) identified in the subbasin summary and detailed in the CTCR Integrated Resource Management Plan include a goal of "supplement Okanogan Basin spring chinook and steelhead populations as necessary to affect recovery while conserving genetic integrity". A strategy for realizing this goal is:

Strategy 1: Explore all possible actions to reintroduce and recover spring

chinook in the Okanogan Subbasin.

2000 Columbia River Basin Fish and Wildlife Program. The 2000 Columbia River Basin Fish and Wildlife Program ("FWP") focuses on protecting and salmonid production and strives to ensure biodiversity. Since wild salmonid production is an emphasis of the FWP, this project will address the effectiveness of CTCR's wild salmonid production efforts to restore sustainable, naturally producing populations of Chinook.

NMFS Biological Opinion. The importance of collecting salmonid abundance information in determining population status and recovery thresholds of ESUs is clear (NMFS 20000. The biological Opinion recommended that accurate assessment of spawner escapement of listed ESUs are required for determining the viability, recovery status, and de-listing of ESUs under ESA.

The intentions of this proposed project are also consistent with the NMFS Biological Opinions RPAs. Many of the monitoring activities are designated in Actions 174, 179 and 180 and Biop Action #1 and #9.

Review Comments

Possible cost share for spring chinook through pacific salmon recovery funds. Objective 2-7, spring chinook monitoring, is unnecessary and Objective 7 monitoring is already covered by Project Number 29042. The budget has been reduced for 2003 by \$290,000. Provides personnel funding for projects 29042, and 29050. NMFS has identified this project as a BiOp project.

Budget		
FY2003	FY2004	FY2005
\$480,152	\$763,482	\$378,343
Category: High Priority	Category: High Priority	Category: High Priority

Project: 29035 Okanogan River Riparian and Upland Fish and Wildlife Habitat Acquisition

Sponsor: Stewardship Partners, formerly Resource Action Council

Short Description:

Protect and restore existing high quality riparian, floodplain, and adjacent upland from development, and preserve important spawning, rearing and holding habitat in the Okanogan River through property acquisition and development of long term research.

Abbreviated Abstract

This project involves: (1) the acquisition of 1,671 acres of property along 6.2 miles of the western side of the Okanogan River from RM 46 to 52; (2) the biological assessment of water quality, biota and habitat encompassed by the property to gauge species' use and control invasive species, (3) habitat restoration, and (4) the development of a field research and education center overseen by Central Washington University and a local advisory council.

The acquisition would protect the largest free-flowing reach of the Okanogan River unconfined by highway or rail line, and would retire spring-source water rights providing additional habitat enhancement opportunities for integration with other subbasin recovery efforts. Virgin ponderosa pine along the riparian corridor recruits large woody debris to the mainstem, a highly limited habitat component in Okanogan system. The property also includes a complex series of riverine islands and shrub-steppe plateaus that provide high quality wildlife habitat. The braided channel conditions along much of the reach support nearly half of all chinook spawning in the mainstem. McLoughlin Falls, Janis Rapids and McAllister Rapids would also be included in the acquisition; these are the only rapids/falls mapped by the USGS on the Okanogan mainstem. Scour pools created downstream of these rapids provide excellent holding and rearing habitat because of the improved water quality and high food production inherent to rapid reaches. Finally, there are pictographs and remnants of pit houses from the Sinkeietk Indians adjacent to McLoughlin Falls. Thus, the property has unique cultural and historic significance in addition to its importance as fish and wildlife habitat. Stewardship Partners has recognized the unique habitat and archeological features of the property and seeks to protect its biological functionality and historic significance through acquisition and cooperative land stewardship involving local citizenry, tribal associations, Central Washington University and the BPA.

	Relationship to Other Projects	
Project #	Title/description	Nature of relationship
	RPA Action Item 150	NMFS stresses the importance of protecting quality, non-federal habitat in this action item. This purchase would secure 6 miles of river where nearly 50% of all Okanogan mainstem chinook spawning routinely occurs.
	RPA Action Item 155	The proposed project will establish permanent Okanogan mainstem reaches for monitoring and research purposes, and will initiate direct habitat enhancements through riparian restoration.
	RPA Action Item 153	This proposal will directly protect and restore (where needed) over 6 miles of highly functional riparian buffers.
	RPA Action Item 178	This acquisition will secure high quality habitat important for the rearing of at risk upper Columbia steelhead in the Okanogan.
	RPA Action Item 180	Data acquired from the monitoring proposed in the educational and stewardship component of this proposal will be integrated into other basin-wide data repositories.
	Development Of Additional Summer/Fall Chinook Acclimation (proposed as OK-14- 01 by Colville Confederated Tribes (CCT), 2001)	This project would seek direct integration with tribal and state supplementation efforts. Horseshoe lake and other smaller ponds on the property could serve as acclimation ponds to spread out acclimation throughout the mainstem.
	Re-connection of High Quality Habitat found in Isolated Oxbows and Adjacent Riparian Areas (proposed by CCT as OK-48-01,	Project proposed this cycle by CCT. Oxbow lake on proposed property acquisition is within floodplain and offers good potential for reconnection with mainstem. Engineering could provide for both

Project #	Title/description	Nature of relationship
	2001)	spawning and rearing in connected channel.
	Propagation Of A Late Arriving	Long term use of the acquired property, with off-
	Summer/Fall Chinook Stock In	channel enhancements, could integrate with this
	The Okanogan Basin (proposed	supplementation objective, but is not proposed
	as OK 15-01 by CCT, 2001)	directly with this application.
	Assessment Of Waterfowl	Habitat and wildlife surveys associated with this
	Habitat Suitability In The	proposal would gather similar data that could be
	Potholes Area Of The CCT	integrated with the tribe's efforts to link data from
	Reservation (proposed as OK-32-	off and on-reservation lands.
	01 by CCT, 2001)	
	Priority Habitat Assessment For	Habitat and wildlife surveys proposed in this
	Endangered Species Act (ESA)	project would collect information on priority
	Wildlife Species (proposed as OK	
	33-01 by CCT, 2001)	the studies proposed by the tribe.
	Noxious Weed Control (proposed	Stewardship and monitoring inherent to the
	as OK 27-01 by CCT, 2001)	management and educational components of the
		proposal will include noxious weed control and
		thereby link to this project proposed by the CCT.
	Reconnaissance Review To	Biological and habitat inventories proposed within
	Identify Possible Rehabilitation	the overall strategy of this project will incorporate
	Of Okanogan Basin Riparian	quantitative assessments of riparian habitat. These
	Habitat (proposed as OK 19-01	data can be incorporated into the study proposed by
	by CCT, 2001)	the CCT.

Relationship to Existing Goals, Objectives and Strategies

The Upper Columbia Salmon Recovery Funding Board (UCSRFB) has stated the principal goal of the recovery strategy in the upper Columbia subbasins is to protect and restore salmonid habitat. For the Okanogan subbasin, they specified as their first objective to, "protect remaining sockeye and summer chinook spawning and rearing habitat that remains in the watershed". They also stressed the need to establish production-related strategies for salmon recovery that maximize the reproductive potential of salmonids. Indeed, the subbasin summary for the Okanogan (NWPPA ,) and the strategic recovery options developed by the Colville Confederated Tribes (CTCR, as cited in NWPPA, 2001) have further recognized that the recovery goals for both spring and summer/fall chinook salmon in the Okanogan cannot be met at the present day without supplementation that integrates production throughout the watershed instead of concentrated in the Similkameen and upper mainstem as occurs presently.

Finally, the technical advisory group (TAG) that authored the Limiting Factors Analysis for the Okanogan River, identified the following action items particularly relevant to the mainstem Okanogan River and the proposed project:

- (1) Secure functional riparian habitats and identify specific areas in need of restoration;
- (2) Address impacts of non-native fishes (e.g., smallmouth bass, walleye pike) on anadromous resource survival; and
- (3) Reduce mainstem temperatures to tolerable levels as possible, and secure potential temperature refugia along the mainstem (ENTRIX and Golder 2001).

The project proposed directly responds to these regional and subbasin recovery goals, UCSFRB objectives, NMFS RPA actions, and mainstem action items identified by the Okanogan TAG in the following ways:

- The property acquisition would protect over 6.2 miles of aquatic, riparian and floodplain habitat along a portion of the mainstem that currently and annually supports nearly 50% of all summer/fall chinook spawning in the mainstem. The protection of this important habitat directly addresses UCSRFB objective 1, NMFS RPA #150 and 153, and TAG action item #1.
- The reach potentially protected by this project supports approximately 10 medium to large islands. The islands improve water quality and aquatic production by doubling the potential organic enrichment and shade over the stream channel from associated riparian stands. This acquisition would therefore secure high quality habitat important for the rearing of at risk upper Columbia steelhead in the Okanogan, in deference to NMFS RPA action item #178. The existence of the islands is reflective of the relatively unconfined character of the reach (Hillman and Ross 1991), to date permitted to meander naturally due to the lack of confinement by highway, rail lines, or other development. Although the full carrying capacity of the reach would be established through studies coordinated from the research associated with the long-term stewardship of the land, co-managers of the salmonid resource in the subbasin (i.e., the CTCR and WDFW) are in agreement that the reach is not seeded to near its capacity. Thus, the reach provides excellent opportunities for incorporating supplementation goals and objectives of the CTCR, consistent with the overall subbasin restoration strategy (NWPPA, 2001).
- Following acquisition, the proposal calls for the monitoring of water quality, invasive species (e.g., noxious weeds and non-native predatory fish), and fish use in fiscal years 2004 to 2007. (Monitoring and research would continue beyond this funding cycle). Most of the costs for these studies will be proposed and secured from other sources and are thus indicated as match dollars to those proposed to the BPA in this grant. The long term monitoring and research plans would be developed fully in concert with the land stewards and a local advisory council that would provide for local, state, federal and tribal input. The data acquired from the monitoring proposed in the educational and stewardship components of this proposal would be integrated into other basin-wide data repositories, thereby addressing the NMFS RPA action item #180. Data on mainstem habitat conditions, riparian integrity, and invasive species has also been recognized as a data gap by the Okanogan TAG, and studies addressing these issues associated with this proposal will therefore address the TAG action item #2 listed above.

The proposed project will establish permanent Okanogan mainstem reaches for monitoring and research purposes, and will initiate direct habitat enhancements through riparian restoration (NMFS action item #155). Oxbow lakes on the property provide additional opportunities for enhancement, either through reconnection to the mainstem, or integration with other proposed supplementation programs.

Review Comments

Portions of this proposal have been submitted through the Washington SRFB process. NMFS has identified this project as a BiOp project.

Budget		
FY2003	FY2004	FY2005
\$2,957,000	\$2,988,000	\$90,000
Category: Recommended Action	Category: Recommended Action	Category: Recommended Action

Project: 29037 Ecosystem Diagnosis and Treatment in the Columbia Cascade Province

Sponsor: Washington Department of Fish and Wildlife Yakama Nation, Colville Confederated Tribes

Short Description:

Provide an analytic foundation, including refinement of the coarse screen EDT, needed for the aquatic assessment and management components of subbasin plans in the Columbia Cascade Province.

Abbreviated Abstract

Subbasin Planning has been identified as a key to achieving the Northwest Power Planning Council's 2000 Columbia Basin Fish and Wildlife Program's basin wide vision of "a Columbia River ecosystem that sustains an abundant, productive, and diverse community of fish and wildlife...and [provides] the benefits from fish and wildlife valued by the people of the region." Subbasin plans are also identified in RPA action 154 as providing "an important context for classifying and prioritizing watersheds for protection and restoration" and "the foundation for ESA recovery planning." Meeting this goal will require extraordinary levels of institutional, political and social cooperation. Additionally, the 2000 Program is unique from previous iterations in its structural commitment to scientifically based, clearly articulated goals, objectives, and implementation strategies. Development of reliable communication and information infrastructures and a scientifically sound conceptual framework within which to sort, prioritize and translate to implementation, available information and knowledge, is essential to the long-term success of this undertaking.

The Washington Department of Fish & Wildlife (WDFW), the Yakama Nation, and the Colville Confederated Tribes are embracing this challenge by jointly requesting funding to conduct a coordinated evaluation of anadromous salmonid habitat conditions in the Columbia Cascade Province using the Ecosystem Diagnosis and Treatment methodology (EDT). The project proponents recognize that Subbasin plans play a pivotal role in the Council's 2000 Fish and Wildlife Program; they also note that access to, and development of, shared, verifiable, comprehensive, and comprehensible ecosystem assessment data and knowledge is at the heart of Subbasin planning. Additionally, project proponents recognize the import of a transparent analytic framework, such as EDT, to developing and maintaining the levels of scientific, social, institutional and economic support necessary to implement Subbasin plans and overall regional salmon recovery strategies.

The proposed evaluation of four of the Cascade Columbia Province's six constituent subbasins (Entiat, Wenatchee, Methow and Okanogan) will include refinement of the coarse screen EDT analysis conducted by the NWPPC, development of working hypotheses on

subbasin ecosystems, and a series of interactive workshops in which technical and policy representatives will define and evaluate alternative strategies for meeting biological objectives and identifying potential risks. Sensitivity analysis will be used to evaluate the effects of uncertainty in habitat conditions and model assumptions. Sensitivity analysis will also aid in the development and refinement of a prioritized list of protection and restoration activities and an identification of related research and monitoring needs. Assessment needs of critical priority will be addressed through real time allocation of project personnel. The project completion date is anticipated to integrate well into Cascade Columbia subbasin planning efforts and will coincide with initiation of the next round of provincial reviews (currently scheduled for March 2005).

Relationship to Other Projects			
Project #	Title/description	Nature of relationship	
200020033	Rehabilitate Instream and Riparian Habitat on the Similkameen and Okanogan	EDT assessment could be used to estimate benefits of this work to overall watershed productivity, carrying capacity and life history diversity.	
200126033	Okanogan Watershed Land and Water Rights Acquisition	EDT assessment could be used to estimate benefits of this work to overall watershed productivity, carrying capacity and life history diversity.	
200126008	Omak Creek Relocation Implementation	EDT assessment could be used to estimate benefits of this work to overall watershed productivity, carrying capacity and life history diversity.	
199604200	Okanogan Focus Watershed	EDT results will allow watershed assessments to be more focused and complete in evaluating habitat conditions and in establishing monitoring framework.	
20001300	Evaluation Sockeye Re-introduction into Skaha Lake	EDT assessment may be useful in describing potential limiting factors for sockeye production.	
200000100	Fish Habitat Improvement; Omak Creek	EDT assessment could be used to estimate benefits of this work to overall watershed productivity, carrying capacity and life history diversity.	
200126017	Stream Gaging Installation and Operations	Information collected by these devices will be important to continue to refine EDT data in the future.	
200020042	Integrating Okanogan and Methow Watershed Data for Salmonid Restoration	A continuation of data collection and synthesis will continue to augment and refine EDT inputs and provide more reliable outputs.	
199603401	Methow River Valley Irrigation District	EDT assessment could be used to estimate benefits of this work to overall watershed productivity, carrying capacity and life history diversity.	
199802500	Early Winters Creek Habitat Restoration	EDT assessment could be used to estimate benefits of this work to overall watershed productivity, carrying capacity and life history diversity.	

Project #	Title/description	Nature of relationship
9604000	Mid-Columbia Coho Feasibility	EDT assessment may be useful in helping
	Reintroduction Study, Yakama	define carrying capacities for individual
	Nation	species and providing a means for evaluating
		species interactions.
23024	Hancock Springs Passage and	EDT assessment could be used to estimate
	Habitat Restoration Improvements,	benefits of this work to overall watershed
	Yakama Nation	productivity, carrying capacity and life history
100002000	Goat Creek Instream Habitat	diversity.
199802900	Restoration	EDT assessment could be used to estimate benefits of this work to overall watershed
	Restoration	productivity, carrying capacity and life history
		diversity.
200123012	Arrowleaf/Methow River	EDT assessment could be used to estimate
200123012	Conservation Easement	benefits of this work to overall watershed
		productivity, carrying capacity and life history
		diversity.
200126015	Methow Basin Screening	EDT outputs may be useful in describing
		increases in salmon productivity as a result of
		improvements in irrigation systems.
	Methow Watershed Project II	EDT assessment could be used to estimate
		benefits of this work to overall watershed
		productivity, carrying capacity and life history
199803500	Magguro Mino Droinago Effects of	diversity. EDT assessment could be used to estimate
199803300	Measure Mine Drainage Effects of Alder Creek	benefits of this work to overall watershed
	Alder Creek	productivity, carrying capacity and life history
		diversity.
91999155	Establish the Methow Watershed	EDT results will allow watershed assessments
	Council	to be more focused and complete in evaluating
		habitat conditions and in establishing
		monitoring framework.
19999046	Identify Res Fish &	EDT assessment could be used to estimate
	Macroinvertebrate Taxa & Function	benefits of this work to overall watershed
	in Anad Fish Habitat	productivity, carrying capacity and life history
		diversity.
200122027		
200123027	Methow Basin Floodplain and	EDT assessment could be used to estimate benefits of this work to overall watershed
	Riparian Land Acquisitions	productivity, carrying capacity and life history
		diversity.
26029	Stream Gaging Installation and	Information collected by these devices will be
	Operations - Wenatchee	important to continue to refine EDT data in
	1	the future.
199604000	Wenatchee and Methow River Coho	EDT assessment could be used to estimate
	Restoration	benefits of this work to overall watershed
		productivity, carrying capacity and life history
000106006		diversity.
200126036	Chumstick Creek (North Road)	EDT assessment could be used to estimate
	Culvert Replacement	benefits of this work to overall watershed

Project #	Title/description	Nature of relationship
		productivity, carrying capacity and life history diversity.
200020001	Remove 23 Migrational Barriers and Restore Instream and Riparian Habitat on Chumstick Creek	EDT assessment could be used to estimate benefits of this work to overall watershed productivity, carrying capacity and life history diversity.
200123023	Stormy Creek High Priority Culvert Replacement	EDT assessment could be used to estimate benefits of this work to overall watershed productivity, carrying capacity and life history diversity.
200123055	Acquire Prime Salmonid Spawning and Rearing Habitat on Entiat River	EDT assessment could be used to estimate benefits of this work to overall watershed productivity, carrying capacity and life history diversity.
19999031	Implement Entiat Model Watershed Plan	EDT assessment could be used to estimate benefits of this work to overall watershed productivity, carrying capacity and life history diversity.

2002 Columbia Cascade Province Proposed Projects:

<u>The Mid-Columbia Coho Reintroduction Feasibility Study</u> encompasses a vision of an optimistic future that may take many years to achieve, as well as short-term goals that will provide information to enable decision-makers to assess whether the vision is achievable. The long-term vision for this program is to reestablish naturally reproducing coho salmon populations in mid-Columbia river basins with numbers at or near carrying capacity that provide opportunities for significant harvest for tribal and non-tribal fishers. Mid-Columbia coho reintroduction is identified as a priority in *the Wy-Kan-Ush-Mi-Wa-Kish-Wit* document (Tribal Restoration Plan; CRITFC 1995). The feasibility phase has two primary goals: 1) To determine whether a localized broodstock can be developed from Lower Columbia River coho stocks, whose progeny can survive in increasing numbers to return as adults to the mid-Columbia region; and 2) to initiate natural production in areas of low risk to listed species.

The Mid-Columbia Coho Reintroduction Feasibility Study is centered on the development of a localized broodstock while minimizing potential negative interactions among coho and listed and sensitive species. The EDT method has tools to measure carrying capacity and to provide information about effects of species interactions. Coordination of the EDT assessment and the Reintroduction Feasibility Study should allow managers refinement of our understanding towards both these efforts.

<u>WDFW Fish Passage Barrier Study - Wenatchee and Entiat Subbasins:</u> The Washington Department of Fish and Wildlife and Yakima Screen Shop is proposing (to NWPPC) to conduct a watershed based inventory of all fish passage barriers and unscreened or inadequately screened water diversion in the Entiat and Wenatchee subbasins. Habitat assessments will be conducted beginning with the first barrier encountered and continue upstream until the stream is no longer fish bearing. The data collected for this study will be highly relevant to the EDT assessment. To this end, we strongly support the companion proposal -<u>WDFW Fish Passage Barrier</u> - that is also being submitted for work in the Columbia Cascade Province. (*Please refer to the 2002 NWPPC proposal entitled Comprehensive*

Okanogan/Similkameen Subbasin Summary 425

Inventory and Prioritization of Fish Passage and Screening Problems in the Wenatchee and Entiat Subbasins.)

Salmon Steelhead Habitat Inventory and Assessment Program (SSHIAP): The goal of the SSHIAP program is to provide core repository for salmonid habitat and distribution data in Washington (http://www.wa.gov/wdfw/hab/sshiap/). The SSHIAP database, based primarily upon a GIS format, currently includes information about fish distribution, barriers to salmon migration and various habitat conditions. At this time, these databases have not been completed in the Columbia Cascade Province, but continued work in these subbasins is currently being proposed (to NWPPC, 2002 Columbia Cascade proposals). If SSHIAP is subsequently funded, a cross-linkage between SSHIAP and the EDT input and output will be facilitated through the GIS representation of stream reaches used by both projects. The Physical Process Model (PPM): Understanding the physical processes that control the environment is key to successfully distinguishing and implementing curative actions for fish and wildlife habitat. Matching actions with analysis (and ultimately with planning, implementation and M&E needs) is the intent behind the development of the PPM approach and model. Currently, there exists no harmonized method or model to integrate the results of sophisticated ecosystem diagnosis and habitat conditions analysis with the causal mechanisms of landscape and/or land-forming processes. This gap in association leaves subbasin planners, biologists and decision-makers with far too many assumptions about how to effectively and credibly treat habitat symptoms affecting the productivity, diversity and abundance of Pacific salmon. Thus, we will engage the expertise of civil and systems engineers, geomorphologists, hydrogeologists and others familiar with the science of physical processes to conduct an inventory of existing tools and develop a step-by-step procedure that translates physical processes and ecosystem diagnosis into action alternatives and trade-off analysis. Existing physical models will be reviewed and mobilized to associate with ecosystem tools such as the EDT model and subbasin plan development. The PPM procedure will be iteratively and concurrently translated into an extensible program module or subroutine for use with ecosystem conditions analysis data. Model testing (Columbia Cascade Province and Chehalis River Basin), review, validation, documentation, and finally, presentation to subbasin planners, with implementation and training, represent out-year efforts.

Due to the comprehensive nature of the EDT methodology, all watershed assessment, restoration, and protection projects in the Columbia Cascade Province can be considered related to this proposal.

Relationship to Existing Goals, Objectives and Strategies

Subbasin plans are becoming a focal point for Columbia Basin planning. For instance, the Subbasin planning process will incorporate mandates related to implementation of the NMFS' FCRPS Reasonable and Prudent Alternatives. Completion of subbasin planning in a timely and coordinated manner is essential to achieving the goals of the Fish and Wildlife Program (Program). The Program relies on a collaborative subbasin planning process to develop, evaluate, and recommend management strategies consistent with a basin wide vision for fish and wildlife restoration. These strategies will subsequently play a pivotal role in shaping implementation plans that identify specific projects for potential funding by the BPA.

The EDT process proposed in the Cascade Columbia Province is also aligned with NMFS 2000 FCRPS Biological Opinion Action 154 states: *assessments and plans; match*

state and local funding for coordinated development of watershed assessments and plans; and help fund technical support for subbasin and watershed plan implementation from 2001 to 2006. Planning for priority subbasins should be completed by the 2003 check-in. The action agencies will work with other Federal agencies to ensure that subbasin and watershed assessments and plans are coordinated across non-Federal and Federal land ownerships and programs."

Completing scientifically defensible, practical subbasin plans on schedule requires that planning groups have at their disposal a foundation of analytic tools supplemented by technical expertise. This foundation should be consistent with the Scientific Principles identified in the Program, and must be able to withstand the scrutiny of the Independent Scientific Advisory Board and other peer reviewers. The "Technical Guide for Subbasin Planners" (NWPPC 2001) identifies an approach to subbasin planning that builds upon the coarse scale EDT analysis conducted by the NWPPC to develop working hypotheses on the condition and processes affecting a subbasin ecosystem, and to evaluate alternative management strategies.

WDFW, the Yakama Nation, and the Confederated Tribes of the Colville Indian Reservation believe that a consistent, integrated approach to subbasin plan development in the Columbia Cascade Province will maximize the value of effort involved and enhance the utility of the final product, while minimizing confusion, duplication of effort time required for plan completion, and overall costs. Our proposal to cooperatively develop an appropriate analytic foundation complements the high level of policy and technical coordination already occurring in this subbasin, such as that facilitated by the Upper Columbia Salmon Recovery Board (UCSRB), a partnership among Chelan, Douglas, and Okanogan counties, the Yakama Nation, and the Confederated Tribes of the Colville Indian Reservation in cooperation with local, state, and federal partners.

The project proponent's primary objective is to provide the analytic foundation for the aquatic component of subbasin plans on a timely basis, consistent with the NWPPC subbasin planning guidelines, in order to maximize the likelihood that defensible subbasin plans are completed on schedule. However, this evaluation will provide and receive multi-dimensional synergistic benefits in relating to the concurrent regional activities listed below:

Tributary Habitat Assessments and the Technical Recovery Team: The National Marine Fisheries Service is establishing Technical Recovery Teams (TRTs) for specific geographic regions that encompass particular salmonid Evolutionarily Significant Units (ESUs). These teams consist of scientists with a high level of expertise from within NMFS, state and tribal resource agencies, academia and environmental consulting firms. The TRTs are charged with identifying specific population units within ESUs, establishing biological delisting criteria, describing key fish/habitat relationships, characterizing factors that are limiting or responsible for declines, and providing examples of combinations of populations at particular status that could allow delisting. The TRTs role in developing a recovery plan will depend upon the specific region and the particular policy level processes that may be required in those circumstances.

Characterizing the factors affecting particular populations will require combining results of habitat assessments with knowledge about how the particular fish population relates to habitat. The TRTs are ultimately responsible for producing a rigorous, scientifically based assessment of what factors, if addressed, would have potentially high benefits to the population(s) within a particular ESU. Doing such a detailed assessment on a reach-by-reach

basis within the TRT process would be neither cost effective nor productive. As a result, NMFS has encouraged the Council to fund regional teams of experts to provide tributary level planners with expert help in developing and interpreting tributary habitat assessments. NMFS has developed a set of key questions an assessment should address those questions are captured in the subbasin planning guidance provided by the Northwest Power Planning Council. There are several opportunities for coordination and further development of habitat assessment tools. NMFS and the TRT will be most interested in ensuring that regional subbasin assessments relate to specific populations and the habitat they rely on, that assessment efforts to the extent possible use available data from the target subbasins to characterize habitat conditions and fish responses, and that the results of quantitative assessments be expressed simply and clearly in terms of key assumptions. NMFS Science center staff and the TRTs will be encouraged to work through detailed case studies with regional technical experts to ensure that desired levels of scientific rigor and detail are well understood.

The Upper Columbia Salmon Recovery Board (UCSRB and the Regional Technical

Committee (RTT): The UCSRB is a partnership among Chelan, Douglas, and Okanogan counties, the Yakama Nation, and the Confederated Tribes of the Colville Indian Reservation in cooperation with local, state, and federal partners. The mission of the UCSRB is *to restore viable and sustainable populations of salmon, steelhead, and other at-risk species through the collaborative efforts, combined resources, and wise resource management of the Upper Columbia Region*. To better meet its mission, the UCSRB wishes to ensure that actions taken to protect and restore salmonid habitat in the region are based on sound scientific principles.

The RTT: To meet its mission, the UCSRB intends to ensure that actions taken to protect and restore salmonid habitat in the region are based on sound scientific principles. The RTT consists of scientific representatives from many of the region's agencies, Tribes and Public Utility Districts. The UCSRB maintains the RTT to: 1) recommend region-wide approaches to protect and restore salmonid habitat, 2) develop and evaluate salmonid recovery projects to forward to the UCSRB, and 3) develop and implement salmonid recovery monitoring plans as appropriate.

An important function of the RTT is to review the technical merits of projects to be submitted by project sponsors in the Upper Columbia Region for funding by the Washington State Salmon Recovery Funding Board (or other funding sources). The UCSRB directs the RTT to establish a scientific foundation for this process, with the premise that it will enable them to identify projects that will best contribute to the recovery of salmonids listed under the ESA.

<u>State 2514 Process: The Watershed Management Act:</u> The 1998 Legislature passed the Watershed Management Act (Chapter 90.82 RCW) to provide a framework for local citizens, interest groups, and government organizations to collaboratively identify and solve water-related issues in each of the 62 Water Resource Inventory Areas (WRIAs) in the State. The Watershed Management Act enables local groups called "Planning Units" to form for the purpose of conducting watershed planning.

Under the law, citizens, local governments, tribes, and other members of the Planning Unit must assess water resources and needs and recommend management strategies for the watershed. The Planning Unit may also assess habitat, water quality and instream flow requirements. In the Columbia Cascade Province, development and progress for each of the Okanogan (not yet formed), Methow, Entiat (well under way) and Wenatchee Planning Units vary widely. However, the existing Planning Units have chosen to assess the habitat component of this planning process. The EDT methodology is providing the basis for habitat evaluation in the Entiat subbasin and could well provide the same for the other subbasins.

Review Comments

This project will be funded in the Columbia Upper Middle Subbasin.

Project: 29040 Develop and Propagate Local Okanogan River Summer/Fall Chinook

Sponsor: Colville Confederated Tribes

Short Description:

Project will acclimate existing summer chinook production near historic habitat, increase production for the Okanogan and upper middle Columbia rivers, initiate production of late-arriving fall chinook, and initiate a local chinook brood stock.

Abbreviated Abstract

Summer/Fall Chinook mitigation for the Federal government's construction and operation of Grand Coulee and Chief Joseph dams has never been provided for the Colville and other upper basin tribes. This mitigation is over 60 years past due. The Colville Tribes propose to expand and reform the existing summer Chinook program in the Okanogan and Columbia Rivers to promote great use of historic natural habitats and provide more hatchery-origin Chinook for tribal and recreational selective fisheries. New acclimation sites would be developed in the middle and lower Okanogan River and below Chief Joseph Dam. Existing summer Chinook hatchery production acclimated at Similkameen Pond would be split with some being acclimated on the upper Okanogan River. Existing summer Chinook program would be acclimated and released on the Okanogan River. Late-arriving fall Chinook, not currently included in the summer Chinook program would be propagated and released in the lower Okanogan River and below Chief Joseph Dam. A summer/fall brood stock unique to the Okanogan River would be initiated. The Summer/fall Chinook program for below Chief Joseph Dam would be expanded to provide greater tribal and recreational selective fishing opportunities.

Project #	Title/description	Nature of relationship
29042	Selective Fish Collection and Harvesting Gear	will provide fish for selective
		harvest
	Assess the Success of Summer/Fall Chinook	will provide fish for passage
	Spawning above Chief Joseph	and spawning
29033	Okanogan Chinook M&E Program	will evaluate effects of chinook
		rearing program

Relationship to Other Projects

This proposal either implements or is consistent with The Mid-Columbia Main-stem Conservation Plan – Hatchery Plan (BAMP 1998), the Rock Island Settlement Agreement, the Wells Settlement Agreement and the Rocky Reach Mitigation Agreement. A proposal integral to this one is OK-1: Selective Fish Collection and Harvest Gear. The Tribe intends to develop collection capabilities in the OK-1 proposal that will be essential to developing a local brood stock for Okanogan River summer/fall Chinook. The OK-1 proposal will also provide the tribe with a realistic capability to harvest hatchery-origin summer/fall Chinook for C&S purposes.

OK-7: Okanogan River Chinook Monitoring and Evaluation will provide the critical assessment of the production program proposed herein. Proposal OK-7 will quantify the benefits and risks of the production program and provide the information from which to adapt the program to optimize benefits while minimizing fiscal costs and biological risks.

Relationship to Existing Goals, Objectives and Strategies

In 2000, the Bureau of Reclamation agreed with the Colville Tribes that the Federal government had not completed its authorized mitigation for construction of Grand Coulee Dam over 60 years ago. Planned artificial production programs were not implemented for the Okanogan River Basin when the outbreak of WWII halted non-war related construction projects.

Tribes of the Colville Reservation have been seriously harmed by the lack of Grand Coulee mitigation, with ceremonial and subsistence fisheries declining to minimal levels. Fishing opportunity is now severely limited to summer Chinook immediately below Chief Joseph Dam and an occasional sockeye fishery in the Okanogan River.

This situation has been adversely compounded as later formulas for mitigation of mid-Columbia PUD dams have been based on the proportion of smolts lost passing the dams. Without the initial Federal salmon mitigation that other watersheds in the province obtained, the Okanogan Basin and Colville Tribes again were provided without mitigation. Additionally, the Federal government has never provided mitigation for Okanogan anadromous fish of for the Colville Tribes for the loss of adult and juvenile fish passing through the four Corps of Engineers' hydroelectric projects on the Lower Columbia River. Fish losses at these projects have been estimated at 10% - 15% per project.

This summer/fall Chinook program is needed for several purposes:

1. The existing summer Chinook program, releasing 576,000 smolts, needs to be dispersed to make better use of historic spawning habitat and minimize excess use of spawning grounds in the Similkameen River. This action should increase the abundance and distribution of summer Chinook thereby strengthening the ESU. This action will also make excess hatchery-origin fish more available for selective tribal and recreational fisheries that are currently closed. An existing summer Chinook program that releases fish into the main-stem Columbia would be relocated and acclimated to historic spawning areas that are now unutilized. This action should increase the abundance and distribution of natural-origin fish thereby strengthening the ESU. This action will also make excess hatchery-origin fish thereby strengthening the ESU.

closed. Both this and the previous actions, when combined with proposed selective fishing initiatives, would alter the purpose of the summer Chinook program from an "integrated harvest program" to an "integrated recovery program."

- 2. The existing artificial production program for summer/fall Chinook in the Columbia Cascade Province does not propagate the later arriving fish at Wells Dam. Brood stock are not taken after August 28th. This protocol was established in years past to segregate the earlier arriving "summer" fish from the later arriving "fall" fish. With establishment of a summer/fall ESU, a need exists to maintain the genetic and life history diversity afforded by the later arriving Chinook. This project would initiate propagation of the fall fish, initially by collection at Wells Dam. The program would acclimate most of these artificially reared Chinook near spawning habitat in the lower Okanogan River to revitalize the usage of this historic habitat.
- 3. The C&S fisheries for the Colville and other upper basin tribes have been severely limited or lost due to the construction and operation of Grand Coulee Dam followed by non-implementation of authorized hatchery mitigation the past 60 years. This project would increase the artificial production and release of summer/fall Chinook below Chief Joseph Dam to enhance an existing C&S fishery. Along with the increased production, the Tribe intends to develop selective fishing gear to allow the targeted harvest of hatchery-origin fish. This should allow the federal government to meet its trust responsibility while providing added protection for listed and natural-origin fish.
- 4. Finally, this project includes developing methods to collect future summer/fall brood stock unique to the Okanogan River rather than taking a mixture of fish at Wells Dam. This will allow the population to adapt over time to the unique attributes of the Okanogan system, which should increase the productivity of this population, the population structure and diversity of the Upper Columbia River Summer/Fall Chinook ESU.

The above actions are supportive of, or consistent with the artificial production strategies of the Columbia River Fish & Wildlife Program and the guidance of NMFS in its ESA consultations.

Review Comments

The project sponsor has reduced Task 2.2 by \$200,000 in 2003. Objective 3.3 or 4.3 can be delayed until 2004 transferring \$8,500 from 2003 to 2004.

Budget		
FY2003	FY2004	FY2005
\$402,200	\$316,500	\$193,500
Category: High Priority	Category: High Priority	Category: High Priority

Project: 29042 Selective Fish Collection and Harvesting

Sponsor: Colville Confederated Tribes

Short Description:

This project will develop, test and deploy several types of selective fishing gear to capture chinook, steelhead, and sockeye for the purposes of tribal harvest, brood stock collection, and research, monitoring, and evaluation.

Abbreviated Abstract

Historic ceremonial and subsistence fisheries for the Colville tribes have been severely restricted as a result of unmet mitigation obligations, degraded salmon and steelhead runs, and restrictions imposed by the Endangered Species Act to protect listed, natural-origin fish. The tribes are proposing new propagation initiatives, in part, to return greater numbers of salmon and steelhead for tribal harvest. The tribes are seeking to optimize their harvest of hatchery-origin fish and unlisted species (with limited effect on listed and depressed stocks) as they rebuild anadromous fish runs in the Columbia Cascade Province. Testing and deploying selective fishing gear as proposed herein would restore a minimum level of tribal fishing opportunity and complement planned propagation programs. The tribe proposes to test modern fish wheels, floating net traps, beach seines, and other promising gear types in the Columbia and Okanogan rivers. Live-capture gear will also be evaluated for its use in collecting local brood stock for planned propagation programs, translocation of Chinook to above Chief Joseph Dam, and to collect data integral to research, monitoring and evaluation programs.

Project #	Title/description	Nature of relationship
29033	Okanogan Spring Chinook M&E	provide means for data collection
29050	Okanogan Spring Chinook Phase I Production	provide means for isolated harvest program and potential for brood stock collection
29051	Develop Unique Okanogan Basin Steelhead Brood Stock	provide potential means of brood stock collection
29041	Develop Unique Okanogan Summer/Fall Chinook Broodstock	provide potential means of brood stock collection
	Assess the Success of Summer/Fall Chinook Spawning above Chief Joseph	provide means of collection fish for translocation

Relationship to Other Projects

Project OK-8, Phase I Okanogan River Spring Chinook Production, proposes an isolated harvest program for spring Chinook salmon. This would expand upon the release of 300,000 smolts in 2002. Adults from the 2002 release will start returning in May 2004. The Colville Tribes require effective collection and harvesting capabilities to access all of the returning fish and supplement traditional fishing methods. This project has been proposed to develop the means to increase harvest rates on these hatchery-origin Chinook. Spring Chinook should therefore be available in 2004, the second year of this proposed study and the first year of test fishing.

Project OK-41, Plan, Design, and Construct a Trap and Counting Facility for Adult Salmonids at Zosel Dam, would provide an additional means to collect and harvest spring

Okanogan/Similkameen Subbasin Summary 432

Chinook that escape test gear, tribal fishers and recreational fishers. In development of the research plan in Task 1.d, consideration will be given to testing any available trap as a terminal fishing method.

Project OK-5, Spring Chinook and Steelhead Monitoring and Evaluation, provides the comprehensive research program that will document the critical biological and social benefits and risks of the spring Chinook program. Testing of live-capture fishing gear would be coordinated with development of this M&E plan to share information, provide access to fish for tagging, examination, etc. The efficacy of the live-capture gear will also be evaluated for its long-term potential as sampling gear or stations for the above comprehensive M&E program.

The Colville Tribes have been studying the feasibility of passing anadromous fish, particularly Chinook, above Chief Joseph Dam to spawn in the Columbia River below Grand Coulee Dam. This project requires a means of safely collecting Chinook to be trans-located above the dam to evaluate their subsequent spawning success. The larger gear types to be tested in the Columbia River below the dam (e.g. fish wheel and floating trap net) would be evaluated for their ability to supply the adults for the above assessment of blocked habitat. This should provide a cost-effective means to evaluate the potential for restoring Chinook to habitat above the dam prior to more costly construction of upstream and downstream passage structures.

Information garnered from this project would be available to fishery managers in the lower and middle Columbia River and tributaries for consideration in harvest management. Successful results by the Colville Tribes would likely lead to further gear tests in other fisheries. Results from this project would also be invaluable to many other Columbia basin M&E projects and brood stock collection programs as a means of cost-effectively collecting adult salmonids for research and propagation programs.

Relationship to Existing Goals, Objectives and Strategies

In 2000, the Bureau of Reclamation agreed with the Colville Tribes that the Federal government had not completed its authorized mitigation for construction of Grand Coulee Dam over 60 years ago. Planned artificial production programs were not implemented for the Okanogan River Basin when the outbreak of WWII halted non-war related construction projects.

Tribes of the Colville Reservation have been seriously harmed by the lack of Grand Coulee mitigation, with ceremonial and subsistence fisheries declining to minimal levels. Fishing opportunity is now severely limited to summer Chinook immediately below Chief Joseph Dam and an occasional sockeye fishery in the Okanogan River.

This situation has been adversely compounded as later formulas for mitigation of mid-Columbia PUD dams have been based on the proportion of smolts lost passing the dams. Without the initial Federal salmon mitigation that other watersheds in the province obtained, the Okanogan Basin and Colville Tribes again were provided without mitigation. Additionally, the Federal government has never provided mitigation for Okanogan anadromous fish of for the Colville Tribes for the loss of adult and juvenile fish passing through the four Corps of Engineers' hydroelectric projects on the Lower Columbia River. Fish losses at these projects have been estimated at 10% - 15% per project.

Every major fish plan arising from implementation of the Endangered Species Act and the Northwest Power Act has stressed the need to reduce direct and indirect harvest

mortalities on depressed populations of salmon and steelhead. Every scientific review of these plans has similarly stressed the same conclusion. Yet these needs for reducing mortalities have to be balanced with the social priority for fish harvest, the promised and authorized fisheries mitigation for hydroelectric development, and for Tribal treaty rights and trust responsibilities of the Federal government. The National Marine Fisheries Service and many other regional entities have sought means to restore salmon and steelhead harvests on stronger (normally hatchery-origin) stocks while reducing mortalities to depressed (normally natural-origin stocks).

In its 2000 FCRPS Biological Opinion, NMFS stated that, "New and/or expanded harvest reforms, such as those that increase the selectivity of fisheries with by avoiding contact with listed fish or by reducing the mortality rate of listed fish released from fisheries, offer the potential to reduce impacts on some listed ESUs. It may be possible to realize this potential without net reductions in harvest and to increase total harvest without increasing impacts on listed ESUs." (pg 9-143). NMFS further stated that, "The solution to the recovery problem cannot be found in the complete elimination of harvest, in sacrificing what little remains of an entire sector, or in further exacerbating an already extreme burden on the Tribes, as a prerequisite to changes in other sectors." (pg. 9-144).

In looking to reform harvest methods and management, NMFS stated in the Biological Opinion that, "The Basin-wide Recovery Strategy particularly emphasizes the development, implementation, and expansion of mark-selective fisheries." "Thus, mark-selective and other forms of selective fishing may contribute to meeting multiple objectives, including FCRPS mitigation mandates, FCRPS offsite mitigation responsibilities, and Tribal and non-Tribal fishery obligations." (pg. 9-145).

The Biological Opinion's RPA Action 164 states, "The Action Agencies shall work with NMFS, USFWS, and Tribal and state fishery management agencies in a multi-year program to develop, test, and deploy selective fishing methods and gear that enable fisheries to target non-listed fish while holding incidental impacts on listed fish within NMFS-defined limits. The design of this program and initial implementation (i.e., at least the testing of new gear types and methods) shall begin in FY 2001. Studies and/or pilot projects shall be under way and/or methods deployed by the 3-year check-in."

In response to the Biological Opinion, the Actions Agencies stated in their <u>ESA Implementation Plan for</u> the FCRPS that, "Our Harvest Strategy has three areas of emphasis: 1) Develop selective/terminal fisheries to reduce harvest-related mortality on ESA-listed species." (pg. 27)

The Northwest Power Planning Council's <u>2000 Columbia River Basin Fish and</u> <u>Wildlife Program</u> has as a specific planning assumption that, "Harvest can provide significant cultural and economic benefits to the region, and the program should seek to increase harvest opportunities consistent with sound biological management practices. Harvest rates should be based on population-specific adult escapement objectives designed to protect and recover naturally spawning populations." (pg. 13)

The Program's primary harvest strategy states, "Assure that subbasin plans are consistent with harvest management practices and increase opportunities for harvest wherever feasible." (pg. 30)

Review Comments

The project sponsor has reduced Objective 1c by \$35,000. Also, \$30,000 could be eliminated from equipment costs by sharing equipment with other projects. This would make 2003 budget \$166,000. The budget has been adjusted to reflect these changes. Potential exists for deferring other costs to 2004 or 2005. NMFS has identified this project as a BiOp project.

Budget		
FY2003	FY2004	FY2005
\$166,000	\$155,000	\$125,000
Category: High Priority	Category: High Priority	Category: High Priority

Project: 29045 Protect and Restore Salmon and Steelhead Habitat at the Similkameen/Okanogan River Confluence

Sponsor: Upper Columbia Regional Fisheries Enhancement Group, co-sponsors: U.S. Fish and Wildlife Service

Short Description:

Design and implement measures to protect and restore flood plain processes for 12 miles of spawning, rearing, and migratory habitat of the Okanogan/Similkameen rivers through an adaptive management process.

Abbreviated Abstract

The purpose of this project is to design and implement measures to protect and restore flood plain processes for 12 miles of spawning, rearing, and migratory habitat supporting listed steelhead, chinook, and sockeye salmon upstream of the confluence of the Okanogan and Similkameen rivers. The goals are:

- 1. to assess habitat conditions within 12 miles of spawning, rearing, and migratory habitat at the confluence of the Okanogan and Similkameen rivers;
- 2. to assess a suite of possible restoration actions that include dike modification, riprap removal, construction of instream, channel-forming structures, and riparian plantings;
- 3. to plan for appropriate restoration actions following the adaptive management process;
- 4. to permit and implement those restoration actions identified in the adaptive management plan under an adaptive, phased approach.

Objectives and deliverables include:

- 1. biological and engineering assessments;
- 2. restoration planning coordinated among state, federal and private landowners resulting in preliminary designs of measures to protect and restore habitat-forming processes;
- 3. an adaptive management plan for implementation of these measures;
- 4. final designs, permitting, and implementation of measures identified under the adaptive management planning process.

The Project Area contains high-priority, "Category 2 and 3" reaches as designated by the Upper Columbia Salmon Recovery Board's Regional Tech Team. The productive capacity and natural alluvial processes in this area, including some 4.5 miles of spawning habitat supporting the largest concentration of summer chinook in the watershed, is among the highest in the subbasin and therefore should be protected, but has also been degraded from hydraulic disruption caused by flood control dikes and riprap banks that accelerate high-flows. These altered flow patterns have led to accelerated bank erosion, siltation of spawning and

rearing habitat, disconnected side channels, disrupted channel-forming processes, and loss of riparian habitat and wood recruitment.

	Relationship to Other Projects	
Project #	Title/description	Nature of relationship
	N/A little BPA work done in this area of	
	Similkameen/Okanogan River watershed	

The Okanogan/Similkameen subbasin has received relatively little attention from BPA. While some BPA projects have addressed tributaries to the lower Okanogan River, or sockeye production in Canada, the proposed project is one of the few to address habitat needs in the mainstem Okanogan and Similkameen rivers.

The proposed project occurs in the same watershed as BPA project number 9604200, which funds the Colville Confederated Tribes to carry out Okanogan Watershed Planning and to implement habitat restoration. BPA project number 960400, Restore and enhance anadromous fish habitat in Salmon Creek is also located within the Okanogan watershed.

Public Involvement in Salmon Recovery: An element of the Upper Columbia RFEG's mission is to educate the public about salmon recovery and promote widespread acceptance/enthusiasm for salmon recovery. Upper Columbia RFEG recognizes that long-term public acceptance of salmon recovery (and the sustainability of recovery efforts) must be linked with economic sustainability to promote widespread acceptance and to insure lasting results of salmon recovery efforts. While linking these two concepts may be novel, it has not proven difficult in the Upper Columbia region. Therefore Upper Columbia RFEG is pursuing economic development money and partnerships to promote public exposure to the proposed project. For example, related economic development projects within the Project Area proposed by Upper Columbia RFEG are currently receiving favorable consideration under the Washington Community Economic Revitalization Team. We are also pursuing funding for several activities that would assist (but are not required by) this salmonid habitat protection/recovery proposal, including:

- 1) funding for improved infrastructure to access Driscoll Island;
- 2) interpretive trails and signage;
- 3) wireless computer facilities within the Project Area for remote interpretive access to the proposed project; and
- 4) other tourism and infrastructure development programs.

In short, Upper Columbia RFEG will implement a technically-sound, high-priority salmonid habitat restoration project while helping partners create jobs and a tourism economy based largely on the habitat project, thereby fostering long-lasting community support and protection of this investment in habitat restoration. BPA is not being asked to fund any public involvement or economic development activities within this proposal.

Relationship to Existing Goals, Objectives and Strategies

The NPPC 2000 Fish and Wildlife Program (Program) embraces an ecosystem-based approach to habitat restoration and function. One of the central strategies guiding the Program is the concept of "building from strength." The idea is to expand adjacent habitat that has been historically productive or that has a likelihood of sustaining healthy population by

reconnecting or improving habitat. In the case of the lower Similkameen River, existing habitat has been degraded by bank erosion and hydraulic changes cased by existing dikes and riprap, situations that need to be improved by implementing restoration measures. At the same time existing habitat is of high enough quality to support spawning summer chinook salmon to warrant protection from further degradation. Restoration actions to be implemented under this project will protect and enhance existing habitat and will increase the extent of the usable habitat adjacent to existing habitat by stemming adverse impacts and restoring channel and flood-plain processes.

The NPPC program states, "Wherever feasible, this program will be accomplished by protecting and restoring the natural ecological functions, habitats, and biological diversity of the Columbia River Basin." One of the underlying scientific principles of the NPPC programs is that, ecosystems are dynamic, resilient and develop over time. Although ecosystems have definable structures and characteristics, their behavior is highly dynamic, changing in response to internal and external factors. The adaptive management planning process to be conducted as part of this project will account for this dynamic ecosystem behavior when assessing and planning possible restoration actions. Specific restoration actions (e.g. reconnecting overflow side channels; removing dikes and riprap) directly meet NPPC principles of protecting and restoring "the natural ecological functions" which are currently impaired by dikes and riprap.

The Endangered Species Act of 1973, as amended, lists Okanogan River summer steelhead population as endangered. Loss of habitat is recognized as a significant factor in decreasing salmonid population (NMFS 1996b; USFS 1995b). SASSI (1992) classifies Upper Columbia River summer chinook as depressed for the Okanogan River, again due, in part, to habitat loss. Through the restoration of instream habitat and riparian vegetation in this reach of the Okanogan and Similkameen rivers, spawning, juvenile rearing, migration corridor habitat would be improved for chinook, sockeye, and steelhead. Stream bank stabilization, through revegetation, reshaping banks, and changing channel processes with instream structures, will decrease sediment loads to the watershed. Decreasing sediment inputs would ultimately result in better spawning gravels, increased embryo survival, and improved aquatic macroinvertebrate habitat. Instream structures will also provide rearing and resting areas for juvenile salmonids.

This project will move towards the overall management goal for anadromous species in the Okanogan River Watershed, as defined by the CBFWA (1998). This goal is to restore sustainable, naturally producing populations to support tribal and non-tribal harvest and cultural and economic practices while protecting the biological integrity and the genetic diversity of the watershed. In addition, this project will benefit many other species in the area. This includes 21 reptiles and amphibians, 52 mammals, and 230 bird species including; waterfowl, shorebirds, gallinaceous birds, perching birds, raptors, hawks, and owls. As noted above, improvements to the amount and quality of spawning habitat within the Project Area would capitalize on the presence of a rearing facility operated by WDFW that lies within the Project Area. During the 2001, there was an insufficient amount of spawning habitat to accommodate the entire summer chinook returning to the rearing facility. Subbasin production would be improved if these fish returned to suitable amount and quality of spawning habitat. Large runs like 2001 may continue to occur in upcoming years if they were indeed driven by changes in ocean conditions that often persist for 20 to 25 years. In addition to the biological benefits, this project will be used as a demonstration site to promote bio-engineering and habitat restoration, and is already generating interest in salmon

recovery and economic development opportunities stemming from such a visible, scenic, high-profile habitat restoration project.

Review Comments

This project received \$239,700 for 2003 from the WA SRFB. Funding should be continued through BPA in 2004 and 2005. NMFS has identified this project as a BiOp project.

Budget		
FY2003	FY2004	FY2005
\$0	\$305,059	\$251,275
Category: High Priority (FY03 Funding provided through WA SRFB)	Category: High Priority	Category: High Priority

Project: 29050 Phase I Okanogan River Spring Chinook Production

Sponsor: Colville Confederated Tribes

Short Description:

This project will reintroduce spring chinook into the Okanogan subbasin to provide for tribal C&S and recreational fisheries. The program will also be used to collect information on the feasibility of reintroducing ESA-listed chinook in Phase II.

Abbreviated Abstract

Spring Chinook mitigation for the Federal government's construction and operation of Grand Coulee and Chief Joseph dams has never been provided for the Colville and other upper basin tribes. Spring Chinook in the Okanogan River were consequently and subsequently extirpated. This mitigation is over 60 years past due. The Colville Tribes and fishery comanagers initiated a one-year spring Chinook program in the Okanogan River with the acclimation and release of 300,000 BY2000 Carson stock Chinook planned for April 2002. These fish were reared at Winthrop National Fish Hatchery. The Tribe provided an acclimation facility for these fish in 2001 by securing and modifying the Ellesforde irrigation settling pond, located north of the town of Tonasket, owned and operated by the Oroville-Tonasket Irrigation District. The Colville Tribes and WDFW propose to continue this program with the annual production of 500,000 Carson stock spring Chinook juveniles at the existing Beaver Creek Hatchery, operated by WDFW, located on the Elochoman River. These fish would be transported in the fall of each year to the Ellesforde acclimation facility for overwinter rearing, acclimation, and release. Phase I of this program is being proposed as an isolated harvest program with all returning adult fish destined for harvest and/or brood stock collection. The program is also being implemented to test habitat suitability and public/tribal support for eventual reintroduction and restoration of endangered Upper Columbia River Spring Chinook in the Okanogan basin (Phase II).

	Relationship to Other Projects		
Project #	Title/description	Nature of relationship	
29042	Selective Fish Collection and Harvest Gear	provide fish for gear research, development, and deployment	
29033	Spring Chinook M&E	evaluate the benefits and risks of this production program	
	Net Pen Spring Chinook	evaluate acclimation alternative for this production program	
29008	Counting Facility at Zosel Dam	used to collect unharvested spring chinook	

As this Phase I spring Chinook program would be managed as an isolated harvest program, the Colville Tribes require effective collection and harvesting capabilities to access all of the returning fish and supplement traditional fishing methods. Project OK-1, Selective Fish Collection and Harvesting Gear, has been proposed to develop the means to increase harvest rates on these hatchery-origin fish.

Project OK-41, Plan, Design, and Construct a Trap and Counting Facility for Adult Salmonids at Zosel Dam, is also necessary to provide an additional means to collect and harvest spring Chinook. Secondly, this trap would provide the ability to prevent spring Chinook from entering Lake Osoyoos and migrating into Canadian waters until Canadians and First Nations seek to restore spring Chinook to their waters.

Project OK-7, Okanogan Chinook and Steelhead Monitoring and Evaluation, provides the comprehensive research program that will document the critical biological and social benefits and risks of the spring Chinook program. Monitoring and evaluation of the spring Chinook propagation facilities and production programs are integral to this Phase I production proposal.

Relationship to Existing Goals, Objectives and Strategies

The Upper Columbia River Spring Chinook were listed as an endangered species on March 24, 1999. The listed ESU includes all naturally spawned populations of spring Chinook in accessible reaches of Columbia River tributaries between Rock Island and Chief Joseph dams, *excluding* the Okanogan River. Several hatchery populations from the Methow and Wenatchee rivers where included in the listed ESU. Critical habitat for the listed ESU was designated on February 16, 2000 and included all river reaches accessible to listed spring Chinook in Columbia River tributaries between Rock Island and Chief Joseph dams, *excluding* the Okanogan River (Talayco, 2001).

In 2000, the Bureau of Reclamation agreed with the Colville Tribes that the Federal government had not completed its authorized mitigation for construction of Grand Coulee Dam over 60 years ago. Planned artificial production programs were not implemented for the Okanogan River Basin when the outbreak of WWII halted non-war related construction projects.

Tribes of the Colville Reservation have been seriously harmed by the lack of Grand Coulee mitigation, with ceremonial and subsistence fisheries declining to minimal levels. Fishing opportunity is now severely limited to summer Chinook immediately below Chief Joseph Dam and an occasional sockeye fishery in the Okanogan River.

This situation has been adversely compounded as later formulas for mitigation of mid-Columbia PUD dams have been based on the proportion of smolts lost passing the dams. Without the initial Federal salmon mitigation that other watersheds in the province obtained, the Okanogan Basin and Colville Tribes again were provided without mitigation. Additionally, the Federal government has never provided mitigation for Okanogan anadromous fish of for the Colville Tribes for the loss of adult and juvenile fish passing through the four Corps of Engineers' hydroelectric projects on the Lower Columbia River. Losses at these dams have been estimated at 10% - 15% per project. And finally with Federal listings under the ESA, the Okanogan spring Chinook populations were declared extirpated. Again no Federal efforts have been focused on reintroduction of spring Chinook for the use and benefit of the Colville Tribes.

Anadromous fish waters in and about the Colville Reservation were either blocked or have become devoid of sufficient numbers of salmon and steelhead to maintain viable and productive ceremonial and subsistence fisheries. The Federal government's tribal trust responsibilities for the Colville Tribes have been seriously abrogated.

This Phase I spring Chinook program would initiate long delayed mitigation responsibilities and provide the Colville Tribes the opportunity to once again pursue their ceremonial and subsistence fisheries. Local recreational anglers would also have selective fishing opportunities afforded fishers elsewhere throughout the Columbia and Snake river basins.

Phase II of the spring Chinook program (not proposed at this time) would consist of replacing the Carson-stock fish with excess Upper Columbia River Spring Chinook from Methow subbasin hatcheries when available. This would increase the abundance, distribution, population structure, and diversity of the listed ESU and aid in their de-listing and recovery. The Phase I program would be used to collect essential information on the suitability of Okanogan habitat to successfully support spring Chinook and guide habitat restoration efforts. The Colville Tribes have proposed that listed spring Chinook eventually be reintroduced in the Okanogan as an "experimental population". Such designation would allow the program to contribute to recovery while allowing greater management flexibility through prescriptive take prohibitions that would allow for carefully managed selective fisheries on hatchery-origin fish. Under an experimental designation, habitat restoration could also proceed on a cooperative basis through local plans.

Review Comments

Out year costs for objective 5 could be reduced in 2004-2007.

Budget		
FY2003	FY2004	FY2005
\$112,000	\$377,000	\$476,000
Category: High Priority	Category: High Priority	Category: High Priority

Project: 29051 Develop Local Okanogan River Steelhead Brood Stock

Sponsor: Colville Confederated Tribes

Short Description:

Project will collect steelhead brood stock from local sources and transfer propagation activities from Wells Hatchery to Cassimer Bar Hatchery.

Abbreviated Abstract

Each year approximately 100,000 Wells stock steelhead yearlings are out-planted into the Okanogan River and its tributaries, Omak and Salmon creeks, and the Similkameen River. This is an integrated recovery program designed to help recover endangered Upper Columbia River Steelhead. This ESU has been greatly homogenized by the widespread planting of the Wells hatchery stock and concurrent poor survival of natural-origin fish. Recovery of this ESU has stressed the need to develop local brood stocks to create greater genetic and life-history diversity and improve the survival of naturally produced fish through adaptation to local environmental conditions. The Colville Tribes propose to initiate the development of a localized steelhead brood stock for the Okanogan River to promote species recovery by replacing the existing program from Wells Fish Hatchery. Steelhead will be reared at the existing Cassimer Bar Hatchery.

	Relationship to Other Projects	
Project #	Title/description	Nature of relationship
29042	Selective Fish Collection and Harvest Gear	provide fish for gear research, development, and deployment
29033	Okanogan Subbasin M&E	evaluate the benefits and risks of this production program
	Net Pen Spring Chinook	evaluate acclimation alternative for this production program
29008	Counting Facility at Zosel Dam	used to collect unharvested spring chinook
29007	Steelhead Kelt Reconditioning	

The Confederated Colville Tribes have been implementing habitat improvement projects on the key steelhead spawning and rearing streams, Omak and Salmon creeks. Several key passage barriers have been eliminated, riparian habitat improved, and flows restored to allow steelhead passage to and from viable habitats. These actions have resulted in immediate habitat usage by steelhead. The Tribes are also proposing in this provincial review process to concentrate habitat and flow restoration on three other Okanogan River tributaries that will support future steelhead populations. Reform of the artificial production programs envisioned in this proposal would complement the habitat restoration work by propagating a steelhead population that has successfully utilized the restored habitat thereby increasing the affinity of the population to this local habitat.

The Tribes have proposed project OK-1, Selective Fish Collection and Harvesting Gear, in part, to develop the capability to collect brood stock for this steelhead program and to collect information on the effects of habitat and hatchery improvements. The selective gear

proposal will also allow the tribe to harvest excess hatchery steelhead with little or no impact on those fish needed to restore the population.

The Tribes are also proposing an Okanogan Kelt Reconditioning project that is integral to this brood stock reform proposal. Kelt reconditioning will be used in conjunction with this project to maximize the utility of natural-origin fish in this propagation program. With SARs of natural-origin steelhead so low in the Columbia Cascade Province, kelt reconditioning offers an opportunity to increase the success of artificial propagation programs. Tasks within this proposal assume concurrent implementation of the kelt program with this brood stock reform proposal.

Relationship to Existing Goals, Objectives and Strategies

In 2000, the Bureau of Reclamation agreed with the Colville Tribes that the Federal government had not completed its authorized mitigation for construction of Grand Coulee Dam over 60 years ago. Planned artificial production programs were not implemented for the Okanogan River Basin when the outbreak of WWII halted non-war related construction projects.

Tribes of the Colville Reservation have been seriously harmed by the lack of Grand Coulee mitigation, with ceremonial and subsistence fisheries declining to minimal levels. Fishing opportunity is now severely limited to summer Chinook immediately below Chief Joseph Dam and an occasional sockeye fishery in the Okanogan River.

This situation has been adversely compounded as later formulas for mitigation of mid-Columbia PUD dams have been based on the proportion of smolts lost passing the dams. Without the initial Federal mitigation that other watersheds in the province obtained, the Okanogan Basin and Colville Tribes were provided with only minor amounts of mitigation, insufficient to maintain runs of steelhead and insufficient to provide even a minimal C&S fisheries. Additionally, no mitigation has been provided by the Federal government to the Colville Tribes or the Okanogan subbasin for the losses of adult and juvenile steelhead as a consequence of passage through the four Corps of Engineers' projects on the Lower Columbia River. These losses have been estimates at 10% - 15% per project. And finally with Federal listings under the ESA, the Okanogan steelhead populations, although listed as endangered, have received little to no priority and support from this legislation of last resort other than to further limit tribal harvest of their only remaining C&S fishery on summer Chinook. Upper Columbia River Steelhead were listed as an endangered species on August 18, 1997. The ESU includes naturally-spawned populations of steelhead in tributaries of the Columbia River upstream from the Yakima River, including the Okanogan River. The Wells Hatchery stock steelhead were included in the listed ESU. Critical habitat for the ESU was designated on February 16, 2000 and included all river reaches accessible to listed steelhead (and associated riparian zones) in Columbia River tributaries between the Yakima River and Chief Joseph Dam (Talayco, 2001).

Pursuant to the Mid-Columbia River Habitat Conservation Plan, the preferred strategy for the Okanogan River steelhead program is to develop a local population for brood stock to promote local adaptation (Bugert, 1998). This proposal intends to accomplish this program reform.

The Northwest Power Planning Council's 2000 Columbia River Basin Fish and Wildlife Program states: "The vision for this program is a Columbia River ecosystem that sustains an abundant, productive, and diverse community of fish and wildlife, *mitigating*

across the basin for the adverse effects to fish and wildlife caused by the development and operation of the hydrosystem and providing benefits from fish and wildlife valued by the people of the region. This ecosystem provides *abundant opportunities for tribal trust and treaty right harvest and for non-tribal harvest* and the conditions that allow for the *recovery* of the fish and wildlife affected by the operation of the hydrosystem and listed under the Endangered Species Act."

Consistent with the Council's vision, this proposal is intended to achieve a critical element of steelhead recovery within this endangered ESU – the development of a localized brood stock to increase adaptation of the population to the specific environmental conditions of the Okanogan ecosystem. This proposal should, in time, also contribute to achieving tribal and non-tribal selective harvesting opportunities where such is non-existent or severely limited today. The steelhead runs into the Okanogan River are not currently sufficient to allow for even a modest tribal harvest.

The Biological Opinion for the FCRPS includes as Action 169: "The Action Agencies shall fund the development of NMFS-approved HGMPs for implementation, including plans for monitoring and revising them as necessary as new information becomes available. HGMPs have to be *completed first for the facilities and programs affecting the most at-risk species (Upper Columbia* and Snake River ESUs), followed by those affecting mid-Columbia and then the Lower Columbia ESUs. HGMPs for all Columbia basin hatchery programs and facilities should be completed (and approved by NMFS) by the 3-year check-in." The Biological Opinion for the FCRPS includes as Action 171: *Grand Coulee mitigation anadromous fish hatchery programs*, beginning *immediately following completion of relevant (NMFS approved) HGMPs* and completing the work as expeditiously as feasible. BPA shall fund the operations and maintenance costs of the reforms and shall reimburse the Federal Treasury for an appropriate share of the capital costs. BOR shall have begun to implement reforms for programs affecting the most at-risk species by the 3-year check-in."

The Upper Columbia River Steelhead are an endangered species that rely on current artificial propagation programs to maintain their existence. The Wells Fish Hatchery stock was deemed by NMFS to be essential to survival and recovery of the species. This proposal implements a critical improvement, development of a local brood stock, to this propagation program.

RPAs: 171, 177, 178

Review Comments

The master plan and hatchery design can be reduced by \$70,000 in 2003. Out-year reduction may be possible. The final capital needs will be determined through the master planning process.

Budget		
FY2003	FY2004	FY2005
\$122,000	\$105,000	\$1,030,000
Category: High Priority	Category: High Priority	Category: High Priority

Project: 29054 Stream Gauging Installation and Operations

Sponsor: Department of Ecology

Short Description:

Purchase and install eight continuous, real-time, telemetered stream flow gages, and six staff gages, at critical reaches and tributaries in each of the three subbasins.

Abbreviated Abstract

Ecology proposes to install an accurate, fully documented, efficient, and standardized system of continuous, real-time stream gages and permanent staff gages in three subbasins critical to anadromous fish in the Okanogan, Entiat and Wenatchee subbasins. This gaging network will provide continuous flow data from eight critical reaches or tributaries, and instantaneous flow data from six additional staff gage sites in each sub basin (8 continuously measured sites and 6 instantaneously measured sites per subbasin). These gaging networks will use the same instrumentation, technical and operating protocols, and data management and web-reporting systems employed by Ecology's statewide stream gaging network to assure statewide data comparability and cross-basin calibration. The gaging networks are also comparable with the US Geological Service's network.

The gaging networks will provide the stream flow data (with the necessary resolution) that are required to meet the objectives embodied in almost all current water and salmon initiatives and proposals. In particular, this proposal will provide stream flow data that are required to:

- Document stream flows and the seasonal variability of flows in support of watershed planning activities and development of subbasin plans under the NPPC leadership.
- Determine flow-limiting reaches and tributaries to better target and prioritize habitat and flow restoration projects and monitor their effectiveness.
- Support and improve the state of knowledge needed for EDT modeling and adaptive management decision-making.
- Verify the availability and delivery of water purchased to assist conservation and recovery of ESA-listed salmonids stocks and help offset mortality associated with water management operations.
- Establish in-stream flows and compare actual flows to those flows and other target flows.
- Provide flow records needed for TMDLs (Total Maximum Daily Loads) models, and measuring TMDL effectiveness.
- Support compliance and enforcement by providing near real-time data during periods of low stream flow.

Relationship to Other Projects

The Department of Ecology submitted three proposals for BPA FY 2001 Action Plan funding.

- 26016 Entiat Subbasin- Stream Gaging Installations and Monitoring
- 26017 Okanogan Subbasin- Stream Gaging Installations and Monitoring
- 26029 Wenatchee Subbasin- Stream Gaging Installations and Monitoring

The Northwest Power Planning Council approved the three projects for funding under the Action Plan solicitation contingent on the final Independent Scientific Review Panel review. The Panel reviewed the three proposals and found them technically sound. A letter (the letter

was prepared by Mr. Doug Marker--see attachment) was sent by Mr. Frank L. Cassidy, Jr. Chairman of the Council requesting the proposals be added to the list for funding under the Action Plan solicitation. However no funding was provided by BPA. At the recommendation of the Chair of the Council we are resubmitting the request for funding the stream gaging installation and operations in three subbasins within the Columbia Cascade Province, under one proposal.

Relationship to Existing Goals, Objectives and Strategies

The fundamental need for accurate data and monitoring has been recognized by the Northwest Power Planning Council, NMFS and other Action Agencies. This project is consistent with the NW Power Planning Council's Fish & Wildlife Program goals of rebuilding salmon and steelhead populations without loss of biological diversity. Instream flow protection is a critical component of the 2000 Columbia River Basin Fish and Wildlife Program (FWP), which has an emphasis on ecosystem restoration.

This stream gaging project supports several RPA actions related to tributary habitat listed in Section 9.6.2.1 in the 2000 FCRPS Biological Opinion. Specifically it supports actions 149, 151, 152, 154, and 155. In addition Section 9.6.5 Research, Monitoring and Evaluation Plan outlines the need for a comprehensive basin wide monitoring and evaluation program to determine the effectiveness of the RPA actions. This project will support actions 180, 183 and 198. It will provide Tier 1 data on instream flow and stream temperature habitat variables listed in Appendix G Preliminary Outline for Comprehensive Monitoring and Evaluation Program, pages G-3 and G-4.

The project will provide quantitative flow data at the subbasin level that can be used to assess the extent to which flow improvement actions have been taken as planned and targets for attainment of instream flows have been reached. It will also provide trend data tracking changes in flow conditions over time. This is critical to evaluating how well the water and related salmon initiatives are effective in meeting the explicit objectives outlined by NMFS, NPPC and other action agencies and described in the subbasins summaries.

The following habitat goals, objectives and strategies outlined in the subbasin summaries for the Wenatchee, Okanogan and Entiat are supported by this proposal: Wenatchee subbasin

Wenatchee subbasin

Goal 1. Maintain and protect existing high quality habitat and the native populations inhabiting those areas, as described in the "Habitat Areas and Quality" and "Fish and Wildlife Status":

• Objective 4: Maintain favorable stream flow and riparian conditions

Goal 2. Restore degraded areas, and return natural ecosystem functions to the subbasin as described in "Habitat Areas and Quality."

- Objective 5: Increase amounts of water to protect and restore fish habitat.
- Objective 6: Restore the water quality necessary to support healthy riparian, aquatic and wetland ecosystem.

Goal 4. Increase the information and knowledge needed to protect, restore and manage fish, wildlife and their habitats.

- Objective 1: Provide scientific basis for protecting aquatic ecosystems and enable planning for sustainable resource management.
- Objective 2: Accurately assess the responses in fish and wildlife populations and their habitats to specific strategies undertaken

- Objective 3: Assess water supply and use in the Wenatchee subbasin.
- Objective 4: Determine adequacy of existing instream flows within Wenatchee subbasin for fish and community needs.

In addition the Wenatchee River Watershed Action Plan (1998) identified the need to install staff gages on all the major tributaries and monitor stream flows Subbasin summary page 77.

Entiat subbasin

Objective 4: Enhance water quality and quantity (strategy19—create a water conservation trust fund to pay for conservation improvements that will return saved water to instream flows.)

Research, monitoring, and evaluation activities: track instream flow via stream gages and collect and document information to establish base flow.

<u>Okanogan subbasin</u>

The Upper Columbia Salmon Recovery Board.

Goal: Protect and restore salmonid habitat in the Okanogan subbasin.

• Objective 3: Water rights should be purchased or secured through trust for increasing latesummer instream flows of tributary streams.

Colville Confederated Tribes.

Goal: maintain and protect instream and riparian habitat and support ecological function in these habitats.

• Objective 2: Maintain adequate stream flow in the Okanogan watershed to support salmonids at all life stages.

Review Comments

This project was funded under the 2001 Action Plan category. The budget has been modified to represent the expected O&M for FY03 and FY04 (3 0.5 FTEs). NMFS has identified this project as a BiOp project.

Budget		
FY2003	FY2004	FY2005
\$150,000	\$150,000	\$
Category: High Priority	Category: High Priority	Category:

Research, Monitoring and Evaluation Activities

The Upper Columbia River Salmon Recovery Board's Regional Technical Team and the Interior Columbia Basin Technical Recovery Team (NMFS) are working with the Washington Department of Fish and Wildlife (WDFW), The Yakama Nation (YN) and the Colville Confederated Tribes (CCT) – collectively referred to as the "co-managers," to establish a coordinated Research Monitoring and Evaluation Program for the Columbia Cascade Province.

The Okanogan Basin Monitoring and Evaluation Plan (OBMEP) is a coordinated plan outlining a far-ranging scientific approach to obtain critical baseline data in support of salmon and steelhead recovery in the Okanogan Subbasin. The plan is managed by the Colville

Confederated Tribes' Fish and Wildlife Program and is implemented through cooperative concurrence with area stakeholders, landowners, local governments and state and federal entities.

The Okanogan is one of six subbasins in the *Columbia Cascade Ecological Province* as defined under The Northwest Power Planning Council's Fish and Wildlife Program. The Okanogan constitutes one of the largest and most diverse watersheds in the Columbia Basin with nearly two-thirds of its drainage area in British Columbia, Canada. It is one of just two transborder watersheds in the Northwest still containing anadromous runs of salmon. The US portion of the Okanogan is home to the northern most population of Endangered steelhead, an extirpated stock of spring chinook, and declining stocks of summer/fall chinook and sockeye. Thus, while the overall recovery objectives of this plan require consultation and coordination with Canadian authorities and tribal counterparts, the programmed activities contained in this plan are specific only to the US portion of the watershed at this time.

The overall objectives of this monitoring and evaluation plan have been developed in consultation with National Marine Fisheries Service (NMFS) science center and selected members of the NMFS Interior Columbia Basin Technical Review Team (TRT) staff. Each element has been categorized as either Tier 1, 2 or 3, according to the NMFS Monitoring and Evaluation designations. Additionally, The Upper Columbia Salmon Recovery Board's (UCSRB) Regional Technical Team (RTT), in conjunction with the NMFS TRT, is working to develop The Upper Columbia Salmon Recovery Productivity and Habitat Assessment Plan, or *Upper Columbia M&E Plan* (RTT, draft 2002). The OBMEP is the most detailed subbasin plan to date and has identified a significant number of detailed objectives, null hypothesis statements, methods and statistical design parameters that can be used to guide future development of the Upper Columbia M&E Plan's five remaining subbasins.

The Upper Columbia region has a long history of unmet mitigation and as such, suffers from a significant lack of operational infrastructure compared to most other regions and/or Provinces in the Columbia River Basin. Therefore, while the majority of general funding components of the program are defined and detailed in the original Northwest Power Planning Council proposal (#29033), the details within this draft plan have been significantly refined and expanded. We further stress that some elements remain approximate at this time because of this lack of infrastructure and capacity, most notably an adequate funding foundation. All elements contained in this M&E program are specifically designed to mitigate this feature and make possible the long-term viability of fish and wildlife recovery in the region.

The CCT are committed to conducting the best possible science and M&E in support of fish and wildlife recovery under this plan. And, by carrying out the various aspects of the OBMEP, the CCT will provide critical and specific information for a host of recovery and management activities in support of ESA recovery, subbasin and watershed planning, and ultimately, to the emerging Regional Recovery coordination activities under the auspices of the Upper Columbia Salmon Recovery Board.

We refer the reader of this draft plan to the four general objectives and the 37 subtasks in which we have specifically identified the process to finalize remaining M&E details. Our expectation is that these details will constitute a minor effort that will be enabled immediately upon funding (October 2002) and concluded within the first two months of the program.

Needed Future Actions

Summary of Action Item Recommendations by Subwatershed

The Okanogan TAG's action item recommendations that apply to the Okanogan watershed as a whole can be summarized as follows:

- 1. **Protect habitat that is currently functional for salmonids**. Preservation and conservation of functioning habitat is essential to ensure that the existing production of naturally-producing, anadromous salmonids in the Okanogan watershed continues. Such a focus ensures a "foot-hold" will be maintained for the continued establishment of anadromous salmonids and a source for future population expansion to adjacent tributaries. An evaluation and identification of quality riparian and floodplain habitat along mainstem and primary tributaries is necessary to implement a coordinated prioritized system of habitat protection measures.
- 2. Restore access to fish habitat obstructed by human-caused physical and/or water quality barriers. Restoring fish passage at man-made fish passage barriers and installing screens on water diversions is a necessary action to increase the naturally-producing. anadromous salmonids in the Okanogan watershed. To implement a strategy of fish passage restoration in a logical and sequential manner, a single data set of inventoried fish passage barriers with the quantity and quality of habitat upstream of the barriers is needed. Currently, the Forest Service maintains the locations of all water diversions on the lands they manage in a Geographic Information Services (GIS) database. The WDFW Salmonid Screening, Habitat Enhancement and Restoration (SSHEAR) Division also maintains a database of fish passage barriers on state lands, as well as a listing of water diversions and screen conditions for which they have installation or maintenance agreements. The Okanogan Conservation District (OCD) began an inventory of water diversions and screen conditions on private lands in 2001. These collective data sources need to be compiled and overlaid upon the salmon recovery goals of the watershed to establish priorities for restoring access in accordance with the objective of sequentially protecting and restoring sub-watersheds of primary and secondary importance, respectively.
- 3. Restore hydrological regimes in Okanogan subwatersheds. Water use practices have significantly altered the water balance in many of the subwatersheds. When considering potential surface and groundwater withdrawal claims , the waters from nearly all the subwatersheds are over allocated and often lose all or most surface flows during the summer and fall months (e.g., Antoine Creek, Tonasket Creek, Siwash Creek, Loup Loup Creek, Salmon Creek). Many of these alterations prevent the use of otherwise available habitat. Water conservation practices could be implemented in many locations in the watershed to increase habitat carrying capacities for rearing, and spawning and thereby foster the sustainability of naturally-producing, anadromous stocks. Such conservation measures include restoration of wetlands and riparian vegetation and more efficient agricultural use of surface and groundwater. These measures would result in increased summer base flows, attenuated peak discharges, and reduced consumption of surface and groundwater. Instream flows should be re-established in subwatersheds with historic anadromous production to satisfy life history strategies once inherent to these tributaries. Examples of subwatersheds of particular importance in this regard include Salmon Creek

Okanogan/Similkameen Subbasin Summary 448

and Loup Loup Creek. Re-establishing flows in resident and non-fish-bearing waters can also contribute flows to the anadromous reaches of tributaries and the Okanogan mainstem. Such incremental steps will also improve the migratory conditions in mainstem habitats by providing more tributary confluence staging locations, hence creating temperature and flow refugia.

- 4. **Conduct reach analysis studies of riparian and in-channel habitats.** Formal, quantitative ground surveys of habitat conditions in numerous subwatersheds of the Okanogan watershed have not been performed. In order to fully consider the habitat restoration options available and the specific effects such restoration may have on salmon and steelhead recovery in the watershed overall, a coordinated habitat assessment effort of select subwatersheds is needed. Examples of sub-watersheds where quantitative habitat data are lacking from all or part of the system include: Nine mile creek, Chiliwist Creek, Chewiliken Creek, Loup Loup Creek, Johnson Creek, and Whitestone Creek. Additional information should be collected from sub-watersheds, which appear to have significant amount of accessible habitat, such as Antoine Creek, Tonasket Creek and Siwash Creek
- 5. Restore habitat connectivity. Historically productive habitats within many tributaries of the Okanogan mainstem are disconnected from the floodplain or adjacent fluvial reaches by water supply/control measures, roadways, and/or impaired water quality (e.g., thermal barriers). Re-establishing linkages to formerly productive habitat is critical for the overall recovery of anadromous salmonids in the Okanogan watershed because many of the system's other tributaries naturally preclude extensive use by salmonids. Restoration efforts should be prioritized to link functioning habitats that are in close proximity as opposed to linking habitats that are spatially separated by great distances. This focus recognizes the importance of maintaining and increasing existing "salmon strongholds" and allows for colonization of nearby habitats by salmon from the strongholds as stocks recover over time. All structural improvement projects should reflect the geomorphic and hydrologic characteristics and constraints of the reach. Except where temporary remediation measures are essential for salmonid stock maintenance, the focus of rehabilitation projects should address the causation of habitat degradation rather than the symptomology. Thus, habitat restoration measures that restore natural channel characteristics and functions should be prioritized such that passive restoration (e.g., flow recovery or riparian plantings) is the first avenue considered. Where passive restoration is not feasible, active in-channel restoration projects such as large woody debris placement can be appropriate and effective. In general, the identification of the specific habitat linkages to be addressed should be prioritized after a more formal quantitative evaluation of the habitat conditions in the priority subwatersheds has been completed (see #4 above).

The detailed subbasin recommendations provided here are not prioritized, and are based upon the current technical understanding of the Okanogan TAG. Action items are listed for only those subwatersheds where a significant consensus was secured. Action item recommendations for the Canadian subwatersheds are beyond the scope of this current effort, but are discussed in some measure in Appendix D of the Okanogan LFA (Chapter

Okanogan Mainstem Action Items

- Address impacts of non-native fishes (e.g. smallmouth bass, walleye pike) on anadromous resource survival.
- Reduce contamination sources to enable removal of fish consumption concerns for PCBs, mercury and DDT. The concentration of these contaminants in the non-native fishes may reduce their harvest due to public perception of risk. Thus, a key mechanism by which these predators could be controlled (e.g. through harvest) is limited.
- Secure functional riparian habitats and identify specific areas in need of restoration.
- Reduce mainstem temperatures to tolerable levels for anadromous fish.

Chiliwist Creek Subwatershed Action Items

- Stabilize flows to ensure cold year-round water at the mouth of the creek; clarify hydrologic relationship between upper and lower Chiliwist reaches; and address the potential for year-round flows to connect the reaches.
- Restore sinuosity and decrease channelization.
- Decrease sediment load from roads.
- Conduct a survey of habitat conditions within and above the anadromous zone to clarify the potential use of the system, and to identify sediment sources.

Loup Loup Subwatershed Action Items

Flow is the most limiting factor in this subwatershed and action items addressing other conditions should not be explored until flow amendment is considered.

- Formally evaluate fish passage conditions in the system proceeding from the mouth upstream to the first natural blockage (RM 2.5).
- Examine water use in the subwatershed and eliminate excess uses of water to re-establish a year-round flow regime capable of supporting anadromous salmonids where historically present.
- Conduct quantitative habitat assessment study to identify functional and non-functional reaches and to prioritize habitat reaches for practicable in-channel and stream corridor (e.g. riparian) restoration.
- Examine Tallant Creek for potential habitat value through quantitative study. Identify source(s) of DDT contamination and determine if continued DDT contamination prevents or limits the function of the system for anadromous salmonids.
- Evaluate potential feasibility of brook trout removal and bull trout reintroduction.

Felix Creek Action Items

- Address report of illegal water withdrawal.
- Quantify habitat conditions in lower creek and address potential anadromous salmonid use

Omak Creek Action Items

- Explore land use ordinances to improve water temperatures in lower reach (RM 0-5.1). Implement fencing, planting, and livestock management programs.
- Reduce road densities and decommission roads in the upper basin. Relocate roads away from the creek where possible.
- Evaluate predatory impacts of non-native fishes on salmonids in the lower reach.
- Implement fencing, riparian planting and livestock management programs.

Salmon Creek Action Items

Flow is the most limiting factor in this subwatershed and action items addressing other conditions should not be explored until flow amendment is considered.

- Evaluate basin wide conservation measures.
- Rehabilitate hydrologic regime to support all fresh water life history strategies for chinook and steelhead historically occurring in this subwatershed below the diversion dam.
- Improve passage facilities at the OID diversion dam.

Wanacut Creek Action Items

- Adjust irrigation water withdrawals to maintain consistent flows through the subwatershed.
- Confirm fish use and distribution in the subwatershed.
- Quantify and characterize physical habitat conditions for their ability to support salmonids (address habitat data gaps).

Johnson Creek Action Items

- Quantify and characterize physical habitat conditions for their ability to support salmonids (address habitat data gaps).
- Restore riparian vegetation to natural physical potential where possible.
- Implement water conservation measures to increase baseflows.
- Examine and characterize fish passage conditions throughout the system.

Tunk Creek Action Items

- Quantify and characterize physical habitat conditions for their ability to support salmonids (address habitat data gaps).
- Confirm fish use and distribution.

Chewiliken Creek Action Items

- Quantify and characterize physical habitat conditions for their ability to support salmonids (address habitat data gaps).
- Monitor flows and water quality to address the potential for anadromous salmonid use.
- Identify sediment sources and implement source control through appropriate means (e.g. riparian planting).

Aeneas Creek Action Items

- Protect water quality and quantities: Aeneas Creek's stable cold water supply provides for good rearing/refuge for summer chinook, and sockeye migrating up to Osoyoos Lake.
- Maintain low irrigation use (low number of diversions) and protect stable flow regime.
- Examine fish passage issues in Reach 1. Determine whether barrier removal potentially provide for spawning conditions in Aeneas Creek. (Removal would only open approximately ¹/₄ mile of habitat up to the natural falls (natural barrier).
- Examine whether naturally high hardness and alkalinity in the creek affect the potential use of the habitat for spawning.
- Identify and stabilize sediment sources in the upper reach.
- Quantify habitat conditions in the lower reach to determine if increased wood loading would have significant habitat benefits.

Whitestone Creek Action Items

- Quantify and characterize physical habitat conditions for their ability to support salmonids (address habitat data gaps).
- Control/remove noxious weeds in the system.
- Address impacts of the non-native predators on salmonid survival; evaluate feasibility of screening Whitestone Lake outlet.
- Continue and encourage cattle lot fencing to reduce nutrient loading.
- Evaluate passage conditions (i.e. culvert barriers) and restore passage conditions wherever possible.

Bonaparte Creek Action Items

- Control sediment delivery. Identify sediment source control measures and implement wherever possible (e.g. plant in areas of bank erosion next to roads).
- Develop land management agreements with private owners (e.g. fences to prevent cattle from going in the stream).
- Quantify and characterize physical habitat conditions for their ability to support salmonids (address habitat data gaps).
- Determine the cause of elevated aluminum and copper measured in headwaters.

Siwash Creek Action Items

- Quantify and characterize physical habitat conditions for their ability to support salmonids (address habitat data gaps).
- Evaluate irrigation withdrawals (timing and amount) and restore minimum baseflows in anadromous reaches to permit year-round use of habitat currently prevented by lack of flow.
- Confirm fish distribution and passage.

Antoine Creek Action Items

- Build storage reservoir to permit better flow regulation downstream of the dam. For example, improving flows through Fancher Dam would help passage issues.
- Evaluate habitat benefits from returning flow to original channel in Reach 1 (RM 0-11.5).
- Evaluate irrigation withdrawals (timing and amount) and restore minimum baseflows in anadromous reaches to permit year-round use of habitat currently prevented by lack of flow.
- Quantify and characterize physical habitat conditions for their ability to support salmonids (address habitat data gaps).

Tonasket Creek Action Items

- Evaluate irrigation withdrawals (timing and amount) and restore minimum baseflows in anadromous reaches to permit year-round use of habitat currently prevented by lack of flow.
- Preserve conditions that benefit aquatic resources created by the isolated flash flood event of 2001.
- Quantify and characterize physical habitat conditions for their ability to support salmonids (address habitat data gaps).

Similkameen River Action Items

• Control and remove noxious weeds.

- Identify sediment sources and implement sediment control measures (e.g. riparian planting).
- Characterize predator impacts of non-native species on juvenile salmonids.
- Clarify potential impacts of sediment contamination on macroinvertbrate and salmonid resources.

Ninemile Creek Action Items

- Quantify and characterize physical habitat conditions for their ability to support salmonids (address habitat data gaps).
- Confirm fish use and distribution.
- Restore riparian areas as appropriate.

Actions by Others

The Okanaogan Conservation District

The Okanogan Conservation District strongly endorses the voluntary Coordinated Resource Management planning process for managing natural resources. In the Okanogan Watershed Management Planning Area there are 15 active Coordinated Resource Management planning groups with another eight planning groups starting up in the next five years in the Omak Creek Watershed. These local planning groups operate within a framework of existing laws and regulations. They can assist and work with, but not over-ride, the decision-making authority of those responsible for public and private lands and resource management. The process provides for a voluntary coordination of activities toward common objectives and solves management problems through plan implementation.

USDA Forest Service

The Tonasket Ranger District, in the Okanogan and Wenatchee National Forest, manages 357,000 acres in the Okanogan Basin. The land is managed according to the Okanogan National Forest System Land and Resource Management Plan (USDA, 1989), as amended by the Decision Notice for the Interim Strategies for Managing Anadromous Fish- Producing Watersheds in Eastern Oregon and Washington, Idaho, and Portions of California (PACFISH) (USDA, USDI 1995). Most of the National Forest land is mid to upper elevation forest. The 1989 Forest Plan divides the land into management areas, each with a management prescription based on unique habitat conditions. The majority of National Forest land is managed for multiple uses, including lynx habitat, deer winter range, timber, and livestock grazing. A small portion of National Forest land in the northeast corner of the district is designated Wilderness, with no motorized equipment allowed. There is also a small parcel of land designated as a Research Area, and another relatively small parcel is managed as semi-primitive, with no motor vehicles allowed. The USFS Tonasket Ranger District maintains 42 cattle allotments on National Forest land.

USDA Bureau of Land Management

The BLM management follows the same legal multiple-use mandate that guides the U.S. Forest Service. Management direction is outlined in the Spokane District Resource Management Plan (USDI, 1987), as amended by PACFISH (USDA, USDI, 1995). BLM lands in the basin include two large areas in the Similkameen and Salmon watersheds, and numerous small, scattered parcels throughout the basin. Management is centered on the two large areas; the scattered parcels are used primarily in land exchange deals.

Washington Department of Natural Resources

The WDNR manages 134,000 acres in the Loomis Forest. The Chopaka Natural Reserve, in the Loomis Forest, is a 3,000-acre natural preserve area. In the year 2000, two parcels totaling 25,000 acres were designated as Natural Areas, with access for recreation and grazing. The remaining area in the Loomis Forest is managed for multiple uses, including timber harvest and livestock grazing. There are 15 million board feet harvested annually from the Loomis Forest (C. Johnson, personal communication, 2001).

Washington Department of Fish and Wildlife

The WDFW maintains five wildlife areas in the Okanogan Basin.

Sinlahekin Wildlife Area: The Sinlahekin Wildlife Area encompasses most of the Sinlahekin Valley. The upper boundary reaches the tops of valley cliffs in some areas, and the base of the cliffs in other areas. It is the oldest wildlife area in the state of Washington, and the original objective of the acquisition was to provide mule deer winter range and outdoor recreation opportunities, namely fishing and hunting. Currently, wildlife viewing is also considered one of the objectives of the area. The Sinlahekin Wildlife Area does not have a management plan. The area provides habitat for a wide variety of wildlife, as reflected in the wide variety of habitat. A primary goal for this area is to reintroduce fire into the ecosystem. The ponderosa pine habitat has been replaced by dense stands of suppressed Douglas-fir. The first step to fire reintroduction, thinning these stands, is currently underway. The Sinlahekin Wildlife Area is actively pursuing habitat and wildlife assessment. Surveys for bats, small mammals, reptiles, and amphibians, and vegetation inventories are planned for 2001 (Swedberg, 2001, personal communication).

Scotch Creek Wildlife Area: In 1991, the WDFW purchased 15,469 acres in a total of 3 parcels of critical habitat for Columbian sharp-tailed grouse. Named the Scotch Creek Wildlife Area, it includes parcels on Scotch Creek, in the Tunk Valley, and the Chesaw Valley. The primary management objective for the wildlife area is the recovery of sharp-tailed grouse habitat and the remnant grouse populations. Preservation of mule deer habitat is also a major focus. The Washington Wildlife and Recreation Coalition funded this acquisition. As a working cattle ranch, much of the uplands in this area were converted from native shrubsteppe grassland to grain fields of rye or wheat. Later these fields were seeded for livestock grazing. The native rangeland has been severely over-grazed, allowing the encroachment of diffuse knapweed and Russian knapweed. Deciduous trees (primarily water birch) were removed along the riparian corridor to accommodate alfalfa production. This practice drastically reduced critical wintering habitat for sharp-tailed grouse.

The Driscoll Island parcel is located in the Okanogan River channel. There is a ford that gives access to this area. The island contains riparian habitat and a farming operation. There is a project proposal in place to address lateral erosion and its impacts on instream habitat (Swedberg, 2001, personal communication).

The Scotch Creek Wildlife Area Management Plan was approved by BPA in 1997. Since that time, restoration and enhancement efforts have included planting shrubs, weed control, and grassland seedings (Okanogan Conservation District, 2000).

Okanogan/Similkameen Subbasin Summary 454

Chiliwist Wildlife Area: The Chiliwist Wildlife Area, a subunit of the Methow Wildlife Area, contains sagebrush steppe and low elevation, open forest.

Colville Confederated Tribes

The Colville Indian Reservation encompasses 1.4 million acres of land held in Federal Trust for the tribal membership, as well as an additional 1.5 million acres of ceded land north of the reservation called the North Half, where tribal members retain hunting, fishing and gathering rights in cooperation with the state and federal agencies involved.

The Confederated Tribes of the Colville Indian Reservation (CCT) also have wildlife management interests and input on Usual/Accustomed Areas of the Wenatchipam, traditional lands of the Moses Columbia Reservation (MCR) and Arrow Lakes lands. On the western third of the Colville Reservation, 344,146 acres of tribal land fall within the Okanogan Subbasin drainage. This land, within the reservation, is comprised of 56% shrub-steppe or open canopy, while 23% is in thin canopy coniferous forest, 14 % provides wooded forage and hiding cover, and 6% is dense forested thermal cover.

The tribe is likewise interested and involved in the management of and impacts upon resources on the portion of the Okanogan Subbasin that lies within the boundary of the North Half as well.

This massive tract of land, inclusive of tribal, ceded, and traditional areas, supports viable breeding and/or migratory populations of state and federally listed species of concern, threatened or endangered. Within the boundary of the reservation, in the Okanogan drainage, the number of listed species includes but is not limited to at least 32 species of wildlife, 2 species of fish, and 71 species of plants. An additional 25 species of wildlife found in this area are listed on the Washington State Priority Habitat and Species list (PHS).

The CCT also maintain a strong interest in and manage for plant, fish, and animal species of cultural, spiritual, and subsistence value. The CCT strive to maintain viable populations of native and desired non-native desired wildlife species and their habitats, while providing wildlife in sufficient numbers to meet the cultural, subsistence and recreational needs of tribal members (CCT, 1999).

Upper Columbia Salmon Recovery Board (UCSRB)

The UCSRB is a partnership among Chelan, Douglas, and Okanogan counties, the Yakama Nation, and Colville Confederated Tribes in cooperation with local, state, and federal partners. The mission of the UCSRB is *to restore viable and sustainable populations of salmon*, *steelhead*, *and other at-risk species through the collaborative efforts*, *combined resources*, *and wise resource management of the Upper Columbia Region*.

To better meet its mission, the UCSRB wishes to ensure that actions taken to protect and restore salmonid habitat in the region are based on sound scientific principles.

A Regional Technical Team (RTT) was created by the UCSRB to review the technical merits of projects to be submitted by project sponsors in the Upper Columbia region for funding by the Washington State Salmon Recovery Funding Board (SRFB). The UCSRB directed the RTT to establish a scientific framework for this process, with the premise that it will enable them to identify projects that will best contribute to the recovery of salmonids listed under the ESA. A proposed strategy to protect and restore salmonid habitat in the Upper Columbia Region was developed through this process (UCRTT 2001).

Okanogan/Similkameen Subbasin Summary 455

DRAFT May 17, 2002

UCSRB objectives for the Okanogan subbasin

Goal: Protect and Restore Salmonid Habitat in the Okanogan Subbasin **Objective 1** Protect the remaining sockeye and summer chinook spawning and rearing habitat that remains within this watershed. In particular, the summer chinook spawning habitat located in the lower Similkameen (Category 2)

and in the mainstem Okanogan River between Ellisford and Riverside (Category 2) and the remaining sockeye spawning habitat that remains downstream of McIntyre Dam (Category 2).

Objective 2 Reconnect smaller tributary streams with the mainstem Okanogan River. Many of the smaller tributaries once provided thermal refuge for summer and fall migrating adults and for rearing of stream-type juvenile salmonids.

Objective 3: Establish a normative hydrograph, decrease the width: depth ratio, increase riparian coverage, and decrease sediment input will also improve the water quality, quantity and would provide for improved upstream migration and oversummer rearing conditions. Water rights should be purchased or secured through trust for increasing latesummer instream flows of tributary streams.

Transborder Coordination and Ecosystem Planning Processes

Existing transboundary planning includes three distinct efforts: the Douglas County Project, the South Okanogan-Similkameen Conservation Program, and the Columbia Basin Ecoprovince Review and Subbasin Planning Process. These efforts have the potential to form an interconnected network that can function as a safety net for habitat conditions in the basin (Huntley, 2001). There is also a recent collaboration agreement between the Colville Business Council and the Okanogan Nation Alliance, and a Pacific salmon treaty between the governments of Canada and the U.S. Douglas County Project.

As a condition of the Federal Energy Regulatory Commission (FERC) license to operate the Wells Dam on the Columbia River, the Douglas County Public Utility District (Douglas County PUD) must meet a specific mitigation requirement to compensate for the impacts of dam operation. In regards to sockeye salmon, the PUD must improve productivity over the 20-year average by roughly 10 percent. Douglas County PUD recognized the potential of improving stocks by concentrating on spawning and rearing habitats— which happen to lie in B.C. A contact group was formed in B.C., called the Okanogan Basin Technical Working Group, to assess available measures. The project involves representatives of the Canadian Department of Fisheries and Oceans, Ministry of Environment, Land, and Parks (MELP), and Okanogan Nations Alliance through research contracts. The Project operates on consensus, firmly rooted in biologically defensible goals. Since the initial contact, Douglas County PUD commissioned a variety of studies, many of which are to be finalized in 2001.

The Working Group is the steering force of the project, and consists of both U.S. and Canadian representatives of various interests. The Working Group coordinates the activity of its member agencies for this program. The funding from Douglas County PUD, however, goes directly to the Working Group members through their respective managing entities. This establishes channels for future on-the-ground activity, since the contract recipients are the individuals that will be making the management decisions. While the project tries not to exclude any participants from decision-making, the small group of people involved is not widely representative. Significant sectors are not currently included, such as other U.S. interests and non-governmental organizations on both sides of the border. Also, Douglas County PUD is aware of the peculiar dynamic implicit in the error period of the border.

in the arrangement—namely that resource managers in B.C. are engaged in helping the utility district to handle its mitigative responsibility in the U.S.

The Douglas County Project has encountered several obstacles, including political concerns, the international border, implications of the project in terms of the Pacific Salmon Treaty (PST), and bureaucratic inertia. South Okanogan-Similkameen Conservation Program The South Okanogan-Similkameen Conservation Program (SOSCP), was created by MELP and Environment Canada in July 2000 out of an existing management strategy for the basin, coordination of the Nature Trust of B.C.'s South Okanogan Critical Areas Program, Okanogan/Similkameen Subbasin Summary 230 September 27, 2001 and the MELP's Habitat Conservation Fund Okanogan Endangered Species Program. In the early 1990s, the strategy set priorities for management activities for the conservation of natural habitat and fish and wildlife. The strategy prioritized biophysical mapping projects, species status reports, and opportunities for stakeholder participation.

Annex IV Chapter 1 Transboundary Rivers recognizing that stocks of salmon originating in Canadian sections of the Columbia River constitute a small portion of the total populations of Columbia River salmon, and that the arrangements for consultation and recommendation of escapement targets and approval of enhancement activities set out in Article VII are not appropriate to the Columbia River system as a whole, the Parties consider it important to ensure effective conservation of up-river stocks which extend into Canada and to explore the development of mutually beneficial enhancement activities.

Therefore, notwithstanding Article VII, paragraphs 2, 3, and 4, the Parties shall consult with a view to developing, for the transboundary sections of the Columbia River, a more practicable arrangement for consultation and setting escapement targets than those specified in Article VII, paragraphs 2 and 3. Such arrangements will seek to, *inter alia*:

(a) Ensure effective conservation of the stocks;

(b) Facilitate future enhancement of the stocks on an agreed basis; and

(c) Avoid interference with United States management programs on the salmon stocks existing in the non-transboundary tributaries and the main stem of the Columbia River.

Collaborative development of a regional resolution to address fish passage issues

at Enloe Dam

On March 29, 2001, The Colville Business Council and the Okanogan Nation Alliance signed a joint letter of commitment, quoted here:

In this joint letter of commitment, the Colville Business Council and the Okanogan Nation Alliance commit to the collaborative development of a regional resolution to fish passage issues at Enloe Dam, and working with the Upper and Lower Similkameen Indian Bands in particular to protect

Okanogan/Similkameen Subbasin Summary 457

DRAFT May 17, 2002

related fishing rights and interests. The collaborative activities will include working together on common fisheries interests to facilitate a broader ecosystem approach to fisheries, focusing on common restoration programming in the Okanogan- Similkameen subbasin.

Collaborative fisheries programming will address long-term ecosystem perspectives in the restoration of the subbasin and the region's tribal/First Nation's fisheries. Restoration programming may consider subbasin fisheries as part of broader collaborative

fisheries programming in the Columbia watershed, and in the Upper Columbia Watershed in particular. Key elements of the collaborative programming will address, although are not limited to the following:

- Protection of fishing rights and interests
- Rehabilitation of the watershed's aquatic environments
- Cooperative conservation and management of common fisheries interests
- Development of the regions' tribal/First Nation's fisheries.

The Council confirms its respect for the spiritual prohibitions against salmon passage at Enloe Dam, and the need to involve the Upper and Lower Similkameen Indian Bands in related policy and program planning.

The Mid-Columbia Habitat Conservation Plan

The Douglas and Chelan PUDs worked cooperatively with various state and federal fisheries agencies, including National Marine Fisheries Service (NMFS), United States Fish and Wildlife Service (USFWS), Washing Department of Fish and Wildlife (WDFW), three Native American tribes and an environmental organization, American Rivers, to develop the first Hydro Power Habitat Conservation Plan for anadromous salmon and steelhead. The plan commits the two utilities to a 50-year program to ensure that their hydro projects have no net impact on mid-Columbia salmon and steelhead runs. This will be accomplished through a combination of fish bypass systems, spill at the hydro projects, off-site hatchery programs and evaluations, and habitat restoration work conducted in mid-Columbia tributary streams.

Acceptance of the plan by the federal and state fisheries agencies, Native American tribes, American Rivers and the PUDs is anticipated to take place in April 2002. Approval of this plan will allow the mid-Columbia PUDs to obtain Section 10 permits. The permits recognize that there will be incidental mortality of the affected species as part of the restoration plan. The Section 10 permits issued by NMFS will provide for the continued operation of the Wells, Rocky Reach, and Rock Island hydro projects and PUD funded fish hatcheries, even though they may incidentally impact ESA listed spring chinook and steelhead. Without the permits, operation of the hydro projects and hatcheries could be drastically altered.

In addition to the Endangered Species Act, the HCP is also intended to satisfy the projects' obligations under the Federal Power Act, the Fish and Wildlife Coordination Act, the Essential Fish Habitat provisions of the Magnuson-Stevens Fishery Conservation and Management Act, the Pacific Northwest Electric Power Planning and Conservation Act and Title 77 RCW of the State of Washington. The HCP will satisfy project relicensing issues for the five plan species.

Project Proposal ID	29001	29003	29004	29005	29007	29008	29011	29013	29015	29016	29017	29019	29021	29022	29023	29029	29032	29033	29035	29037	29040	29042	29045	29050	29051	29054	199604200	199609400	200000100	200001300
Province Budget Work Group Funding Recommendation	High Priority	High Priority	Recommended Action	Recommended Action	High Priority	High Priority	Withdrawn	High Priority	High Priority	High Priority	Recommended Action	High Priority	Recommended Action	Recommended Action	High Priority	High Priority	High Priority	High Priority	Recommended Action	High Priority										
Subbasin Goals and Ob	jecti	ves											•																	
Recover ESA listed species of fish and wildlife	x	x	х	x	x	x			x								x				x			x	x		x		x	
Protect and recover all species of fish and wildlife	x	x	x	x			x	x	x	x	x			x	x		x	x	x			x	x				x	x	x	
Fill Critical data gaps – Identify adequate funding base level for Upper C.				x	x	x	x	x	x	x		x	x	x		x		x		x		x		x	x	x	x	x	x	x
Increase transborder effort and coordination			x	x	x	x	x	x	x		x		x					x												x
Enhance Subbasin Planning Analysis	x			x	x	x	x	x	x		x	x	x	x		x		x		x						x	x		x	x
Protect habitat that is currently functional for salmonids			x						x		x				x				x								x		x	
Restore access to fish habitat obstructed by human-caused physical and/or water quality barriers	x	x							x					x	x								x				x		x	
Restore hydrological regimes in Okanogan subwatersheds	x	x							x								x									x	x		x	

Table 51. Okanogan River Subbasin FY 2003 BPA Funding Proposal Matrix

Project Proposal ID	29001	29003	29004	29005	29007	29008	29011	29013	29015	29016	29017	29019	29021	29022	29023	29029	29032	29033	29035	29037	29040	29042	29045	29050	29051	29054	199604200	199609400	200000100	200001300
Province Budget Work Group Funding Recommendation	High Priority	High Priority	Recommended	Recommended		High Priority	Withdrawn	High Priority	High Priority	High Priority	Recommended 2 Action		Recommended Action	Recommended Action	High Priority	High Priority	High Priority	High Priority	Recommended Action	High Priority										
Conduct reach analysis studies of riparian and in-channel habitats									x									x		x						x	x		x	
Restore habitat connectivity	x	x		x			x		x					x	x		x						x				x	x	x	
Improve adult survival	х							x	х																		х		х	
Improve juvenile survival	x							x	x												x			x	x		x		x	
Provide a hatchery- supplemented natural- origin run of spring Chinook into the Okanogan basin																					x			x	x					
Create tribal and sport harvest.	x				x										x						x	x		x	x		x		x	
Supplemented Natural Production (Integrated Recovery)					x			x	x												x			x	x					
Restore naturally spawning populations in their historic habitats	x				x			x															x		x		x	x		x
Create a hatchery- origin run of salmon to support the basin fisheries								x																						
Increase supplementation into underutilized habitats								x	x												x				x					
Support selective fisheries in the Okanogan basin					x	x		x													x	x		x	x					

Project Proposal ID	29001	29003	29004	29005	29007	29008	29011	29013	29015	29016	29017	29019	29021	29022	29023	29029	29032	29033	29035	29037	29040	29042	29045	29050	29051	29054	199604200	199609400	200000100	200001300
Province Budget Work Group Funding Recommendation	High Priority	High Priority	Recommended Action	Recommended Action	High Priority	High Priority	Withdrawn	High Priority	High Priority	High Priority	Recommended Action	High Priority	Recommended Action	Recommended Action	High Priority	High Priority	High Priority	High Priority	Recommended Action	High Priority										
Provide more salmon for the subsistence fishery located below Chief Joseph Dam.								x													x			x	x		x			
New, expanded, and reprogrammed hatchery facilities combined with new acclimation facilities					x			x																						
Expand Summer Chinook Production								x	x												x									
Recover populations of sharp-tailed grouse to viable pop.		x	x	x			x																					x		
Halt the decline of burrowing owls		x		x																										
Recover populations of Washington ground squirrels to viable		x	x	x																										
Recover ferruginous hawks from threatened status		x		x																										
Conserve the remaining populations of northern leopard frogs in Washington and reestablish additional populations		x		x																										
Manage sharp-tailed grouse populations on the Colville Reservation		x	x	x			x																							

Project Proposal ID	29001	29003	29004	29005	29007	29008	29011	29013	29015	29016	29017	29019	29021	29022	29023	29029	29032	29033	29035	29037	29040	29042	29045	29050	29051	29054	199604200	199609400	200000100	200001300
Province Budget Work Group Funding Recommendation	High Priority	High Priority	Recommended Action	Recommended Action	High Priority	High Priority	Withdrawn	High Priority	High Priority	High Priority	Recommended Action	High Priority	Recommended Action	Recommended Action	High Priority	High Priority	High Priority	High Priority	Recommended Action	High Priority										
Assess and protect neotropical bird populations and their habitat		x		x																										
Maintain or restore the habitat of native plants while preventing the spread of noxious weeds	x		x												x				x									x		
Establish production- related strategies for salmon recovery and maximize reproductive potential of salmonids.					x						x							x			x						x		x	x
Enhance instream flows, water quality and habitat conditions to benefit resident fish populations where they are found to be impaired	x		x						x					x	x												x		x	
Inventory exotic fish species in the subbasin.																														
Enhance survival of post-spawn (kelt) steelhead to maximize reproductive success.					x				x																					
Uplands and forest		X	X				X								~		Y		~				~				v		v	
Instream restoration Floodplain and riparian	x		x				x		x						x x		X		x				x				X X		X X	\vdash
CTT Stated Needs	X	x	X	x	x	x	X	x	X		x			x	X	x	x	x		x	x	x		x	x		X	x	X	x

Project Proposal ID	29001	29003	29004	29005	29007	29008	29011	29013	29015	29016	29017	29019	29021	29022	29023	29029	29032	29033	29035	29037	29040	29042	29045	29050	29051	29054	199604200	199609400	200000100	200001300
Province Budget Work Group Funding Recommendation	High Priority	High Priority	Recommended Action	Recommended Action	High Priority	High Priority	Withdrawn	High Priority	High Priority	High Priority	Recommended Action	High Priority	Recommended Action	Recommended Action	High Priority	High Priority	High Priority	High Priority	Recommended Action	High Priority										
UCSRB objectives for the Okanogan subbasin	x				x	x		x	x		x			x			x				x		x			x	x		x	x
Transborder Coordination and Ecosystem Planning Processes					x	x	x	x	x		x																	x		x
Annex IV Chapter 1 Transboundary Rivers											x																			
Coordinate with The Mid-Columbia Habitat Conservation Plan	x				x	x		x	x		x							x		x	x						x		x	

These projects are referenced by ID above:

29001 - Evaluation of 1872 Water Rights to Supplement Flows Between Basins

29003 - Acquire Property for Partial Wildlife Mitigation

29004 - Control Okanogan Weeds - Invasive Species Project

29005 - Validate Occurrence and Assess Abundance of Wildlife Species

29007 – Okanogan Kelt Reconditioning

29008 - Adult Passage Counting and Trapping at Zosel Dam

29011 - Sharp-tailed Grouse and Mule Deer Habitat Restoration and Enhancement on Sinlahekin Wildlife Area

29013 - Acquire Land Adjacent to Chiliwist Creek and Develop Summer Chinook and Summer Steelhead Acclimation Pond

29015 - Thermal Imaging and Total Maximum Daily Load (TMDL) Development on the Okanogan Subbasin.

29016 - Return of Okanagan Sockeye Salmon to their historic range.

- 29017 Prepare a Master Plan for Protecting and Restoring Salmon Habitat in Okanagan River
- 29019 Characterize and Assess Wildlife-Habitat Types and Stuctural Conditions for Okanogan sub-basin
- 29021 Develop a Physical Processes Method (PPM) to Supplement Habitat Conditions Analysis and Subbasin Planning
- 29022 Omak Creek Water Temperature Model
- 29023 Restoration/Protection of Kartar Creek In-stream, riparian, and Wetland Habitats
- 29029 Perform Range Forage Inventory for Large Ungulates
- 29032 Okanogan Basin Water Strategy Development and Pilot Projects
- 29033 Design and Conduct Monitoring and Evaluation Associated With Reestablishment of Okanogan Basin Natural Production
- 29035 Okanogan River Riparian and Upland Fish and Wildlife Habitat Aquisition

29037 - Ecosystem Diagnosis and Treatment in the Columbia Cascade Province

- 29040 OK-11 Develop And Propagate Local Okanogan River Summer/Fall Chinook
- 29042 Selective Fish Collection And Harvesting Gear
- 29045 Protect and Restore Salmon and Steelhead Habitat at the Similkameen/Okanogan River Confluence
- 29050 Phase I Okanogan River Spring Chinook Production
- 29051 Develop Local Okanogan River Steelhead Brood Stock
- 29054 Stream Gaging Installation and Operations
- 199604200 Restore and Enhance Anadromous Fish Populations and Habitat in Salmon Creek
- 199609400 Increase sharp-tailed grouse and mule deer populations and enhance shrubsteppe/riparian habitats on the Scotch Creek Wildlife Area.
- 200000100 Improvement of Anadromous Fish Habitat and Passage in Omak Creek
- 200001300 Evaluate An Experimental Re-introduction of Sockeye Salmon into Skaha Lake
- NOTE: 1. This matrix represents a summary of general objectives. The Okanogan Subbasin has a well-developed set of sub watershed objectives and are reported in the body of this report.
 - 2. Objectives for the Canadian Portion of the watershed are inherent in several of the ongoing project and proposed projects. Additionally, project No. 29017 specifically seeks to define an expanded set of objectives
 - 3. Restoration of naturally spawning stocks of spring/summer/fall chinook and steelhead (ESA listed species) represent an integrated program
 - 4. The proposed Monitoring and Evaluation Program (proposal No. 29033) contains elements to validate both general and specific subbasin objectives.
 - 5. Species-specific anadromous and resident fish objectives, along with a well-defined set of site and species specific wildlife objectives are found in the body of the report.

References

Alt, D.P. and D.W. Hyndman. 1984. *Roadside Geology of Washington*. Mountain Press Publishing Company, PO Box 2399, Missoula, Montana.

Arno, S. and R. Hammerly. 1977. Northwest Trees. The Mountaineers, Seattle, Washington.

- Buckmiller, D. Tonasket District Wilderness Ranger. Personal communication.
- Cederholm, C., L. Reid, and E. Salo, E. 1981. Cumulative Effects of Logging Road Sediment on Salmonid Populations of the Clearwater River, Washington: A Project Summary. In WWRC, pp. 373-398.
- Chapman, D., et al. 1994. Status of summer/fall chinook salmon in the mid-Columbia Region. Don Chapman Consultants, Inc. Boise, Idaho.
- Confederated Tribes of the Colville Indian Reservation (CTCR). 1996. *305(b) Report*. Confederated Tribes of the Colville Reservation, Environmental Trust Department, Water Quality Assessment and Management. Programs. Okanogan County, Washington.
- CTCR. 1997. Integrated Resources Management Plan, Phase 1: Inventory & Analysis Reports. Okanogan County, Washington.
- CTCR, 1998. Annual Report Game Management Program, Colville Confederated Tribes Fish and Wildlife Department. Nespelem, WA 62pp.
- CTCR, 1999. Integrated Resource Management Plan (IRMP), Phase II Draft, Vol. 1, 1999, Confederated Tribes of the Colville Reservation, Nespelem, WA.
- CTCR. 2000. Analysis of Streamflows in Watersheds, Subbasins and Basins for the Colville Indian Reservation.
- CTCR. 2000. Environmental Trust Department database. November 2000. Okanogan County, Washington.
- CTCR, 2001. Annual Report Game Management Program, Colville Confederated Tribes Fish and Wildlife Department, Nespelem, WA
- CTCR. 2001. Water Quality Assessment and Management Program 305B Report. Okanogan County, Washington.
- Cooper, Kelly. 2001. Tonasket Ranger District Fish Technician. Personal communication. 2001.

- Craig, J., and A. Suomela. 1941. *History and Development of the Fisheries of the Columbia River*.
- Fisher, Chris. Fish Biologist, Confederated Tribes of the Colville Reservation, electronic memo.
- Fisher, 2001. Personal Communication, Chris Fisher, CTCR Fisheries Biologist. 9/2001
- Fitkin, S. 2001. Personal communication. WDFW Area Biologist. Winthrop, Washington.
- Frost, E. 1999. Forests of the Methow Valley. Unpublished table. Wildwood Consultants, Ashland, Oregon.
- Fulton, L. 1968. Spawning Areas and Abundance of Chinook Salmon (0. tshawytscha) in the Columbia River Basin Past and Present.
- Gullidge, E.J. 1977. The Okanogan River Basin Level B Study of the Water and Related Land Resources. Washington State Department of Ecology, Olympia, Washington.
- Hagen, J., and G. Grette. 1994. 1993 Okanogan River sockeye salmon spawning ground population study. Parametrix report to Douglas County Public Utility District. East Wenatchee, Washington.
- Hansen, J. 1993. Upper Okanogan River sockeye salmon spawning ground survey 1992. For Douglas County Public Utility District. Confederated Tribes of the Colville Reservation, Fish and Wildlife Department. Nespelem, Washington.
- Hart, 2001. The Okanogan Tribe. Unpublished narrative. Richard Hart, Winthrop, Washington.
- Hinkley, Craig. Tonasket Ranger District Fire Tanker Foreman, and Tonasket area resident. Personal communication.
- Honey, W. Draper, S. Snyder. 1979. A Survey and Evaluation of Cultural Resources Phase I of the Oroville -Tonasket Unit Extension. Department of Anthropology, Oregon State University, Corvallis, Oregon. p.59.
- Hunner, W. 2001. Confederated Tribes of the Colville Reservation Hydrologist. Okanogan County, Washington. Personal communication.
- Huntley, C., et al. 2001. Transboundary Collaboration in Ecosystem Management: Integrating Lessons from Experience. University of Michigan School of Natural Resources and Environment, April 17, 2001.
- Johnson, C. 2001. Washington State Department of Natural Resources, Okanogan County, Washington. Personal communication.
- Keller, W. 2001. USDA Natural Resources Conservation Service, Okanogan, Washington. Personal communication.

- Labor Market and Economic Analysis Branch Employment Security Department. 1997. Okanogan County Profile.
- Lewis, J. 1980. Biles Coleman Lumber Company's Reservation Narrow Gauge.
- Marko, J. 2001. Confederated Tribes of the Colville Reservation Fisheries Biologist. Okanogan County, Washington. Personal communication.
- Messerlie, T. 2001. Range Conservationist, USFS Tonasket Ranger District, Tonasket, Washington. Personal communication.
- Mullan, J., K. Williams, G.Rhodus, T. Hillman, and J. McIntyre. 1992. Production and habitat of salmonids in Mid-Columbia River tributary streams. U. S. Fish and Wildlife Service. Monograph 1.
- Natural Resource Conservation Service (NRCS). 1994. Okanogan River Survey Report/Oroville to Tonasket Reach. USDA Natural Resources Conservation Service, Okanogan, Washington.
- NRCS. 1995a. Omak Creek Watershed Plan/Environmental Assessment. United States Department of Agriculture. 54 pages.
- NRCS. 1995b. Omak Creek Watershed Plan/Environmental Assessment. USDA Natural Resources Conservation Service, Spokane, Washington. 54 pp.
- NRCS. 1998. Sedimentation Analysis of the Okanogan Watershed. USDA Natural Resources Conservation Service, Okanogan, Washington.
- National Marine Fisheries Service (NMFS) et al. 1998. Aquatic species and habitat assessment of the Wenatchee, Entiat, Methow, and Okanogan Watersheds for the mid-Columbia Habitat Conservation Plan. National Marine Fisheries Service, prepared in cooperation with Douglas County, Chelan County, and Grant County Public Utility Districts. Wenatchee, Washington.
- NMFS. 2000. Anadromous Fish Agreements and Habitat Conservation Plans. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service. Wenatchee, Washington.
- National Oceanic and Atmospheric Administration (NOAA). 1994. Annual Climatological Summary. U. S. Department of Commerce National Oceanic and Atmospheric Administration. Asheville: 1969-1994.

Northwest Power Planning Council. 1992. Strategy for Salmon.

Okanogan County Health Department (OCHD). 1996. Board of Health Resolution 96-003. 1996. On-Site Sewage Disposal Regulation. Okanogan County Health District, Okanogan, Washington.

- Okanogan Conservation District. 2000. Okanogan Watershed Water Quality Management Plan. Okanogan, Washington.
- Okanogan Watershed Stakeholder's Advisory Committee (OWSAC). 2000. Okanogan Watershed Water Quality Management Plan. Okanogan Watershed Stakeholder's Advisory Committee and Okanogan Conservation District. Okanogan, Washington.
- Pacific Northwest River Basins Commission (PNRBC). 1977. The Okanogan River Basin Level B study of the water and land related resources. Okanogan Conservation District, Pacific Northwest River Basins Commission, Okanogan, Washington.

Pacific Rivers Council. 1996.

Pratt, K. L. 1991, Potential to Enhance Sockeye Salmon Upstream from Wells Dam.

- Province of British Columbia. 1996. State of Water Quality of Okanogan River at Oliver 1980-1995. Ministry of Environment, Lands and Parks, Water Quality Section, Water Management Branch.
- Ray, V. 1933. The Sanpoil and Nespelem: Salishan Peoples of Northeastern Washington.
- Schalk, R. 1986. Estimating Salmon and Steelhead usage in the Columbia Basin Before 1850, the Anthropological Perspective. University of Washington Press, Seattle, Washington.

Scott, W.B., and Crossman, E.J. 1973. Fresh Water Fishes of Canada. Fisheries Research Board of Canada. Bulletin 184. Ottawa, Ontario, Canada. 966 pages.

- Soil Conservation Service (SCS). 1980. Soil Survey of Okanogan County Area, Washington. National Cooperative Soil Survey. United States Department of Agriculture, Soil Conservation Service, Washington, DC.
- SCS. 1988. Soil Survey of the Colville Reservation. USDA Soil Conservation Service, Okanogan, Washington.
- Spotts, Jim. Former Forest Fish Biologist for Okanogan National Forest and for Washington Department of Fish and Wildlife, Region 2. Personal communication.

Streamnet. http://www.streamnet.org. Accessed 2001.

- Swedberg, D. 2001. Manager, WDFW Sinlahekin Wildlife Area, Okanogan County, Washington. Personal communication.
- Tonasket Ranger District, 1996. Unpublished stream survey data for Tonasket Creek on the USFS managed lands.
- Tonasket Ranger District. 1998. Biological Assessment for Grazing Allotments within the Tonasket Creek Watershed of the Okanogan Subbasin. Portions of Haley, Hull, Lost and Phoebe Allotments. 13 April 1998. Unpublished report. 34 pages.

- Trevino, L. 2001. Confederated Tribes of the Colville Reservation Water Administrator. Okanogan County, Washington. Personal Communication.
- Upper Columbia Regional Technical Team. 2001. A Strategy to Protect and Restore Salmonid Habitat in the Upper Columbia Region. Draft Report to the Upper Columbia Salmon Recovery Board. July 2001. 51pp.
- U.S. Department of Agriculture (USDA). 1989. Okanogan National Forest System Land and Resource Management Plan. USDA Forest Service, Okanogan National Forest, Okanogan, Washington.
- USDA. 1995b. Toats Coulee Watershed analysis. USDA Forest Service, Okanogan National Forest, Tonasket Ranger District, Tonasket, Washington.
- USDA. 1997. Salmon Creek Watershed Analysis. USDA Forest Service, Okanogan National Forest, Tonasket Ranger District, Tonasket, Washington.
- USDA. 1998a. General Water Quality Best Management Practices. USDA Forest Service Pacific Northwest Region. Portland, Oregon.
- USDA. 1998b. Tonasket Watershed Assessment. US Forest Service, Okanogan National Forest, Tonasket Ranger District, Tonasket, Washington.
- USDA. 1999. Antoine-Siwash Watersheds Assessment. US Forest Service, Okanogan National Forest, Tonasket Ranger District, Tonasket, Washington.
- USDA. 2000. Integrated Weed Management Environmental Assessment. USDA Forest Service, Okanogan National Forest, Okanogan, Washington.
- USDA and U.S Department of the Interior (USDI). 1995. Decision Notice for the Interim Strategies for Managing Anadromous Fish-Producing Watersheds in Eastern Oregon and Washington, Idaho, and Portions of California (PACFISH) USDA Forest Service Pacific Northwest Region, USDI Bureau of Land Management, Portland, Oregon.
- USDA and USDI. 2000. Draft. Interior Columbia Basin-Ecosystem Management Project (ICBEMP). PNW-GTR-400. USDA Forest Service, USDA Bureau of Land Management, Walla Walla, Washington.
- USDA Natural Resources Conservation Service. 1999. Salmon Creek Inventory and Analysis Report. In cooperation with the Okanogan Irrigation District, Salmon Creek Private Landowners, and the Colville Confederated Tribes. Omak, Washington
- USDI. 1976. Final Environmental Statement: Oroville-Tonasket Unit Extension Okanogan-Similkameen Division Chief Joseph Dam Project.
- USEPA. 1998. Environmental Protection Agency Clean Water Action Plan. Washington, D.C.

- US Federal Register. 1997. Final Rule, Endangered and Threatened Species: Listing of Several Evolutionarily Significant Units (ESUs) of West Coast Steelhead. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service. U.S. Federal Register, Vol. 62, No. 159. August 18, 1997. Rules and Regulations. Pgs. 43937-43954.
- U.S. Federal Register. 1999. Final Rule, Endangered Status of One Chinook Salmon ESU. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service. US Federal Register. Vol. 64, Number 56, March 24, 1999. Page 14328.
- USFWS, 1999. Endangered and Threatened Wildlife and Plants: 90-day Finding on a petition to list the Columbian Sharp-tailed Grouse as Threatened. Federal Register: October 26, 1999, Volume 64, Number 206.
- U.S. Geological Survey (USGS). 1996. Water Resources Data Washington Water Year 1995. Water Data Report WA-95-1.
- Van Woert, Duane. Former Tonasket Ranger District management officer and private land owner on lower Antoine Creek. Personal communication.
- Washington Administrative Code (WAC). 1992. Washington Administrative Code. Chapter 246-272. On-Site Sewage Systems. Rules and Regulations of the State Board of Health. State of Washington. Olympia, Washington.
- WAC. 1992. Chapter 173-201-A-130. Specific classifications-Freshwater. Olympia, Washington.
- Walters, K. 1974. Water Supply Bulletin 34, Water in the Okanogan River Basin. Washington State Department of Ecology, Washington. Olympia, Washington.
- WSDOE. 1995. Draft Initial Watershed Assessment, Water Resources Inventory Area 49, Okanogan River Watershed. Washington State Department of Ecology, Olympia, Washington.
- WSDOE. 1997a. Aquatic Plants Technical Assistance Program, Activity Report 98-311.
- WSDOE. 1997b. Water Quality Monitoring Data. 1977-1997. Washington State Department of Ecology, Environmental Investigations and Laboratory Services, Olympia, Washington.
- Washington Department of Fish and Wildlife (WDFW). 1990. Methow and Okanogan Rivers Subbasin: Salmon and Steelhead Production Plan.
- WDFW. 1996. Priority Habitats and Species List Habitat Program. Washington Department of Fish and Wildlife, Olympia, Washington.

- WDFW. 1997. Wild Salmonid Policy Draft Environmental Impact Statement. Washington Department of Fish and Wildlife, Olympia, Washington.
- WDFW. 1999. Summer Chinook Spawning Ground Survey in the Methow and Okanogan River Basins in 1998, report # SS99-03. Washington Department of Fish and Wildlife, Fish Program Salmon and Steelhead Division.
- Washington State Department Office of Financial Management (OFM). 1999. April 1 Population of Cities, Towns, and Counties Used for the Allocation of Designated State Revenues. Washington State Office of Financial Management, Olympia, Washington.
- Washington Department of Natural Resources (WDNR). 1996. Loomis Forest Landscape Plan. Washington State Department of Natural Resources, Olympia, Washington.
- WATERSHEDSS. 1997. Water, Soil, and Hydro-Environmental Decision Support System. Developed Under a Grant From the U.S. EPA (Project #CR822270/Grant Cooperative Agreement 818397011). North Carolina State University, Durham, NC
- Watson, S. 1994. Best Management Practices For Wheat. National Association of Wheat Growers Foundation and the Cooperative Extension System. Page 119.
- Williams, Ken. Washington Department of Fish and Wildlife Region 2 Fish Biologist. Personal communication.
- Wilson, B. 1990. Late Frontier A History of Okanogan County, Washington. Okanogan County Historical Society, Okanogan, Washington.
- Wissmar, R.; J. Smith, B. McIntosh, H. Li, G. Reeves, and J. Sedell. 1994. A History of Resource Use and Disturbance in Riverine Basins of Eastern Oregon and Washington. Northwest Science Volume 68, Special Issue.

<u>Commissioners</u> Craig Vejraska Dave Schulz Robert C. Hirst

Okanogan County Commissioners' Office

<u>Admin. Services Director</u> James K. Weed

<u>Clerk of the Board</u> Brenda J. Crowell

237 Fourth North - Administration Building

24 July 01

Keith Wolf Director & Senior Biologist Ecological Sciences Group Golder Associates, Inc. 18300 NE Union Hill Road, Suite 200 Redmond, WA 98502-3333

Joe Peone Director of Fish and Wildlife Department Colville Confederated Tribes Post Office Box 150 Nespelem. WA 99155

RE: Okanogan County Comments on "Draft Okanogan/Similkameen Subbasin Summary; 11 May 2001"

Dear Mr. Wolf and Mr. Peone:

The following are Okanogan County's comments on the Draft Okanogan/Similkameen Subbasin Summary; 11 May 2001.

First, we would like to comment on the tone and conclusions made in the document. It is our understanding that this is a technical document and therefore conclusions drawn within the document need substantial scientific support. In many sections of the document conclusions are drawn without specific scientific information. For example on Page 76, section titled "Exotic Species" it reads: There are numerous introduced species in the basin. Many of these were introduced as game animals. The practice of stocking exotic wildlife for hunting ended in 1983 (OWSAC. 2000). Declines in pheasant and chukar populations since then are a result of this policy change as well as changes in habitat and weather conditions. Table 23 is a listing of the species introduced into the Okanogan River watershed." In examining the Chukar and Ringnecked pheasant data in Table 23 it is listed as "Unknown" when the species were introduced or their current status. We question if adequate science has been collected to make the determination that these species are on the decline. Realize that we make this comment because the information presented in the document does not support the conclusion stated. Other determinations have been made through out the document without supportive scientific information.

Secondly, most of the negative attributes in the Okanogan Basin are accredited towards livestock and logging. For example on Page 25, First paragraph of the page it reads: "Livestock grazing

practices have led to trampled streambanks, and increased bank erosion and sedimentation, changes in vegetation – including loss of native grasses impacts to woody vegetation, and noxious weeds." We believe this to be a one sided conclusion. We acknowledge that livestock and logging can impact stream banks, habitat, and vegetation but to what degree and is it all negative? More unbiased scientific information needs to be collected before these types of conclusions can be supported. Furthermore, there is no mention in the document about the impacts that recreation or non-domestic animals have on the attributes of the Basin. By not considering all of the possible contributors towards negative impacts on the Basin's attributes, this does not provide a balanced, unbiased technical review of the Basin.

Thirdly, on page 160, the document lists "Statement of Fish and Wildlife Need", "Floodplain and Riparian Needs", Uplands and Forest Needs", and finally, "Subbasin Recommendation". There is not enough language in the bullets following the titles to affirm or disaffirm whether or not we agree with the list. Many of the items on the list will effect the economic base of Okanogan County. As representatives of the constituents who rely on the economic base and financial stability of Okanogan County to survive, we must know all of the components of these proposed projects and recommendations before we can make accurate comments. In addition, perhaps a title needs to be added such as "Needs of People". Under this title items that need to be addressed are "Examine water storage possibilities, above and below ground, to supplement instream flows and irrigation needs." and "Power generation opportunities." Even if another title is not added, these items need to be addressed in the document. No matter what actions are taken, the impacts on people need to be considered. This document solely focuses on the needs of fish and native wildlife and we believe that the needs of people must be considered as well otherwise it relays the concept of fish before people.

And lastly, since public funds are being used to fund this process, why is there not a public comment period? Reviewing the list of people that have contributed to the document there are not any from the general public. This subbasin summary and subsequent projects completed from this summary is going to have an impact on the citizens of the County. The citizens of the County should have an opportunity to comment on those things that are going to effect them.

We realize that the intent of the comment period is to highlight specific suggestions and provide alternatives. We believe that if we make specific suggestions to change items in the document that it will mean that we would agree with the other items in the document when this would not be so. We intend for this letter to be included in the final Okanogan/Similkameen Subbasin Summary.

If you have any questions or need further information, please do not hesitate to contact any of the Okanogan County Board of Commissioners.

Sincerely,

Robert Hirst, Chairman Okanogan County Board of Commissioners

Addendum to the Okanogan Subbasin Summary

UPDATES/REPLACEMENTS TO THE OKANOGAN SUBBASIN SUMMARY

There are three replacements to make to the Okanogan Subbasin Summary listed below. Please include this as an addendum to the existing document.

1. Pg. 74. UPDATE AND REPLACEMENT TO EXSISTING AND PAST EFFORTS, "SALMON CREEK INSTREAM HABITAT RESTORATION"

The Salmon Creek Restoration Program began in 1997, when the Colville Confederated Tribes (CCT) formed a partnership with the Okanogan Irrigation District (OID) to evaluate the feasibility of restoring year round instream flows for fish while maintaining the ability of the irrigation district to deliver water to its users. The project addresses two limiting factors for anadromous fish in the Okanogan Basin: lack of instream flow in the lower 4.3 miles of the creek, and degraded channel conditions that inhibit fish passage in the lower 4.3 miles of the creek.

Salmon Creek has been identified as having the best potential for restoration of anadromous fish populations in the entire Okanogan Basin for the following reasons: The headwaters of the watershed are at approximately 8,000 feet elevation. The east, west and north forks are collected into two reservoirs in Conconully, Washington, which store water for an irrigation district. The reservoirs trap sediment limiting the input of fine sediment into the creek below the reservoirs. The irrigation district releases water down the natural stream channel, and water is drawn off the bottom of a 70' reservoir, providing a stable temperature regime below what is lethal for anadromous fish. In the middle reach of Salmon Creek, between Conconully Reservoir and the Okanogan Irrigation District's diversion dam, there is adequate substrate to support spawning and rearing. Salmon Creek was historically fish producing and did not have impediments to fish passage.

The two Conconully reservoirs store 1½ years of water supply for the Okanogan Irrigation District (OID), which comprises 5,032 acres of mostly orchards. When full, the two reservoirs store 23,500 acre feet (af) of water. The OID releases water down the natural stream channel. Twelve miles below the reservoirs the entire flow is diverted into the OID's main canal, leaving the lower 4.3 miles dry most of the year, and it has been this way for 90 years. Fish habitat conditions in the twelve miles between the reservoirs and the OID diversion dam (middle reach) are good to excellent. As a result of the altered hydrograph from the diversion dam, channel conditions below the OID diversion dam (lower reach) are fair to poor since Salmon Creek has downcut through higher gradient reaches and widened in low gradient depositional reaches. This has resulted in loss of channel sinuosity, riparian vegetation, and connection to the floodplain. Lack of water and the resulting lack of vegetation have lead to bank instability and lateral channel migration.

When there is uncontrolled spill at the reservoirs in years of high spring runoff, water is able to reach the Okanogan River. These flood flows have torn apart stream banks, caused lateral channel migration and have left an alluvial fan at the confluence of the creek and the Okanogan River that is a fish passage barrier in all flows except flood stage. The alluvial fan sits 8' above the bed of the Okanogan River.

TECHNICAL BACKGROUND

Several studies were undertaken in 1999 & 2000 that have broadened the understanding of the severity of the problems and identified potential solutions:

Dames & Moore, Phase I

In 1999, the OID & Colville Confederated Tribes (CCT) commissioned a feasibility study (Dames & Moore—Phase I, 1999) to discern if it was possible to provide year-round flows to accommodate the various life cycles of anadromous fish while maintaining the ability of the district to deliver water to its users. The consultants studied:

- 1. Historic flows and fish populations in the Salmon Creek watershed
- 2. Stream hydrology to determine its potential for restoration
- 3. Investigated water conservation opportunities for the irrigation district
- 4. Investigated alternative water supply opportunities, including water exchanges, management, marketing and storage.
- 5. Developed a computer model that integrated fish flow requirements by life stage with district system operations and water supply alternatives.

The consultants estimated flow requirements in the middle and lower reaches for endangered summer steelhead and spring Chinook, by life stage, and compared those to the irrigation requirements by month. The study concluded that the watershed did not provide enough flows to satisfy the needs of both irrigators and fish, but identified a dozen alternatives to achieve both of these goals. The consultants concluded that an additional 7,122-9,737 af of water, in addition to what the watershed naturally provides, was required each year to satisfy the needs of fish and irrigation. The consultants also concluded that providing year-round flows, in the absence of developing a self-sustaining channel in the lower 4.3 miles of Salmon Creek, would not likely provide for successful fish recovery. The OID & CCT selected seven measures that were reasonably cost effective and likely to yield the additional water supply needed:

Dames & Moore/URS Phase II

In 2000 the OID & CCT commissioned Dames & Moore (subsequently acquired by URS) to further investigate the feasibility of four of the alternatives outlined in Phase I, including re-regulating the reservoir, enlarging/upgrading the Salmon Lake Feeder Canal, the Okanogan River pump station, and the Johnson Ck pipeline repair.

Note: Permanent acquisition of the OID's water was not part of the feasibility study because the OID

would not consider selling water at the time the study was conducted. With the subsequent changes to the fruit market, water acquisition will be considered in NEPA/SEPA. The outcome of the NEPA/SEPA will provide details for the OID to consider whether or not they are willing to see water. The OID Board of Directors must agree to put this to a vote of the water users. If the OID Directors vote not to put it to a vote and/or the water users vote against such a measure, it is a moot point.

NRCS Salmon Creek Stream Survey & Analysis:

In 1999, an additional study was conducted by the Natural Resources Conservation Service (NRCS) titled Salmon Creek Stream Survey & Analysis (SCSS&A). The NRCS surveyed fish habitat, riparian and geomorphic conditions on Salmon Creek. They divided the stream into 8 reaches and estimated that channel and bank instability in all eight reaches annually yield more than 4,534 tons of sediment (1,450 reaches 3-6). Site-specific treatments were recommended to address problems such as stream bank and bed instability, lack of riparian vegetation, lack of large woody debris and poor geomorphic conditions. Recommended treatments included, where appropriate, log and rock vanes, root wad revetments, vegetative plantings, fencing and development of alternative water sources for livestock. The implementation of these treatments would provide the following benefits to the re-establishment of endangered steelhead and spring chinook:

- o Improve soil and stream bank stability and reduce fines
- o Buffer and moderate stream temperature
- Preserve water quality
- o Improve width:depth ratios
- Supply large woody debris to improve cover, provide protection, improve rearing habitat and provide nutrients to the aquatic system
- o Protect property and provide aesthetic benefits to landowners

<u>Colville Confederated Tribes: Salmonid Fish Spawning Habitat and Production</u> <u>Potential in Salmon Creek, Washington</u>

The Tribes undertook research in 1995 to evaluate the relationship between salmonid fish spawning habitat and potential production in the middle reach of Salmon Creek. A 1994 salmonid habitat inventory of Salmon Creek was used to provide a basis for research pertaining to spawning substrate. Stream segments were categorized as forested or agricultural for analysis purposes. There was a greater quantity of potential spawning substrate for resident and anadromous salmonid species in the agricultural reaches. However, forested segments contained more cobble material and thus provided better spawning conditions for salmon and steelhead. The quality of the spawning substrate was superior in the forested reaches. Predicted average survival-to-emergence based on Fredle Index values for the forested and agricultural areas were 94.3 and 73.1 percent, respectively. This research can be used by biologists to help generate smolt production and adult return numbers for Salmon Creek. The research may also be used to guide future habitat improvement projects for salmonid species.

RECENT IMPLEMENTATIONS IN SALMON CREEK

In 2000-2001, the CCT & OID implemented several recommendations identified in previous studies:

♦ Implemented: Water Leasing

Water leasing was identified as an interim measure until the remainder of the water supply program could be implemented. A voluntary water leasing program was initiated with irrigators within the OID. In 2000 322 acres at \$135 per acre totaling 900 af of water was leased (three af per acre). In 2001 573 acres at \$145 an acre totaling 1,700 af was leased. A portion of the leased water was used to aid steelhead juveniles migrating out to the Okanogan River and adult steelhead migrating back into Salmon Creek. The leased water provided adult passage over 4.3 miles where they could access quality spawning and rearing habitat in the middle reach of Salmon Creek, twelve miles. The remainder of leased water was slowly released over a 3-month period in the winter for overwintering flows, also in the middle reach (12 miles). This program has been successful, and the CCT proposes to continue it in years 2003-2005 as long as there is water in the reservoirs to lease.

• Implemented: Okanogan Irrigation District Water & Energy Conservation through Automation

In 2001 the OID's facilities were automated. This project was funded by the Washington State Salmon Recovery funding Board (\$230,000) and matched by BPA (\$70,000). This program will be operational starting in spring 2002, and does not require any further funding. This measure should provide 600 af of water savings annually in addition to annual power savings.

Various Frequency Drives (VFD) units were installed at four pump stations off the OID's main canal. These regulate the speed of the motors based on the water user's demand of the system, thus regulating the water supply to each diversion, resulting in both water and power savings. Flow measurement devices were installed on Salmon Creek and below the OID fish screen. Canal measurements can now be taken at diversions 2 and 4 and at the end of the canal. Flow meters will be installed at Diversions 2, 3, 4 & 5. Flow release gates at Conconully Reservoir were automated. These enable the OID manager to adjust the flow from the reservoirs via a computer at the OID office, allowing for instantaneous changes based on demand, which the OID couldn't do before. The computerization of this function also provides the OID manager release measurement data and lake levels from the office. Automation of these functions also results in an estimated 20% power savings. Because this project wasn't completed until the end of the

2001 irrigation season, firm water and energy savings won't be calculated until 2002.

• Implemented: On-Farm Water Conservation

Implementation of an on-farm water conservation program was initiated within the OID in 2001. It is intended that this program would run for a 5-year period, as some results can be seen instantaneously, but improvements in crop yield and water use are seen over a period of years. This measure should provide 1,000 af of water savings annually. Soil moisture measurement devices were installed at individual farms. The grower can look at the device and see his/her individual water profile for six weeks, and determine how much water to apply and when. Two aerial flights using infrared technology per year are planned for up to 40 growers. Through infrared technology, the growers can learn if they are overwatering or underwatering their crops, determine the degree of tree vigor, and runoff. Approximately 400 acres were included the first year with an expectation to increase participation in years 2-5.

• Implemented: Okanogan River Pump Station Design

In 2000-2001 an engineer was contracted to bring the pump station to 50% design criteria. Included in the design were geotechnical testing of the proposed site, identification of right-of-way and easements required, cost estimates for construction, operations and maintenance and annual pumping. With the additional information, costs for construction rose to \$6.7 million.

• Implemented: Design of Channel restoration in the lower 4.3 miles of Salmon Creek

As a result of the altered hydrograph below the diversion dam, the lower 4.3 miles of Salmon Creek has downcut through higher gradient reaches and widened in low gradient, depositional reaches. This has resulted in a loss of channel sinuosity, riparian vegetation, and connection to the floodplain. For this project to be fully effective, channel function in this reach will require major reconstruction, which will enable use by all life history stages. Previous studies identified that providing flows, in the absence of major channel restoration in the lower 4.3 miles of Salmon Creek, would not provide for successful fish recovery. Channel restoration design began in 2001. The CCT proposes to continue this design until 100% criteria has been met and approved by the regulatory agencies.

In 2001 the CCT hired the environmental consulting firm, Entrix, to undertake the design, planning, NEPA, and permitting of the channel restoration that is required in the lower 4.3 miles of the creek. The goals are to:

- Reconstruct a stable channel that conveys high flows without bank erosion, provides fish passage and aquatic habitat
- Re-establish adequate stream flows
- Revegetate the stream corridor

This work will take place over several years. In 2000 the CCT developed a scope of work, signed a contract, and Entrix began the conceptual design of the lower reach, which must be ready before NEPA/SEPA Scoping can begin. Entrix will also work with BPA on undertaking NEPA for both the stream restoration of the lower reach and the water supply elements: Okanogan River Pump Station, Replacement of the Salmon Lake Feeder Canal, Salmon Lake Dam Raise, On-farm Water Conservation, and District-Wide Water Conservation through Automation, Water Acquisition.

 NRCS Agreement Reach to Implement Streambank Stabilization on Private Lands in the Middle Reach

Habitat conditions in the middle reach of Salmon Creek are site-specific and far less extensive than in the lower reach of Salmon Creek. In 2001 BPA and the CCT negotiated an agreement with the Natural Resources Conservation Service. The agreement specifies that the NRCS will hire an engineer to work with landowners to design bank stabilization projects and hire a range conservationist to develop farm management plans that complement projects that improve the riparian corridor. The agreement stipulates that CCT will seek funds annually from NWPPC/BPA, and that CCT pledges to fund the two positions for a minimum of three years. Matching funds for the construction of projects was sought from the Wash. Salmon Recovery Funding Board.

• Implemented: Habitat Acquisition—Historical site of Ruby and Mouth of Salmon Creek:

In 2001 BPA provided \$340,000 to acquire 56 acres at the historic Ruby Townsite, which contained land bordering 3,800' on both sides of Salmon Creek. This particular stretch contains the best fish habitat in Salmon Creek and the entire Okanogan Basin. Because the site was platted as a town in 1880, and the town disappeared shortly thereafter, the site could still legally be subdivided. Purchase of this site protects this habitat in perpetuity and protected it from being subdivided into 600 R.V. camping sites. Ownership was transferred to BLM, who owns the land on both sides of creek for two miles above the site.

With the remaining \$195,000, appraisal was begun on property at the mouth of Salmon Creek. A park is situated on one side of the creek. On the opposite side sits one home between the creek and a public boat launch to the Okanogan River. The CCT are partnering with the City of Okanogan, who would assume ownership if the site were purchased. Purchase has two beneficial purposes: 1) It would enable removal of the alluvial fan, 5,000 cubic yards of material, at the mouth of the creek without impacting private landowners. Purchase of the land will save \$30,000 on removal of the alluvian and may save mitigation costs to the landowners while removal takes place. 2) This site, once the alluvial fan has been removed and the lower channel restored, could be developed into an interpretive site and park that is compatible with stream restoration goals.

• Initiated NEPA/SEPA/EIS:

BPA will serve as Lead Agency for NEPA compliance on the Salmon Creek Restoration Program. The Bureau of Reclamation (BOR) will act as a cooperating

agency under NEPA. The stream restoration project and the water supply program are regarded as connected actions under NEPA by the BPA. Therefore, a single Environmental Impact Statement will be prepared for both actions.

In 2001 Entrix was hired to conduct NEPA/SEPA/EIS on the entire Salmon Creek Restoration Program identified above. In 2000 CCT developed a scope of work, signed a contract, developed an integrated approach to NEPA, and Entrix began the conceptual design of the lower reach, which must be ready before NEPA/SEPA Scoping can begin. The Scoping process is anticipated to begin in February 2002.

• Implemented: Fish Ladder at OID Diversion Dam & Upgrade of OID Fish Screen to NMFS' Present Criteria

In 1999 the Bureau of Reclamation constructed a fish ladder at the OID diversion dam. The ladder is designed to pass fish with minimum instream flows. Also in 1999 the Bureau upgraded the fish screen to NMFS' present screening criteria.

2. Pg. 214. REPLACE SUMMARY OF ACTION ITEMS BY SUB-BASIN, SALMON CREEK ACTION ITEMS

Salmon Creek Action Items

- Restore hydrologic regime that supports life cycles through Salmon Creek in the reach below the diversion dam (RM 4.3). Would support spring chinook and summer steelhead migration.
- 3. Pg. 242. UPDATE AND REPLACEMENT TO FISH AND WILDLIFE NEEDS, UCSRB STATED NEEDS, SALMON CREEK

Salmon Creek

- Provide suitable instream flows for lower Salmon Creek.
- Create a stream channel morphology in lower Salmon Creek that is consistent with historical stable stream type, and raise the water table to support riparian vegetation by developing a small but effective floodplain
- Restore bank stability in the middle reach, revegetate the stream corridor, and develop alternate sources of water for livestock.
- The Upper Columbia Region should have a coordinated program that informs the public about salmonid habitat needs and means to protect water resources.